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Abstract

Connexin 43 (Cx43) may be important in cell death and survival due to cell-to-cell communi-

cation-independent mechanisms. In our previous study, we found that small G protein signal-

ing modulator 3 (SGSM3), a partner of Cx43, contributes to myocardial infarction (MI) in rat

hearts. Based on these previous results, we hypothesized that SGSM3 could also play a role

in bone marrow-derived rat mesenchymal stem cells (MSCs), which differentiate into cardio-

myocytes and/or cells with comparable phenotypes under low oxygen conditions. Cx43 and

Cx43-related factor expression profiles were compared between normoxic and hypoxic con-

ditions according to exposure time, and Sgsm3 gene knockdown (KD) using siRNA transfec-

tion was performed to validate the interaction between SGSM3 and Cx43 and to determine

the roles of SGSM3 in rat MSCs. We identified that SGSM3 interacts with Cx43 in MSCs

under different oxygen conditions and that Sgsm3 knockdown inhibits apoptosis and cardio-

myocyte differentiation under hypoxic stress. SGSM3/Sgsm3 probably has an effect on MSC

survival and thus therapeutic potential in diseased hearts, but SGSM3 may worsen the devel-

opment of MSC-based therapeutic approaches in regenerative medicine. This study was per-

formed to help us better understand the mechanisms involved in the therapeutic efficacy of

MSCs, as well as provide data that could be used pharmacologically.

Introduction

Mesenchymal stem cells (MSCs) can isolated various sources including bone marrow, trabecu-

lar and cortical bone, adipose tissue, skeletal muscle, peripheral blood, umbilical cord blood,

and dental pulp and differentiate into multi-lineage according to sources such as osteoblast,

chondrocytes, adipocytes, cardiomyocytes, tenocytes, muscle cells, fibroblast, and neuron [1–

5]. Over the past decades, there has been tremendous focus on attempts to repair cardiac tissue
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with stem cell transplantation, and MSCs have been widely studied in both animal models and

clinical trials [6,7]. MSCs are considered a promising tool with clinical implications for cell-

based applications for cardiac therapeutics of myocardial infarction, peripheral ischemic vas-

cular disease, pulmonary hypertension, and dilated cardiomyopathy [4]. Recently, signaling

pathway related to some regulators containing HGF, PDGF, Wnt, and Notch-1, was found

that involved in proliferation and differentiation into cardiomyocytes of MSCs [5]. In ischemic

heart diseases, transplanted stem cells experience sudden oxygen deficiency when transplanted

into ischemic heart tissue. Stem cells adapt themselves under hypoxic microenvironments by

regulating their proliferation, differentiation, metabolic balance and other physiological pro-

cesses [8,9]. The oxygen microenvironment of stem cells plays an important role in controlling

stem cell properties and the ability to differentiate into different mesoderm lineages [8,9].

MSCs have practical potential for differentiation into osteogenic, chondrogenic, cardiomyo-

genic and adipogenic cells and/or cells with comparable phenotypes under hypoxic conditions

[10–13]. These changes in the MSC response to low oxygen conditions could be used as a pre-

conditioning method for effective stem cell transplantation. Some studies have shown that

hypoxic preconditioning may promote cell survival following stem cell transplantation

[14,15].

Connexin 43 (Cx43) forms intracellular communication channels and is related to cell

death in impairment [16]. Lu G et al., has found that increased Cx43 expression enhances cell

viability, cardiomyogenic differentiation and cardiac functions after transplantation of precon-

ditioned MSCs [17]. Furthermore, decreases in Cx43 expression are reported for nearly every

type of cardiac pathology and during the acute phase of ischemia in myocardial infarction

(MI) [18–20]. Ischemic preconditioning inhibits respiratory disorder from reperfusion and

mitochondrial Cx43 is closely related to these mechanisms by ischemic preconditioning [21–

24]. However, the mechanism of Cx43 in myocardial protections still unknown.

Despite its short half-life (as little as 1–2 h), regulation of Cx43 appears to exist on both

short- and long-term scales through protein phosphorylation and interactions and gene

expression, respectively [18,20]. Although several binding partners of Cx43 with gap junction-

dependent and gap junction-independent functions have been found, a study about the char-

acterization of Cx43-binding proteins remains insufficient [25]. However, less is known about

the mechanistic basis and function of Cx43 protein-protein interactions [25–28]. In our previ-

ous study, we found that small G protein signaling modulator 3 (SGSM3), a partner of Cx43,

contributes to MI in rat hearts [29], and inhibiting the protective effects against oxidative stress

with kenpaullone was shown to involve Cx43 and SGSM3 interactions in cardiomyocytes [30].

Based on these previous results, we expected that SGSM3 could also play a role in bone mar-

row-derived rat MSCs, which differentiate into cardiomyocytes and/or cells with comparable

phenotypes under low oxygen conditions. Here, we determined the differential expression and

interaction of Cx43 and SGSM3 in MSCs under different oxygen conditions and the effects of

SGSM3 knockdown on apoptosis and cardiomyocyte differentiation under hypoxic stress. To

the best of our knowledge, no studies have reported on the interaction between SGSM3 and

Cx43 and their effects on damage induced by a low oxygen environment in stem cells. This

study was performed to help us better understand the mechanisms involved in the therapeutic

efficacy of MSCs, as well as provide data that could be used pharmacologically.

Materials and methods

Rat MSC culture

Second passage bone marrow-derived Sprague-Dawley (SD) rat MSCs were purchased from

Cyagen (Cat. No. RASMX-01001; Santa Clara, CA, USA). The cells were cultured in
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Dulbecco’s modified Eagle’s medium (DMEM; HyClone, Logan, UT, USA) supplemented

with 10% fetal bovine serum (FBS; HyClone, Logan, UT, USA) and 1% penicillin/streptomycin

at a density of 5×104 cells/cm2 in a 100-mm dish in a humidified atmosphere with 5% CO2 at

37˚C.

Normoxic- and hypoxic-conditioned cell preparation

Rat MSCs were incubated with serum-free media (SFM) under normoxic or hypoxic condi-

tions for 6, 12 or 24 h. For the hypoxic conditions, cells were incubated at 37˚C in 5% CO2, 5%

H2 and 0.5% O2 in a chamber with an anaerobic atmosphere system (Technomart, Seoul,

Korea). The cells were harvested after the 6-, 12- or 24-h incubation period and incubated with

RIPA buffer (Cell Signaling Technology, Danvers, MA, USA) for immunoblot analysis and

with TRIzol Reagent (Life Technologies, Frederick, MD, USA) for quantitative real-time

RT-PCR (qRT-PCR) analysis.

Normoxic- and hypoxic-conditioned cell preparation

Total RNA was isolated from rat MSCs under normoxic and hypoxic conditions using TRIzol

Reagent, and cDNA was synthesized using a Maxime RT PreMix kit (iNtRON Biotechnology,

Seongnam, Korea). The level of each gene transcript was determined quantitatively using a Ste-

pOnePlus Real-Time PCR System (Applied Biosystems, Foster City, CA, USA). A SYBR Green

Dye system (SYBR Premix Ex Taq (Tli RNase Plus) with a ROX reference dye (TAKARA Bio

Inc., Foster City, CA, USA) was used to perform real-time RT-PCR. All values are shown as

the target gene expression level (fold change; 2ΔΔCt) normalized to the Gapdh transcript level.

All primers were designed using Primer3 from BLAST (Table 1).

Immunoblot analysis

Immunoblot analyses were performed as previously described [10,31]. Briefly, cell lysates were

prepared with RIPA buffer containing 1% phosphatase inhibitors (Sigma-Aldrich, St. Louis,

MO, USA), 1% protease inhibitors (Sigma-Aldrich) and 1% proteasome inhibitors (MG132;

Abcam, Cambridge, UK). The proteins were separated using SDS-PAGE and transferred to

polyvinylidene difluoride (PVDF; Sigma-Aldrich) membranes. The membranes were incu-

bated with the appropriate primary antibodies and horseradish peroxidase (HRP)-conjugated

secondary antibodies (Santa Cruz Biotechnology, Santa Cruz, CA, USA). The blots were devel-

oped with enhanced chemiluminescence (ECL Western Blotting Detection Kit, GE Healthcare,

Buckinghamshire, UK), and the band intensities were quantified using ImageJ software (NIH).

Transient Cx43 and Sgsm3 knockdown

To knockdown (KD) Hif1a and Sgsm3, target-specific commercial AccuTarget siRNAs (BIO-

NEER, Daejeon, Korea) (Hif1a siRNA no. 1654508: sense (50-30), CAGUUACGAUUGUGAAGUU
(dTdT); antisense (50-30), AACUUCACAAUCGUAACU G (dTdT); Sgsm3 siRNA no. 1752125:

sense (50-30), CUGAUACAGUCGGAGAACU (dTdT); antisense (50-30), AGUUCUCCGACUGU
AUCAG (dTdT)) were designed, and a negative control (nontargeting siRNA) was used. MSCs

(1 × 106 cells per dish in a 10-mm dish) were transiently transfected with siRNA (100 nM per

dish) and agent (45 μl per dish) using the TransIT-X2 Dynamic Delivery System (Mirus Bio

LLC, Madison, WI, USA), and gene expression levels were examined in the cells after cultured

for 24 h. The level of each gene transcript was normalized to the level of the Gapdh transcript.
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Cell viability assay

MSCs were seeded at a density of 1×104 cells/well in a 96-well plate before transfection. They

were transiently transfected with SGSM3 siRNA (100 nM per dish) and agent (45 μl per dish)

using the TransIT-X2 Dynamic Delivery System and exposed to hypoxic stress for 12 h after

24 h. The viability of MSCs was measured using Ez-Cytox Colorimetric Cell Viability Assay

Kit (DOGEN, Seoul, Korea), following the manufacturer’s instructions. This assay is based on

features of water-soluble tetrazolium salt.

Immunofluorescence analysis

To investigate the expression patterns of cardiogenic markers upon Sgsm3 knockdown in

MSCs under normoxic and hypoxic conditions, cells were grown on cell culture slides (SPL,

Pocheon-si, Korea) and then fixed with 4% formaldehyde. The cells were then washed with

PBS and subjected to permeabilization in 0.25% Triton X-100 (Sigma-Aldrich, St. Louis, MO,

USA). The cell slides were washed with PBS three times, blocked with 1% BSA in PBS-T for 1

h, and then incubated with a monoclonal anti-cardiac troponin T antibody (1:200 dilution)

and anti-GATA antibody (1:200) (abcam) overnight at 4˚C. Next, the cells were washed three

times with PBS. The cell slides were then incubated with a FITC-conjugated mouse secondary

antibody (1:1000 dilution) against cardiac troponin T or a rhodamine-conjugated rabbit sec-

ondary antibody (1:1000 dilution) against GATA4. DAPI (Sigma-Aldrich) was used to stain

the cell nuclei. The prepared slides were observed using an LSM700 confocal laser scanning

microscope (Carl Zeiss, Oberkochen, Germany). Acquisition of the images was performed

using Zen black or blue software (Carl Zeiss).

Statistical analysis

All experimental results were compared using one-way analysis of variance (ANOVA) in the

Statistical Package of Social Science (SPSS, version 17) program. The data are expressed as the

Table 1. Sequences of primers used for quantitative real-time RT-PCRs.

Genes Primer sequence (5’– 3’) Tm c) (˚C) Ta d) (˚C) Product length (bp)

Genes inducible hypoxia
Hif1a F a) AGCAATTCTCCAAGCCCTCC 59 60 111

R b) TTCATCAGTGGTGGCAGTTG 57.4

Gap junction
Cx43 F CTCACGTCCCACGGAGAAAA 59 60 119

R CGCGATCCTTAACGCCTTTG 59

ZO-1 F AGACAATAGCATCCTCCCACC 58.2 60 131

R TAGGGTCACAGTGTGGCAAG 58.6

Cx43-binding target
Sgsm3 F CTGACACAGGGCAGATGAAG 57.3 60 108

R TCATGTGCTGTGGACGATGG 59.4

Internal control
Gapdh F TCTCTGCTCCTCCCTGTTCTA 58.4 60 121

R GGTAACCAGGCGTCCGATAC 59.3

a) F, sequence from sense strands
b) R, sequence from anti-sense strands
c) Tm, primer melting temperature
d) Ta, primer annealing temperature

https://doi.org/10.1371/journal.pone.0231272.t001
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mean ± SEM. A protected least-significant difference (LSD) test, which is a method consisting

of single-step procedures in a one-way ANOVA for analyzing multiple comparisons, was used

to identify significant differences between means (p<0.05).

Results

Changes in Cx43 and SGSM3 in rat MSCs under low oxygen conditions

In a previous study, we performed a coimmunoprecipitation (CoIP) assay to identify potential

Cx43 partner proteins, a peptide mass fingerprinting (PMF) analysis to identify proteins inter-

acting with Cx43 and a network analysis using GeneMANIA to validate their correlation and

find additional Cx43 partner proteins. Ultimately, SGSM3, a Cx43-interacting protein, was

confirmed in rat hearts [29]. Here, we carried out these three analyses in rat MSCs as prelimi-

nary experiments and showed that there was also an interaction between Cx43 and SGSM3 in

MSCs. Based on these data, Cx43 and Cx43-related factor expression profiles in MSCs were

first compared between normoxic and hypoxic conditions according to exposure times. Next,

we investigated the gene/protein expression of Cx43, SGSM3 and tight junction protein 1

(ZO-1), and there were differences in the expression patterns of these targets between nor-

moxic- and hypoxic-conditioned MSCs (Fig 1). Gene and/or protein levels of hypoxia-induc-

ible factor 1-α (Hif1α) and Cx43 were significantly increased, whereas SGSM3 and ZO-1 levels

were reduced by hypoxic stress; however, the hypoxia time with the most or least expression

was different for gene and protein expression (Fig 1). Accordingly, we decided to harvest cells

12 h after hypoxic stress because the conditions had distinct and differential expression pat-

terns between the normoxic and hypoxic conditions (Fig 1).

Effects of Hif1a and Sgsm3 knockdown on the expression levels of gap

junction targets

For experimental proof of the interaction between SGSM3 and Cx43 and to confirm the rele-

vance of the two proteins and Hif1α, Hif1a and Sgsm3 gene knockdown (KD) using siRNA

transfection was performed in rat MSCs. After 24 h of siRNA KD, MSCs were exposed to a

normoxic or hypoxic environment for 12 h. Hif1a was effectively knocked down by siRNA

transfection, and Hif1a KD affected the downregulation of Cx43 expression and the upregula-

tion of ZO-1 expression under normoxic and/or hypoxic conditions (Fig 2A). However, Hif1a

KD did not change the expression of SGSM3 (Fig 2A). On the other hand, Sgsm3 was substan-

tially knocked down by siRNA transfection, and Sgsm3 KD significantly increased the expres-

sion of Hif1α and Cx43 and attenuated the expression of ZO-1 (Fig 2B). It can be inferred that

SGSM3 is closely related to Cx43, Hif1α, and ZO-1

Effects of Sgsm3 KD on cell apoptosis under hypoxic stress

To determine the effects of Sgsm3 KD on cell death induced by hypoxic stress in rat MSCs, the

viability of control and Sgsm3 KD cells was investigated under normoxic and hypoxic condi-

tions. We found that Sgsm3 KD significantly prevented cell death induced by low oxygen

under both normoxic and hypoxic conditions (Fig 3A). On the basis of these results, we

hypothesized that Sgsm3 KD could induce changes in increases in apoptosis-related proteins

under hypoxic stress. Therefore, apoptosis marker expression in control and Sgsm3 KD cells

under different oxygen conditions was observed via immunoblot analysis. Surprisingly, Sgsm3

KD remarkably inhibited the increases in cytochrome C, caspase-3 and caspase-9 induced by

hypoxic stress (Fig 3B). These results suggest that Sgsm3 KD could block hypoxia-induced

apoptosis.
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Fig 1. Time-dependent differential expression of gap junction factors (Cx43, ZO-1) and SGSM3 in normoxic and hypoxic

conditions in rat MSCs as determined by qRT-PCR (A) and immunoblot analysis (B). All qRT-PCR values are shown as the

normalized target gene expression level relative to the GAPDH transcript levels, and the data are representative of three

independent experiments (A). Band intensity was measured as the area density and analyzed in ImageJ and relative intensity

levels indicate protein levels normalized to the β-actin levels (B). Significant differences between the normoxia and hypoxia

groups were determined via ANOVA, with p values indicated as �p<0.01 and ��p<0.001. N, normoxia; H, hypoxia; NC,

negative control cells; KD, knockdown cells.

https://doi.org/10.1371/journal.pone.0231272.g001
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Effects of Sgsm3 KD on the expression levels of cardiomyogenic factors

We previously found alterations in cardiomyocyte differentiation-related proteins in MSCs

exposed to hypoxia [10]. Here, we investigated whether Sgsm3 KD can cause increased expres-

sion of cardiomyogenic markers in MSCs under hypoxic stress using immunoblotting and

immunofluorescent staining. Consequently, Sgsm3 KD significantly decreased the expression

levels of cardiomyocyte differentiation-related proteins, except NKX2.5, under hypoxia (Fig

4A). Vascular endothelial growth factor (VEGF), which promotes cardiomyocyte differentia-

tion, was investigated in Sgsm3 KD cells exposed to hypoxia, but there was no effect of Sgsm3

KD (Fig 4A). The differential expression of cardiomyogenic factors induced by Sgsm3 KD

under normoxic and hypoxic conditions was validated in MSCs using immunofluorescent

staining (Fig 4B). Additionally, the effects of Sgsm3 KD on the Wnt/β-catenin signaling path-

way were investigated, and decreases in Wnt-3 and β-catenin/p-β-catenin expression and

increases in p-glycogen synthase kinase 3 β (GSK3β) expression were found under hypoxic

conditions (Fig 5). These results imply that Sgsm3 KD could inhibit differentiation into cardi-

omyocytes under hypoxic stress and affect the Wnt/β-catenin signaling pathway in MSCs.

Discussion

The SGSM family contains three members (SGSM1, SGSM2, and SGSM3) [32] and SGSMs

are expressed in the central nervous system neurons and are involved in the RAP RAB family.

This suggests that SGSMs play an essential part in neuronal signal transduction and vesicular

transportation pathways [33]. Lan Z et al. first identified that SGSM3 interacts with Cx43 and

Fig 2. Effects of Hif1a (A) and Sgsm3 (B) knockdown on Cx43 and SGSM3 expression levels in rat MSCs under normoxic and hypoxic

conditions, as measured via immunoblot analysis. Band intensity was measured as the area density and analyzed in ImageJ and relative

intensity levels indicate protein levels normalized to the β-actin levels. The data are representative of two independent experiments.

Significant differences between groups were determined via ANOVA, with p values indicated as �p<0.05 and ��p<0.01. N, normoxia; H,

hypoxia; NC, negative control cells; KD, knockdown cells.

https://doi.org/10.1371/journal.pone.0231272.g002
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Fig 3. Effects of Sgsm3 knockdown on cell death and apoptosis under hypoxia in rat MSCs. Changes in cell viability (A) and apoptosis marker expression (B) in

MSCs with Sgsm3 knockdown under normoxic and hypoxic conditions were measured using Ez-Cytox and immunoblot analysis, respectively. Band intensity was

measured as the area density and analyzed in ImageJ and relative intensity levels indicate protein levels normalized to the β-actin levels. The data are representative of

two independent experiments. Significant differences between groups were determined via ANOVA, with p values indicated as �p<0.05 and ��p<0.01. N, normoxia; H,

hypoxia; NC, negative control cells; KD, knockdown cells.

https://doi.org/10.1371/journal.pone.0231272.g003
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induces its degradation, and these results suggest that SGSM3 may induce Cx43 turnover

through the lysosomal pathway [34]. The Cx43 is affected by interactions between Cx43 and

numerous proteins, which related to trafficking, channel construction, and degradation

[35,36]. SGSM3 increases Cx43 turnover by accelerating the internalization of Cx43 from the

plasma membrane [37]. On the other hand, several studies have shown that SGSM3 is associ-

ated with the risk of some cancers, including liver, breast, colorectal and bladder cancers [38–

41].

We previously found that SGSM3 functions as a partner of Cx43 and inhibits Cx43 degra-

dation in a rat MI model and cardiomyocytes [29,30]. Based on these previous data, we were

curious whether SGSM3 also plays a role in cardiomyogenic differentiation in stem cells. We

investigated the expression and interaction of Cx43 and SGSM3 in MSCs under low oxygen

conditions, which could induce differentiation into cardiomyocytes and/or cells with compa-

rable phenotypes in MSCs [10]. The results indicated that SGSM3 was decreased, whereas

Cx43 was increased in rat MSCs under hypoxic stress. These results are consistent with the

opposite expression pattern of Cx43/SGSM3 in a rat MI model and cardiomyocytes [29,30]. In

addition, we found that Hif1a KD reduced Cx43 and ZO-1 expression but did not change

SGSM3 expression, whereas Sgsm3 KD increased Hif1α and Cx43 expression and decreased

ZO-1 expression under hypoxic conditions. These results indicate that SGSM3 is reduced by

hypoxic stress in a HIF1α-independent manner and that SGSM3, HIF1α, and Cx43 are closely

related; moreover, SGSM3 may induce Cx43 turnover in stem cells.

Fig 4. Effects of Sgsm3 knockdown on cardiogenic marker expression in rat MSCs. Changes in cardiogenic marker expression upon Sgsm3 knockdown in MSCs

were measured via immunoblot analysis (A) and immunocytochemical staining (B). Band intensity was measured as the area density and analyzed in ImageJ and

relative intensity levels indicate protein levels normalized to the β-actin levels (A). The nuclei were stained with DAPI (B). Scale bar = 200 μm. The data are

representative of two independent experiments. Significant differences between groups were determined via ANOVA, with p values indicated as �p<0.05 and ��p<0.01.

N, normoxia; H, hypoxia; NC, negative control cells; KD, knockdown cells.

https://doi.org/10.1371/journal.pone.0231272.g004
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It was recently reported that connexins contribute to regulating cell growth and death.

Wang D et al. investigated whether Cx43 affects MSC survival and improves therapeutic effi-

cacy in a rat MI model [42]. The authors found that Cx43 overexpression improved cell sur-

vival and reduced infarct size in a rat MI model, indicating that Cx43 may act as a potential

target for improving the therapeutic efficacy of MSCs in ischemic heart disease [42]. In addi-

tion, Cx43 expression in tongue muscle-derived stem cells was observed in the earlier stage of

stem cell transplantation and contributed to less arrhythmogenicity, leading to improved
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survival in a mouse MI model [43]. In the present study, Sgsm3 KD ameliorated hypoxia-

induced MSC death, which may be caused by Sgsm3 KD-induced increases in CX43.

MI and subsequent ischemic processes under low oxygen conditions result in extensive car-

diomyocyte loss, and MSC-based therapies are gaining attention as a way to replace current

techniques [44]. Although complete differentiation into functional cells has not yet been

achieved, MSCs can differentiate into cardiac cell types [10,44]. In vivo studies have demon-

strated that MSC-derived differentiated cells have electrophysiological functions similar to

cells originating from cardiac tissue [45,46]. In addition, in vitro studies showed that MSCs

have the ability to form functional gap junctions and cause voluntary rhythms [47,48]. Valiu-

nas et al. suggested that gap junction proteins such as Cx40 and Cx43 may play a significant

role in the physiology and/or pathology of cardiovascular tissues, including cardiac conduction

properties and myoendothelial intercellular communication [48]. In fact, changes in Cx43

expression and distribution were shown in myocardium diseases such as hypertrophic cardio-

myopathy, heart failure and ischemia [49]. In addition, Cx43 is important for maintaining

late-passage MSCs during adipogenesis and regulates the osteogenic differentiation of bone

marrow-derived MSCs [50,51]. These results imply that Cx43 may play a role in the cardiac

differentiation of MSCs. However, to the best of our knowledge, there is no direct report about

the effects of Cx43 on the cardiac differentiation of stem cells. Here, we found that Sgsm3 KD

inhibits hypoxia-induced cardiac differentiation in MSCs, supporting the findings of increased

Cx43 by Sgsm3 KD.

Together with the studies of the effects of Sgsm3 KD on cardiac differentiation, we investi-

gated the influence of Sgsm3 KD on the Wnt/β-catenin pathway. Wnt/β-catenin signaling is

critical in stem cell biology and is involved in cardiomyogenesis via canonical or noncanonical

signaling [52,53]. β-catenin, which related to the canonical Wnt pathway, is a feature of Wnt

signaling activation [54]. GSK3β is an intracellular inhibitor of the Wnt/β-catenin pathway

and may block differentiation in stem cells [55]. In the current study, we found that SGSM3

KD may affect the Wnt/β-catenin pathway in a manner related to hypoxia-induced cardio-

genic differentiation in MSCs. These results suggest that SGSM3 KD may attenuate cardio-

genic differentiation in rat MSCs through a Wnt/β-catenin-dependent pathway.

We identified that SGSM3 interacts with Cx43 in rat MSCs under different oxygen condi-

tions and that SGSM3 KD inhibits apoptosis and cardiomyocyte differentiation under hypoxic

stress and affects the Wnt/β-catenin signaling pathway. SGSM3/Sgsm3 probably has an effect

on MSC survival and has therapeutic potential in diseased hearts, but SGSM3 may worsen the

development of MSC-based therapeutic approaches in regenerative medicine.
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