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Growth-dependent bacterial susceptibility to
ribosome-targeting antibiotics
Philip Greulich1,2,†, Matthew Scott3,†, Martin R Evans2 & Rosalind J Allen2,*

Abstract

Bacterial growth environment strongly influences the efficacy of
antibiotic treatment, with slow growth often being associated
with decreased susceptibility. Yet in many cases, the connection
between antibiotic susceptibility and pathogen physiology remains
unclear. We show that for ribosome-targeting antibiotics acting on
Escherichia coli, a complex interplay exists between physiology and
antibiotic action; for some antibiotics within this class, faster
growth indeed increases susceptibility, but for other antibiotics, the
opposite is true. Remarkably, these observations can be explained
by a simple mathematical model that combines drug transport and
binding with physiological constraints. Our model reveals that
growth-dependent susceptibility is controlled by a single parameter
characterizing the ‘reversibility’ of ribosome-targeting antibiotic
transport and binding. This parameter provides a spectrum classifi-
cation of antibiotic growth-dependent efficacy that appears to
correspond at its extremes to existing binary classification schemes.
In these limits, the model predicts universal, parameter-free limit-
ing forms for growth inhibition curves. The model also leads to non-
trivial predictions for the drug susceptibility of a translation mutant
strain of E. coli, which we verify experimentally. Drug action and
bacterial metabolism are mechanistically complex; nevertheless, this
study illustrates how coarse-grained models can be used to
integrate pathogen physiology into drug design and treatment
strategies.
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Introduction

Quantitative predictions for the inhibition of bacterial growth by

antibiotics are essential for the design of treatment strategies (Peleg

& Hooper, 2010) and for controlling the evolution of antibiotic

resistance (Greulich et al, 2012; Hermsen et al, 2012; Deris et al,

2013; Rodrı́guez-Rojas et al, 2013). The efficacy of antibiotic treat-

ment can be strongly affected by changes in pathogen physiology,

such as biofilm formation (Davies, 2003), switching to persister

states (Lewis, 2007) and responses to metabolic stimuli (Allison

et al, 2011), with slow bacterial growth often being associated with

decreased antibiotic susceptibility (Cozens et al, 1986; Tuomanen

et al, 1986; Millar & Pike, 1992). Yet, despite its importance, in most

cases, the connection between bacterial physiology and antibiotic

susceptibility remains unclear. Here, we show that for ribosome-

targeting antibiotics in Escherichia coli, a strong correlation exists

between physiology, controlled by the nutrient quality of the growth

environment and antibiotic susceptibility.

Ribosome-targeting antibiotics constitute a major class of anti-

bacterial drugs in current clinical use. Within this class, different

drugs bind to different ribosomal target sites, inhibit different

aspects of ribosome function and may bind to their target with vary-

ing degrees of reversibility (Poehlsgaard & Douthwaite, 2005;

Yonath, 2005). We investigate four different ribosome-targeting anti-

biotics, two of which bind almost irreversibly and two of which

bind reversibly. Specifically, streptomycin and kanamycin are

aminoglycosides which bind irreversibly to the 30S ribosomal

complex, inhibiting initiation and inducing mistranslation (Davis,

1987). We also study the reversibly binding drugs tetracycline,

which targets the 30S complex, inhibiting the binding of aminoacyl

tRNA (Tritton, 1977), and chloramphenicol, which targets the 50S

ribosomal complex, preventing peptide bond formation (Nierhaus &

Nierhaus, 1973; Harvey & Koch, 1980). We find that the efficacies of

these antibiotics exhibit qualitatively different responses to changes

in the bacterial growth environment.

It has long been known that the ribosome content of a bacterial

cell correlates closely with its growth rate under conditions of expo-

nential growth (Maaloe, 1979; Bremer & Dennis, 1996). Recently, it

has been shown that this phenomenon can be understood as a

growth rate-dependent partitioning of the cell’s translational

resources between production of new ribosomes and production of

other proteins (Scott et al, 2010; You et al, 2013). This partitioning

can be described by a set of empirically determined constraints,

analogous to the rules that govern the behaviour of electric circuits
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(Scott et al, 2010; Scott & Hwa, 2011). Empirical growth constraints

provide a physiological chassis into which mechanistic models for

the expression of synthetic gene circuits, or endogenous genes, have

been integrated (Klumpp et al, 2009; Klumpp & Hwa, 2014).

The fact that the cell’s ribosome content is growth rate depen-

dent suggests that the efficacy of ribosome-targeting antibiotics

should likewise exhibit growth rate dependence. We demonstrate

that bacterial susceptibility to ribosome-targeting antibiotics does

indeed depend strongly on the nutrient environment as character-

ized by the bacterial growth rate prior to antibiotic treatment.

Surprisingly, although the four antibiotics used in our study share

the same target, we observe contrasting forms for the efficacy–

growth rate relations of different antibiotics.

These intriguing results can be explained by a simple mathemati-

cal model for antibiotic transport and ribosome binding which incor-

porates the empirical growth constraints; growth inhibition relations

which are predicted by the model are in quantitative agreement with

our data for both wild-type and mutant strains of E. coli. A single

dimensionless parameter, which characterizes the reversibility of

transport and binding relative to the drug-free growth rate, emerges

from our analysis, providing a simple way to predict how changes

in antibiotic chemistry, pathogen genetics, or physiological state will

affect drug response. This ‘reversibility parameter’ provides a robust

classification of ribosome-targeting antibiotics according to their

growth rate efficacy relations, with implications for clinical practice

and for the evolution of antibiotic resistance. In particular, revers-

ible ribosome-targeting antibiotics are predicted to work better on

fast-growing infections, whereas irreversible antibiotics are more

effective for slow-growing pathogens. From a wider perspective, the

approach taken here, in which empirical physiological constraints are

coupled with models for molecular mode-of-action, could reveal

similar surprising growth rate –efficacy relations in other classes of

antibiotics.

Results

Antibiotic efficacy depends on growth rate

To investigate the link between bacterial growth environment and

susceptibility to ribosome-targeting antibiotics, we measured

growth inhibition curves (exponential growth rate as a function of

antibiotic concentration) for E. coli cells on media of increasing

nutrient quality. Modulating the composition of the growth

medium in batch culture is a well-established method for varying

the exponential growth rate (Schaechter et al, 1958; Bremer &

Dennis, 1996). As the nutrient quality increases, so too does the

‘drug-free growth rate’ k0, that is the exponential growth rate in

the absence of antibiotic (Fig 1, colour bar and Supplementary

Table S1). For the four ribosome-targeting antibiotics, streptomy-

cin, kanamycin, tetracycline and chloramphenicol, the growth

inhibition curves indeed exhibit a strong dependence on the drug-

free growth rate k0 (Fig 1, left panels and Supplementary Table

S2).

Bacterial susceptibility to antibiotic can be quantified by the IC50:

the antibiotic concentration needed to halve the bacterial growth

rate. Plotting the IC50 as a function of the drug-free growth rate k0,
we observe contrasting trends between different ribosome-targeting

antibiotics (Fig 1, right panels and Supplementary Table S3). For

the irreversibly binding antibiotics streptomycin and kanamycin,

the IC50 increases with nutrient quality; that is, faster growing cells

are less susceptible to antibiotic. In contrast, for the reversibly bind-

ing antibiotics tetracycline and chloramphenicol, the IC50 predomi-

nantly decreases as nutrient quality increases; that is, faster growing

cells are more susceptible to antibiotic treatment. Data sets for glyc-

erol and glucose-based media show distinct trends in IC50 with

drug-free growth rate. The shapes of the growth inhibition curves

also differ markedly between the two groups of ribosome-targeting

antibiotics: we observe threshold-like inhibition, that is a sharp

decrease in growth rate, for streptomycin and kanamycin (Fig 1A

and C), and more gradual inhibition for tetracycline and chloram-

phenicol (Fig 1E and G). Despite having similar targets, these anti-

biotics appear to respond to changes in cell physiology in very

different ways.

Mathematical model

Our experimental data can be explained by a simple mathemati-

cal model. In our model, antibiotic molecules enter a bacterial

cell and bind to ribosomes, while at the same time, new

ribosomes are synthesized and the cell contents are diluted by

growth. Our model is placed within a physiological context

via the empirical growth constraints (Scott et al, 2010; Scott &

Hwa, 2011).

In the model, the state of the cell is described by the intracellular

concentration of antibiotic a, the concentration ru of ribosomes

unbound by antibiotic and the concentration rb of antibiotic-bound

ribosomes (Fig 2A). Two mechanisms drive the dynamics: 1. trans-

port of extracellular antibiotic aex into the cell at rate J(aex,a) =

Pinaex � Pouta, where Pin and Pout quantify the permeability of the

cell membrane in the inward and outward directions, and 2. binding

of ribosomes and antibiotic f(ru,rb,a) = �kona(ru � rmin) + koffrb,

with binding and unbinding rate constants kon and koff, respectively,

and equilibrium dissociation constant KD = koff/kon (the inactive

fraction rmin is assumed not to bind the antibiotic). In exponential

growth, cell contents are diluted at rate k, new ribosomes are

synthesized at rate s(k), and the dynamics of the system are

governed by the following equations:

▸Figure 1. Antibiotic susceptibility depends on nutrient quality for four ribosome-targeting antibiotics.

A–H Irreversibly binding antibiotics streptomycin (A and B) and kanamycin (C and D), and reversibly binding antibiotics tetracycline (E and F) and chloramphenicol
(G and H). The left panels show the growth rate k of E. coli MG1655 relative to the drug-free growth rate k0, as a function of the antibiotic concentration. Growth
inhibition data are shown for media with glycerol as the carbon source. The arrows indicate increasing drug-free growth rate k0. The right panels show the half-
inhibition concentration IC50 as a function of the drug-free growth rate k0. Carbon sources are denoted by symbol: glucose (circles) and glycerol (squares), and
error bars denote the standard deviation among repeated measurements (Supplementary Tables S2 and S3). Media are variants of Neidhardt’s MOPS buffered
medium (Neidhardt et al, 1974); see Materials and Methods for details. Where error bars are not visible, they are smaller than the symbols. Both sample growth
curves and growth inhibition data are provided in the Supplementary Information.
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da

dt
¼ �ka þ fðru; rb;aÞ þ Jðaex;aÞ; (1)

dru
dt

¼ �kru þ f ðru; rb;aÞ þ sðkÞ; (2)

drb
dt

¼ �krb þ fðru; rb; aÞ: (3)

This model is coupled to cell physiology via the empirical rela-

tions of Scott et al (2010), which link the growth rate k and ribo-

some synthesis rate s(k) to the ribosome concentration; these act as

constraints on the dynamical equations (1–3). The first empirical

growth constraint states that the unbound ribosome content ru and

the growth rate k are linearly proportional:

ru ¼ k=jt þ rmin: (4)

Here, rmin = 19.3 lM is the minimal unbound ribosome content

needed for growth, and the translational capacity

jt = 0.06 lM�1h�1 is related to the maximum peptide elongation

rate (Klumpp et al, 2013). This relation emerges from experiments

in which the growth rate is varied by changing the nutrient source

in the absence of antibiotic (green arrow in Fig 2B; see also the

Supplementary Information). The second empirical growth

constraint describes how the ribosome content is upregulated in

response to translational inhibition (Bennett & Maaloe, 1974;

Harvey & Koch, 1980; Cole et al, 1987; Olsson et al, 1996; Scott

et al, 2010). Upon decreasing the growth rate by translational

inhibition (for a fixed nutrient source), the total ribosome content

rtot increases linearly, reaching a fixed maximal value

rmax = 65.8 lM as k?0 (Scott et al, 2010) (red arrow in Fig 2B; see

also the Supplementary Information). This can be expressed mathe-

matically as

rtot ¼ ru þ rb ¼ rmax � kDr
1

k0
� 1

jtDr

� �
; (5)

where Dr = rmax�rmin = 46.5 lM is the dynamic range of the ribo-

some concentration (Scott et al, 2010). The implication of the

second empirical growth constraint, equation (5), is that cells that

are initially growing more slowly have a greater capacity to upre-

gulate their ribosome content upon antibiotic challenge (steeper

slope of the dashed line in Fig 2B) than those that are initially

growing fast; that is, slowly growing cells can increase their

ribosome content with little resulting change in their growth

rate. Adding together equations (2) and (3) at steady state

(dru/dt = drb/dt = 0) shows that the ribosome synthesis rate s(k) is
the product of growth rate and total ribosome content,

sðkÞ ¼ krtot ¼ k rmax � kDr
1

k0
� 1

jtDr

� �� �
: (6)

Model results for growth inhibition curves

Solving the model equations ( 1–3) at steady state, together with the

physiological constraints, equations (4) and (5), produces a

universal equation that links the steady state relative growth rate

k/k0 to the extracellular antibiotic concentration aex (see Supple-

mentary Information ; here we have assumed that the antibiotic

binding rate kon typically exceeds the translational capacity jt by
several orders of magnitude, kon ≫ jt). This equation is

0 ¼ k
k0

� �3

� k
k0

� �2

þ k
k0

� �
1

4

k�0
k0

� �2

þ aex
2IC�

50

k�0
k0

� �" #
� 1

4

k�0
k0

� �2

:

(7)

Remarkably, equation (7) states that the growth-dependent anti-

biotic susceptibility is controlled by only two parameter combina-

tions. The first parameter combination is a rate k�0, which

characterizes the reversibility of ribosome-targeting antibiotic trans-

port and binding:

k�0 ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PoutjtKD

p
; (8)

and can be thought of as a geometric mean of the efflux rate Pout
and the rate jtKD which scales with the reversibility of ribosome

binding. The second parameter combination is a concentration scale

IC�
50 ¼ Drk�0

2Pin
: (9)

In the model, k�0 is used to normalize the drug-free growth rate k0
and IC�

50 is used to normalize the extracellular antibiotic concentra-

tion aex, and later the half-inhibition concentration IC50.

Predictions for growth inhibition curves can be obtained by

solving equation (7); the shapes of these curves depend only on

the value of k�0. For small values of k�0 (the irreversible limit), the

model predicts a discontinuous drop in growth rate at the IC50, as

A B

exa

a

ur br

1.

2.

Total Ribosome 
Concentration

Increasing external 
antibiotic aex

Increasing λλλλ0
(no antibiotic)

Growth Rate λ

u br r+
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maxr

Figure 2. Schematic view of the model and its dynamics.

A The model is focused on three state variables: the intracellular
concentration of antibiotic a, the concentration ru of ribosomes unbound
by antibiotic and the concentration rb of antibiotic-bound ribosomes. Two
mechanisms drive the dynamics: 1. Transport across the cell membrane and
2. Binding of ribosomes and antibiotic.

B Constraints arising from empirical relations between ribosome content and
growth rate. Scott et al (2010) measured total ribosome content as a
function of growth rate. When growth rate is varied by nutrient
composition, in the absence of antibiotics, ribosome content ru correlates
positively with growth rate k, increasing linearly from a minimum
concentration of inactive ribosomes rmin (solid line). When growth rate is
decreased by imposing translational inhibition, total ribosome content
rtot = ru + rb increases, reaching a maximum rmax as growth rate decreases
to zero (dashed lines). Note that Scott et al measured ribosome mass
fraction; here, we translate these to concentrations (see Supplementary
Information, Supplementary Fig S1).
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we see in our data for streptomycin and kanamycin (Figs 1 and 3;

Supplementary Fig S3). Interestingly, in this case, the model

predicts a bistable dependence of growth rate on antibiotic concen-

tration at the level of individual cells (Supplementary Fig S2). For

larger values of k�0 (the reversible limit), the model instead predicts

a smooth decrease in growth rate over a wide range of antibiotic

concentrations, as we observe for tetracycline and chloramphenicol

(Figs 1 and 3; Supplementary Figs S2 and S3).

Fitting the model to the data via the parameters k�0 and IC�
50

yields excellent quantitative agreement for tetracycline and

chloramphenicol, and qualitative, but not very good quantitative,

agreement for streptomycin and kanamycin (Fig 3; Supplementary

Fig S3). In all cases, the fitted parameters k�0 and IC�
50 differ

between the two carbon sources (Supplementary Table S3). Since

the parameters jt and Dr are universal, and it is unlikely that the

antibiotic–ribosome binding constant KD is carbon source depen-

dent, this most likely suggests carbon source effects on the influx

and outflux rates Pin and / or Pout. Such effects are possible, given

that transporter synthesis may be metabolically regulated (Allison

et al, 2011).

The fitted parameters are in good agreement with biochemical

parameter values available from literature data (Supplementary

Table S4) and are consistent with the fact that aminoglycosides are

believed to bind and be transported irreversibly (small k�0) (Davis,

1987), whereas for tetracycline and chloramphenicol, both transport

and binding processes are reversible (large k�0) (Harvey & Koch,

1980; Berens, 2001). For kanamycin and streptomycin, the model

does not provide very good quantitative agreement with the growth

inhibition curves; nevertheless, it does correctly predict the sigmoi-

dal form of these curves and the fact that susceptibility to these anti-

biotics decreases with increasing growth rate (see also Figs 4 and 5).

Universal growth-dependent antibiotic susceptibility curve

One of the major insights provided by the model is a simple expla-

nation for the contrasting trends in growth-dependent susceptibility
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Figure 3. Model fits to growth inhibition curve data.

A–D The parameters k�0 and IC�
50 are obtained by numerical fitting of the solution of the cubic equation (7), to our experimental growth inhibition curves. Data sets for

different drug-free growth rates (i.e. the different curves in each panel) were fitted simultaneously with the same values of k�0 and IC�
50 , but separate fits were

obtained for glycerol-based and glucose-based media. Here, we show the resulting fits for glycerol-based media (symbols as in Fig 1). For each fit, the bold line
shows the best fit to the data, while the narrow lines represent 95% confidence intervals on the value of the parameter k�0 . To obtain these intervals (as well as the
error bars on the fits for k�0 and IC�

50), we performed fits on 1000 randomized data sets generated by sampling within the experimental error ranges on the
measured growth inhibition data. The parameters obtained by our fitting procedure are as follows: streptomycin and glycerol: k�0 ¼ 0:31 � 0:01 h�1,
IC�

50 ¼ 0:189 � 0:003lg ml�1; streptomycin and glucose: k�0 ¼ 0:57 � 0:04 h�1, IC�
50 ¼ 0:36 � 0:01 lg ml�1; kanamycin and glycerol: k�0 ¼ 0:169 � 0:003 h�1,

IC�
50 ¼ 0:0500 � 0:0001 lg ml�1; kanamycin and glucose: k�0 ¼ 0:475 � 0:001 h�1, IC�

50 ¼ 0:260 � 0:001 lg ml�1; tetracycline and glycerol:
k�0 ¼ 5:24 � 0:09 h�1, IC�

50 ¼ 0:229 � 0:002 lM; tetracycline and glucose: k�0 ¼ 6:3 � 0:4 h�1, IC�
50 ¼ 0:359 � 0:008 lM; chloramphenicol and glycerol:

k�0 ¼ 1:83 � 0:06 h�1, IC�
50 ¼ 2:49 � 0:05 lM; chloramphenicol and glucose: k�0 ¼ 1:28 � 0:02 h�1, IC�

50 ¼ 4:50 � 0:05 lM. These values of k�0 and IC�
50 are

compared to literature data in Supplementary Table S4. Similar results are obtained if we instead fit our data directly to the predicted universal relation for IC50(k0)
(equation 10); see Supplementary Information and Supplementary Fig S4. Where error bars are not visible, they are smaller than the symbol size.
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for different ribosome-targeting antibiotics which we observe in our

experiments. Substituting aex = IC50 and k = k0/2 into equation (7),

we find that, for all antibiotics, the growth rate dependence of the

half-inhibition concentration IC50 is predicted to fall onto a universal

‘growth-dependent susceptibility’ curve

IC50

IC�
50

¼ 1

2

k0
k�0

þ k�0
k0

� �
: (10)

Equation (10) is derived in the Supplementary Information and

holds for kon ≫ jt. Rescaling our data using the values of k�0 and

IC�
50 obtained from the growth inhibition curve fits of Fig 3 and the

equivalent fit for the glucose-based media, Supplementary Fig S3

(Supplementary Table S3), Fig 4 shows that our data indeed

collapse onto this universal curve.

If the drug-free growth rate k0 exceeds the critical reversibility

rate k�0, the model (equation 10) predicts that the IC50 will increase

with k0; that is, fast-growing cells will be less susceptible, as we

observe for streptomycin and kanamycin. In contrast, if the drug-

free growth rate k0 is less than the critical reversibility rate k�0, equa-
tion (10) predicts that the IC50 will decrease as k0 increases; that is,

fast-growing cells will be more susceptible, as we observe for tetra-

cycline and chloramphenicol. The critical parameter IC�
50 provides a

growth rate-independent scale for the extracellular antibiotic

concentration; we find that an antibiotic concentration aex [ IC�
50 is

required for effective growth inhibition, regardless of the drug-free

growth rate.

The universal growth-dependent susceptibility curve, equa-

tion (10) (Fig 4), suggests that the ratio ðk0=k�0Þ of the drug-free

growth rate k0 to the ‘reversibility’ rate k�0 ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PoutjtKD

p
provides a

natural spectrum classification of ribosome-targeting antibiotic

action, integrating growth environment (through k0) with antibiotic

chemistry and pathogen genetics (through the molecular parameters

which are combined in k�0). Ribosome-targeting drug–pathogen

interactions characterized by small values of k�0 are predicted to

behave like our irreversible antibiotics (streptomycin and kanamy-

cin), showing decreased efficacy under rich nutrient conditions.

Interactions characterized by large values of k�0 are expected to

behave like the reversible antibiotics in our study (chloramphenicol

and tetracycline), showing increased efficacy under rich nutrient

conditions. Ribosome-targeting drugs with values of k�0 close to the

drug-free growth rate k0 achievable in experiments may show non-

monotonically varying susceptibility as nutrient quality is varied;

our data suggest this may in fact be the case for chloramphenicol

(Fig 1H), in agreement with literature-value estimates for k�0
(Supplementary Table S4). Low outward permeability has been

implicated in growth bistability and masking of resistance mutations

(Elf et al, 2006; Fange et al, 2009) (see in particular the discussion

of Ref. (Elf et al, 2006) in the Supplementary Text); we propose that

irreversibility in binding and transport is a major determinant of

growth-dependent susceptibility to ribosome-targeting antibiotics.

We have also investigated the effects of including growth-dependent

transport rates in our model (see Supplementary Information); this

does not change its key predictions.

0.1 1 10

λ0/λ0*

1

10

Streptomycin
Kanamycin

Tetracycline
Chloramphenicol

IC
50

/IC
* 50

Figure 4. Universal growth-dependent susceptibility curve.
Data from the right panels of Fig 1 are rescaled by k�0 and IC

�
50 , obtained by fitting

our growth inhibition data (Fig 3 and Supplementary Fig S3). The black line
shows the model prediction for the universal curve, equation (10).

BA

Figure 5. Growth inhibition curves for our bactericidal and bacteriostatic drugs collapse onto two qualitatively different limiting forms as predicted by the
model.

A Data for the bactericidal antibiotics streptomycin (closed symbols) and kanamycin (open symbols) collapse onto k=k0 ¼ ð1=2Þ½1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� aex=IC50

p � (black line)
B Data for the bacteriostatic antibiotics tetracycline (closed symbols) and chloramphenicol (open symbols) collapse onto k/k0 = 1/[1+aex/IC50] (black line).
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Simple predictions in the reversible and irreversible limits

In the limiting cases of very large or very small k�0, that is the limits

in which antibiotic transport and binding is either fully reversible or

fully irreversible, the model leads to simple predictions for the

growth inhibition curve and growth rate dependence of the

half-inhibition concentration IC50. For small k�0 (the irreversible

limit), a qualitatively different, discontinuous form for the growth

inhibition curve is predicted by equation (7):

k
k0

¼ 1

2
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� aex

IC50

r� �
; (11)

for aex < IC50 and zero for aex > IC50. In this case, the

IC50 ¼ IC�
50k0=ð2k�0Þ ¼ k0Dr=ð4PinÞ increases linearly with the

drug-free growth rate k0 (see Supplementary Information). For

large k�0 (the reversible limit), the growth inhibition curve obtained

from solving equation (7) is given by the smoothly varying, Lang-

muir form:

k
k0

¼ 1

1þ aex=IC50
; (12)

where aex is the extracellular antibiotic concentration and the

IC50 ¼ IC�
50k

�
0=ð2k0Þ ¼ KD � ðPout=PinÞ � ðjtDr=k0Þ is inversely

proportional to the drug-free growth rate k0 (see Supplementary

Information).

Scaling all our growth inhibition curves by the drug-free growth

rate k0 and the half-inhibition concentration IC50, we find that our

combined data sets for the reversible and irreversible drugs collapse

quite well onto these two qualitatively distinct, parameter-free

curves, as predicted by the model (Fig 5)—although, as expected,

the quantitative agreement with the limiting-case theoretical predic-

tion is not quite as good as with the full solution of the cubic equa-

tion (Fig 3; Supplementary Fig S3).

Testing the model predictions for a translation mutant strain
of E. coli

In our model, the key parameters k�0 and IC�
50 (defined in equa-

tions 8 and 9) depend on the translational capacity jt. To test the

predictions of the model, we used a strain of E. coli MG1655 in

which the ribosome is mutated such that the peptide elongation

rate is decreased (Ruusala et al, 1984), with a corresponding

decrease in the translational capacity (Scott et al, 2010).

Measuring the RNA-to-protein ratio, which is proportional to the

ribosome concentration ((Scott et al, 2010); see Supplementary

Material) as a function of growth rate in the absence of antibiot-

ics and using equation (4), we found that the translational

capacity jt for the mutant is decreased by a factor of 0.65 relative

to that of the wild-type, jMUT
t ¼ 0:65jWT

t (Fig 6A; Supplementary

Table S5).

For the reversible ribosome-targeting antibiotic tetracycline, we

expect that the IC50 is well approximated by the limiting form,

IC50 = (jt/k0) × KD × (Pout/Pin) × Dr; thus, the ratio of susceptibili-

ties between the wild-type and mutant strains ICWT
50 =ICMUT

50 should

be proportional to the ratio of drug-free growth rates kMUT
0 =kWT

0 ,

with proportionality constant jWT
t =jMUT

t ¼ 1=0:65. Indeed, when

rescaled relative to the IC50 of the mutant in minimal media, our

results for the wild-type IC50 values, measured for our 6 nutrient

conditions, do fall on the predicted straight line with gradient 1/0.65

irrespective of carbon source (Fig 6B; for raw data see Supplemen-

tary Table S6).

We also investigated the response of the translational mutant to

the irreversibly binding ribosome-targeting drug kanamycin. Here,

the situation is more complex because the mutant confers partial

resistance to kanamycin (and full resistance to streptomycin),

meaning that other molecular parameters are likely to be altered

along with jt. Nevertheless, growth inhibition curves for the mutant

in the presence of kanamycin are well fitted by our model (Supple-

mentary Fig S5).

Drug free growth rate, λ0

0.2 0.4 0.6 0.8 1.0

0.5

1.0

1.5

0.5 1.0 1.5 2.0

0.2

0.4

0.6

R
N

A
/P

ro
te

in
 (μ

g/
μg

)

Wildtype

Translational 
Mutant 50

,
50

WT

MUT MIN

IC

IC

,
0 0
MUT MIN WTλ λ

0
0

0
0

slope= WT MUT
t tκ κ

BA

Figure 6. The translation mutant shows growth-dependent susceptibility to tetracycline in quantitative agreement with the model predictions.

A The mutant shows a reduced translational capacity compared to the wild-type strain. Translational capacity is given as the inverse slope of a plot of the RNA/protein
ratio versus drug-free growth rate k0 (Scott et al, 2010). The data for the mutant are from this study (dashed line); wild-type data are taken from Scott et al (2010)
(solid line). The ratio of slopes (WT/MUT) gives the ratio of translational capacity jMUT

t =jWT
t ¼ 0:65 (Supplementary Table S5). The coloured symbols indicate different

growth media, as in Fig 1.
B Growth-dependent susceptibility to tetracycline for the translation mutant. The model predicts that for a reversible drug such as tetracycline, IC50 = IC�

50k
�
0=ð2k0Þ, so

that ICWT
50 /ICMUT

50 ¼ ðjWT
t =jMUT

t Þ � ðkMUT
0 =kWT

0 Þ ¼ ð1=0:65Þ � ðkMUT
0 =kWT

0 Þ (since both k�0 and IC�
50 are proportional to

ffiffiffiffiffi
jt

p
). The symbols show ICWT

50 measured on all 6
growth media, divided by the ICMUT;MIN

50 measured on glucose minimal or glycerol minimal medium as appropriate, and the drug-free growth rate of the wild-type kWT
0

similarly rescaled with respect to the drug-free growth rate of the mutant in the corresponding minimal medium kMUT;MIN
0 . The data collapse onto a straight line with

gradient (1/0.65), as indicated by the solid black line. It is important to note that the solid line is not a line-of-best-fit, but rather comes from taking the ratio of the
slopes in panel A.
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Mechanistic link between reversibility timescale and
growth-dependent susceptibility

Why does our model behave qualitatively differently in the limits

where antibiotic transport and binding are irreversible (small k�0)
and where they are reversible (large k�0)? In the model, nutrient

quality has two opposing influences on the cell’s ribosome content:

it increases the size of the ribosome pool (solid line in Fig 2B), but

it also reduces the cell’s capacity to increase this pool in response to

challenge by a ribosome-targeting antibiotic (gradient of the dashed

lines in Fig 2B). In other words, fast-growing cells have a ribosome

pool, which is already close to maximal, and have little capacity to

increase in response to antibiotic, while slow-growing cells have a

small ribosome pool that can be increased by a large factor in

response to antibiotic.

In the limit that either transport or binding is irreversible (small

k�0), antibiotic molecules that enter the cell are neutralized by bind-

ing to free ribosomes, such that the intracellular antibiotic concen-

tration remains low. The model exhibits a ‘toggle-switch’ topology

(Fig 7A), in which free ribosomes ‘soak up’ antibiotic, while antibi-

otic inactivates free ribosomes. If the extracellular antibiotic concen-

tration aex is below a threshold determined by the initial (unbound)

ribosome concentration, the cell generates ribosomes fast enough to

neutralize all the antibiotic that enters the cell. If, however, aex
exceeds the threshold, the cell’s rate of ribosome generation cannot

compete with the antibiotic influx and the system flips to a different

steady state with no free ribosomes and correspondingly no growth.

Thus, in the irreversible limit, the fate of a cell is determined by a

‘molecular race’ between antibiotic influx and ribosome production,

in which the absolute number of ribosomes is decisive. Fast-

growing cells (on rich nutrient) have a larger ribosome pool and

correspondingly higher ribosome synthesis rate, so that they are able

to tolerate a higher rate of antibiotic influx than slow-growing cells.

In contrast, in the limit of fully reversible transport and binding

(large k�0), the free and bound ribosome pools are in equilibrium

(Fig 7B), and the intra- and extra-cellular antibiotic pools are also in

equilibrium. Increasing the antibiotic concentration shifts the

equilibrium between free and bound ribosome pools; the cell

responds by increasing the total ribosome pool (dashed line in

Fig 2B). This leads to a smoothly varying, Langmuir-like depen-

dence of the relative growth rate k/k0 on the extracellular antibiotic

concentration aex. Because k/k0 is determined by the relative sizes

of the ribosome pool in the presence and absence of antibiotic, the

half-inhibition concentration depends on the slope of the dashed

line in Fig 2B. Slow-growing cells have more capacity to increase

their ribosome pool (steeper slope of the dashed line; Fig 2B), and

as a consequence, they are less susceptible to the ribosome-targeting

antibiotic than are fast-growing cells.

Discussion

Taken together, our results show that bacterial susceptibility to ribo-

some-targeting antibiotics exhibits strong growth rate dependence,

but that the nature of this dependence differs qualitatively between

antibiotics (Fig 1). For the irreversibly binding antibiotics in our

study (streptomycin and kanamycin), slower growing cells are more

susceptible, whereas for the reversibly binding antibiotics (tetracy-

cline and chloramphenicol), faster growing cells are more suscepti-

ble. This behaviour can be understood by a simple mechanistic

model which shows that these contrasting effects of nutrient envi-

ronment on susceptibility for different ribosome-targeting antibiotics

can be explained in terms of a single parameter, the critical revers-

ibility rate k�0 (equation 8), which characterizes the outward perme-

ability and binding affinity of the drug.

Our model predicts a universal relation for the growth-dependent

susceptibility (equation 10), that is how the IC50 depends upon the

drug-free growth rate k0 relative to the critical reversibility rate k�0.
This relation is in good agreement with the experimental data

(Fig 4). If the pathogen drug-free growth rate k0 is larger than k�0, the
IC50 increases with drug-free growth rate (as it does for our irrevers-

ible antibiotics streptomycin and kanamycin), so that slow-growing

cells are more susceptible. In contrast, if the pathogen drug-free

growth rate is smaller than k�0 (as for our reversible antibiotics tetra-

cycline and chloramphenicol), the IC50 decreases with drug-free

growth rate, so that fast-growing cells are more susceptible. Our

model also predicts qualitatively different shapes for the growth inhi-

bition curves in these two cases; if k0 [ k�0 (as for our irreversible

drugs), the growth inhibition curves show a sharp drop around the

IC50, while if k0 \ k�0 (as for our reversible drugs), we expect

smoothly varying growth inhibition curves. Moreover, in the revers-

ible and irreversible limits of large and small k�0, our model leads to

parameter-free predictions of the growth inhibition curves (equa-

tions 11 and 12), which are confirmed by a collapse of the data

points on the predicted re-scaled curves (Fig 5). Interestingly, for the

irreversible drugs, our model predicts a bistable response which is

not detectable in our population-level measurements, but might be

observed in single-cell-level experiments (Deris et al, 2013). Finally,

the insight provided by our analysis allows us to make successful

predictions for how antibiotic susceptibility is modified by a muta-

tion affecting translation rate (Fig 6).

Significance of the critical reversibility rate k�0

A major insight arising from this study is the importance of the criti-

cal reversibility rate k�0 in determining susceptibility to antibiotic

treatment. For a given ribosome-targeting antibiotic and pathogenic

strain, k�0 can be inferred from known biochemical parameters (via

equation 8) in cases where these are known, or, alternatively,

A B

bru exr a+ur exa

Irreversible limit

Toggle switch

Reversible limit

Rapid equilibrium

Figure 7. Shift in the network topology in the irreversible and reversible
limits.

A In the limit that either transport or binding is irreversible (as is the case for
streptomycin and kanamycin), the system exhibits a ‘toggle-switch’
topology, leading to a steep inhibition curve (equation 11).

B In the limit of fully equilibrated transport and binding (as is the case for
tetracycline and chloramphenicol), the model predicts more gradual
inhibition (equation 12).
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estimated by measuring inhibition curves over a range of drug-free

growth rates (a task well suited to automation (Bollenbach &

Kishony, 2011)). This critical reversibility rate provides a spectrum

classification of ribosome-targeting antibiotics according to their

physiological effects, which, interestingly, appears to correlate at its

extremes with existing binary classification schemes, at least for the

antibiotics used in this study. In particular, the irreversible ribo-

some-targeting antibiotics streptomycin and kanamycin are classi-

fied as bactericidal, whereas the reversible ribosome-targeting

antibiotics tetracycline and chloramphenicol are classified as bacte-

riostatic. This is consistent with the fact that our model predicts a

rapidly vanishing growth rate beyond the IC50 for the irreversible

antibiotics (i.e. those with small values of k�0). Our classification on

the basis of k�0 also correlates with the fact that streptomycin and

kanamycin are known to transiently induce expression of proteins

associated with heat shock in E. coli, whereas tetracycline and

chloramphenicol induce expression of proteins associated with cold

shock (Van Bogelen & Neidhardt, 1990). It remains to be seen

whether these responses are triggered directly by the antibiotic or

are associated more generally with physiological changes occurring

in the organism.

Coupling of cell physiology and antibiotic mode-of-action

In a wider context, bacterial growth rate is an important factor

controlling gene expression and regulation (Klumpp et al, 2009;

You et al, 2013), imposing strong constraints on the allocation of

cellular resources. These constraints lead to intrinsic growth rate

dependence in the macromolecular composition of the cell (Ecker

& Schaechter, 1962; Scott et al, 2010). Consequently, it is to be

expected (and in some cases it is known (Koch & Gross, 1979;

Cozens et al, 1986; Tuomanen et al, 1986; Millar & Pike, 1992))

that antibiotic susceptibility likewise exhibits growth rate depen-

dence for those drugs targeting key cellular resources such as the

ribosome, RNA polymerase, DNA gyrase and cell wall biosynthetic

machinery. Our results show that for ribosome-targeting antibiot-

ics, complex growth rate-dependent susceptibility can arise from

the interplay between molecular mechanism (antibiotic transport

and binding) and cellular physiology (growth-dependent

constraints on ribosome concentration and synthesis rate). Interest-

ingly, our work shows that knowledge of the growth rate depen-

dence of the target (here, the ribosome) is not sufficient to predict

the growth rate dependence of the antibiotic susceptibility—in fact,

the nature of this dependence differs qualitatively among antibiot-

ics despite their common target (Fig 1). Nonetheless, contrasting

patterns of growth rate-dependent susceptibility can be explained

quantitatively by combining mechanistic details of antibiotic mode-

of-action with empirically determined physiological constraints.

Interestingly, the basic dynamical equations of our model (equa-

tions 1–3) are quite general and could be applied to any cellular

drug target; it is the nature of the physiological constraints (equa-

tions 4 and 6) that are specific to ribosome-targeting antibiotics.

Further work might focus on deriving equivalent constraints for

other drug targets.

At higher concentrations than those considered here (� 10 ×

IC50), other mechanisms have been implicated in the inhibition of

bacterial growth by ribosome-targeting antibiotics. These include

changes in the transmembrane proton-motive force, membrane

permeabilization by misfolded protein (Davis, 1987), induction of a

heat-shock response (Tan et al, 2012), and, on longer time scales,

oxidative stress which increases mutation rate and accelerates the

emergence of resistance (Kohanski et al, 2010). A complete picture

of antibiotic action will require integration of specific response

mechanisms, such as these, with general constraints imposed by

pathogen growth, although the simple model presented here

appears to capture the majority of the growth-dependent susceptibil-

ity to the ribosome-targeting antibiotics tested. Applying a similar

approach to other classes of antibiotics or chemotherapeutic agents

should provide a clearer picture of in vivo drug action.

Clinical and evolutionary perspectives

From a clinical perspective, the strong positive correlation of the

IC50 with drug-free growth rate that we observe for our irreversibly

binding antibiotics suggests that the efficacy of treatment could be

improved by modulating the bacterial growth rate using a metabolic

inhibitor—echoing recent developments in understanding the role

of nutrient environment in overcoming persistent infections (Allison

et al, 2011). The threshold-like transition in the inhibition curve for

irreversibly binding antibiotics can, however, greatly facilitate

acquisition of resistance, especially in the presence of steep spatial

gradients of antibiotic (Zhang et al, 2011; Hermsen et al, 2012;

Deris et al, 2013), providing yet another caution against their

improvident use (Pankey & Sabath, 2004). More broadly, it is

becoming clear that understanding and manipulating pathogen

physiology plays a major role in improving strategies for the eradi-

cation of infection. Although both drug action and pathogen metab-

olism are mechanistically complex, the interplay between molecular

interactions and whole-cell physiology can nevertheless be under-

stood quantitatively using simple rules.

Materials and Methods

Antibiotics

Antibiotics were obtained from Fisher Scientific: streptomycin

sulphate (BP910-50), kanamycin sulphate (BP906-5), tetracycline

hydrochloride (BP912-100) and chloramphenicol (BP904-100). Stock

solutions were prepared weekly and stored at 4�C. To avoid degra-

dation of the antibiotics (particularly tetracycline), cultures were

grown no longer than 6 h before transfer to medium containing

fresh antibiotic and all experiments were performed in light-

insulated shakers.

Growth media

In our experiments, the growth media are potassium morpholino-

propane sulfonate (MOPS) buffered and are a modification of Neid-

hardt supplemented MOPS-defined media (Neidhardt et al, 1974)

obtained from Teknova (M2101). Carbon sources used were glyc-

erol (0.2% v/v) and glucose (0.2% w/v). Intermediate growth rates

were obtained by supplementing glycerol and glucose minimal

media with casamino acids (0.2% w/v). The most rapid growth

rates were obtained by supplementing the media with nucleotides

(Teknova, M2103) and all amino acids (Teknova, M2104).
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Strains and growth conditions

Escherichia coli K12 strain MG1655 was used in this study. Seed

cultures were grown in LB medium (Bio Basic) and used to

inoculate pre-cultures in appropriate growth media without

antibiotics. After overnight growth, pre-cultures were diluted

(500 � 1,000×) to fresh media and allowed to resume exponential

growth for at least three generations before being diluted into

media containing antibiotics. Cells were adapted to exponential

growth in antibiotics and grown in adapted growth for four genera-

tions before growth rate measurements were taken. Cells were

grown in 3 ml of culture media at 37�C in 20-mm test tubes, shaken

in a water bath (MaxQ 7000, Thermo-Fisher) at 250 rpm. Growth

rate was monitored by measuring OD600 on a Biomate 3S spectro-

photometer (Thermo-Fisher) over time, with cell viability corrobo-

rated by plating. The translational mutant strain appearing in Fig 6

is derived from a mutant exhibiting pseudo-dependence on strepto-

mycin and a corresponding decreased translation rate in the

absence of streptomycin (Ruusala et al, 1984; Scott et al, 2010).

The mutation (in rpsL) was moved from strain GQ9 (Scott et al,

2010) (also known as CH349 or UK317 (Ruusala et al, 1984)) to

our background strain (MG1655) via P1 transduction and selection

on streptomycin.

Protein and RNA extraction

Total protein was determined using a modified Lowry method

(Sigma, TP0300) (Lowry et al, 1951; Peterson, 1979), with bovine

serum albumin as a standard. RNA quantification was done via cold

perchloric acid precipitation (Benthin et al, 1991).

Data fits

Estimates for the critical parameter combinations k�0 and IC�
50 were

obtained by fitting the experimental growth inhibition curves k(aex)
to the solution of the cubic equation (7). These fits were carried out

using Powell’s method (Press et al, 1992).

Supplementary information for this article is available online:

http://msb.embopress.org
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