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Abstract: Paraffin-based phase change material (PCM) is impregnated into the pores of lightweight
expanded clay aggregate (LECA) through vacuum impregnation to develop PCM containing
macro-capsules of LECA. Three different grades of LECA varying in size and morphology are
investigated to host the PCM to determine the impregnation effectiveness, viability for coating,
and its stability. The produced LECA-PCM is coated with geopolymer paste (GP) to provide leak
proofing during the phase change. The PCM is thermophysically characterized by employing
differential scanning calorimetry (DSC) and the temperature history method (THM) to determine the
phase transition and the latent heat. The stability of the macro-capsules is determined by weight loss
through rapid thermal cycling (RTC) at elevated temperatures. Leakage of the PCM is tested using the
diffusion-oozing circle test (DOCT). The results show that the GP coated LECA-PCM macro-capsules
achieved 87 wt % impregnation efficiencies and no noticeable loss of PCM, which indicates leak
proofing of the developed capsules up to 1000 RTC.

Keywords: geo-polymer coating; phase change material; expanded clay; macro-encapsulation;
vacuum impregnation

1. Introduction

Phase change materials (PCMs) have been extensively studied in different configurations in
buildings in order to reduce heat gain in hot climates and to store and utilize thermal energy in cold
climates [1]. A computational model reported improvement in thermal performance of the building
by incorporating PCM into the gypsum wallboard. The technique is viable for new as well as retrofit
buildings to reduce energy consumption and the capacity requirement of the HVAC system to maintain
indoor thermal comfort [2]. Application of PCM in a layered wall with the different arrangement of
layers of insulation material and air cavity is also investigated. The study reported 44% reduction
in the heat transmission to indoors and peak temperature shifting of 2.6 h [3]. For tropical weather
conditions, a thin layer of PCM with the cool colored building envelope is proposed. This study
reported energy saving in the range of 5% to 12% during the year with relatively stable weather
conditions [4]. PCM plaster has been investigated in a cold climate as an internal wall and ceiling
finishing material in an experimental research. Using PCM plaster, indoor temperature stabilized
at almost 20 ◦C even when outside temperature was below −5 ◦C. This assembly also helped in
maintaining the indoor humidity [5].

Ramakrishnan et al. extended the use of PCM to cementitious materials to improve the thermal
performance of buildings. Use of PCM in cement materials applied to the building envelope can reduce
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peak temperature by 4.43 ◦C [6]. A major issue facing the PCM inclusion into the building emerged to
prevent the PCM from leakage within building fabric during the phase change. Micro-encapsulation
has been extensively studied as a solution to PCM by containing PCM in a stable shell material, which
protects the PCM against the influences of the environment and volume changes during the phase
change [7]. A comprehensive analysis of the previous studies on encapsulating PCM in different shell
material employing different methods are summarized in Table 1.

Table 1. Summary of findings of experimental research on PCM encapsulation using different core and
shell materials, production processes, and reported findings.

Production Process Core Material Shell Material Findings

Sol–gel method [8] Polyethylene glycol Silicon dioxide
Hm was in the range of 102.8–111.1 J/g. There was no change
on enthalpy and transition temperature after 50 thermal cycles.

Polyethylene glycol decomposes at 410 ◦C.

Emulsion polymerization [9] Paraffin and
palmitic acid Styrene and ethyl acrylate

η was successful with 32.7 wt % of paraffin and 47.8 wt %
palmitic acid. Φ was 165 nm and 265 nm for both CMs and

they don’t decompose up to 200 ◦C.

Emulsion
polymerization [10]

Caprylic (octanoic)
acid Polystyrene Crosslinking agent had a direct impact on the encapsulation

efficiency. Efficiency was compromised with repeatability.

Miniemulsion
polymerization [11] n-alkanes Polystyrene Thermal stability after RTC was reported. Mp range was from

20 ◦C to 35.9 ◦C and Hm range was 61.2 J/g to 46.1 J/g.

Mini-emulsion
polymerization [7] Hexadecane Urea–formaldehyde resin

The results indicated that the nano-capsules have a smooth
surface and Φ was 270 nm. Capsules were stable when heated

at 100 ◦C for 72 h after encapsulation decreased the
undercooling of hexadecane by 94%.

Mini-emulsion
polymerization [12] n-octadecane Poly (ethyl methacrylate) +

poly (methyl methacrylate)
Φ was 119 nm, Mp and Hm were 32.7 ◦C and 198.5 J/g

respectively. The capsules have η of 89.5%.

In situ polymerization [13] Butyl stearate and
paraffin

Poly (methyl
methacrylate-co-
divinylbenzene)

Φ was 5–10 µm. Capsules decomposes at temperatures above
200 ◦C. Capsules were thermally stable after 50 cycles.

In situ polymerization [14] Dodecanol High-density polyethylene

η was successful yielding different sizes of the capsules in the
range of 0.83 µm to 14.4 µm.

Excellent thermal storage ability was good thermal
stability reported.

Emulsion-solvent
evaporation [15] n-hexadecane Ethyl cellulose

Mp ranges from 18.5 ◦C to 19.5 ◦C while Hm ranges from
137.8 J/g to 147.1 J/g. The shell had porosity and leakage

was observed.

Solvent extraction [16] Sodium nitrate Perhydropolysilazane
SM in the capsules was 85 wt % while Φ was non-uniform
with the range of 0.4 µm to 140 µm. SM was very stable at

high temperatures of 350 ◦C.

Suspension-like
polymerization [17] n-octadecane Poly (stearyl methacrylate)

Particles have a spherical profile with an average φ of 5 µm
and 21 µm. Good thermal energy storage and thermal

regulation potential was reported.

Suspension-like
polymerization [18] Paraffin Poly Methyl Methacrylate

89.5 wt % of CM was encapsulated successfully with good
thermal stability. Nano particles of 0.1 µm to 19 µm and micro

particles of 94 µm were produced.

Suspension-like
polymerization [19] n-octadecane Polymethylmethacrylate

Microcapsules have a high thermal storage capability,
enhanced thermal reliability and stability, and increased

thermal conductivity.

Crosslinking and
blending [20] Paraffin Cross-linking structure

74 wt % of the CM was contained in the matrix successfully
with the Hm of 210.6 J/g. The samples were observed to be

dry when heated up to 100 ◦C.

Vacuum Impregnation [21] Polyethylene glycol Diatomite
Mp of the composite PCM was 27.7 ◦C and Hm of 87.09 J/g.

An addition of expanded graphite increased the thermal
conductivity of the composite.

Vacuum impregnation [22] Polyethylene glycol Diatomite/carbon
nanotubes

No leakage of PCM was observed. Mp of the composite was 8
◦C with Hm of 62.9 J/g.

Vacuum impregnation [23] Capric
acid-myristic acid Cement

Composite’s Mp and Hm were 21.13 ◦C and 41.78 J/g,
respectively. A temperature difference of 0.78 ◦C in the indoor

space was measured by using this composite.

Vacuum impregnation [24] Capric
acid-palmitic acid

Silica fume, carbon nano
tube

Mp range of different compositions was 19 to 26 ◦C and Hm
was 46 to 49 J/g. Good thermal and chemical stability was

reported after 1000 cycles.

Fluidized bed method [25] Bischofite Acrylic
Encapsulation efficiency of up to 95% was achieved.

Microcapsules had excellent Mp and Hm compared to the
original PCM.

Melt coaxial
electrospray [26] n-octadecane Sodium alginate

56 wt % of paraffin was contained in the microcapsules with
Φ less than 100 µm. This technique offers good results

regarding the encapsulation of PCMs.

η—Microencapsulation, Φ—Particle size, Hm—Latent heat of fusion, Mp—Melting point, SM—Shell material,
and CM—Core material.
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Although the reviewed encapsulant materials [8–26] have shown success in the encapsulation
efficacy, the materials possess certain limitations as it relates to their building applications. Certain
materials are toxic or expensive [26,27] and fragile when subjected to shear loads in buildings [24,28]
or the encapsulation processes are energy intensive [15,29]. The Geo-polymer is considered a potential
encapsulant since the material preparation involves least energy inputs being fabricated through
wet chemistry. Additionally, the geopolymer concrete (GPC) undergoes a phase change from a
liquid-powder mix to a solid state through a non-Newtonian fluid phase during its production
processes. The non-Newtonian intermediate phase can be exploited to coat the GPC over a surface and
to close the surface pores to prevent leakage through the surface. Jacob et al. used Geo-polymer coating
to encapsulate molten salt eutectic to mitigate the problem of corrosion of shells’ material caging
salts [30]. The research was conducted for thermal energy storage for high temperature applications
up to 600 ◦C [31,32]. The current study aims to develop thermally enhanced lightweight composite
materials for building applications. The objective is achieved by encapsulating PCM into a lightweight
expanded clay aggregate. Although expanded clay offers higher PCM encapsulation efficacy due to
larger pore density, its performance may deteriorate rapidly due to PCM leakage through pores during
the phase change. The current study identifies Geo-polymer produced from industrial waste materials
and dune sand (DS) through alkali-activated polymerization as a coating material to prevent leakage of
the PCM encapsulated in expanded clay. The resultant composite is evaluated for the thermal storage
capacity and the thermal cycling stability for several phase change cycles.

2. Materials and Methods

Industrial waste is used in the study by activating the pozzolanic effect with the strong alkali.
Materials and their preparation methods are described below.

2.1. Materials

The materials are procured from the local market and are characterized to verify the contents and
phases since they would eventually affect the GPC formation. However, the impact of the content
and phases on the GPC formation is not studied in this research. Microstructure is characterized by
using scanning electron microscopy (SEM, JCM-5000, JEOL Limited, Tokyo, Japan) to have insight
to the raw material. Thermophysical properties of the PCM are verified using differential scanning
calorimetry (DSC-AT Q200, TA Instruments, New Castle, DE, USA) and temperature history method
(THM). Lastly, developed capsules are tested to determine their thermal cycling stability. The list of
materials used in the experimental work are presented in Table 2.

Table 2. List of materials used in the experiments.

Materials Density Particle Size

Lightweight expanded clay aggregate (LECA1) 421 kg/m3 1–4 mm
Lightweight expanded clay aggregate (LECA2) 369 kg/m3 4–10 mm
Lightweight expanded clay aggregate (LECA3) 340 kg/m3 4–10 mm

Paraffin-based phase change material 0.88 kg/L for solid
0.76 kg/L for liquid Liquid/solid

Sodium Hydroxide (NaOH) 1.19 kg/L Liquid
Sodium silicate (Na2SiO3) 1.39 kg/L Liquid

Ground granulated blast furnace slag (GGBS) 1236 kg/m3 0.2–70 µm
Fly Ash (FA) 1262 kg/m3 3–70 µm

Dune Sand (DS) 1693 kg/m3 80–500 µm

Ground granulated blast furnace slag (GGBS) and fly ash (FA) waste materials are investigated
and found to form a GP by activating polymerization using a mixed solution of sodium silicate
(Na2SiO3) and sodium hydroxide (NaOH). Based on the previous composition optimization [33],
NaOH and Na2SiO3 were kept as 1:1.5 while the ratio of GGBS to FA to DS was fixed 1:3:6 in the
geo-polymer paste composition. Three different grades of lightweight expanded clay aggregate (LECA)
in terms of particle size and morphology were used. Figure 1 shows the photographs of the materials
and the processes involved in the development of PCM capsules.
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Figure 1. Photographs of (a) LECA, (b) DS, (c) FA, and (d) GGBS.

2.2. Materials Characterization

Materials are characterized to test their composition, microstructure, and properties. FA,
GGBS, and DS are characterized by X-ray powder diffraction (XRD, PW/1840, Philips, Amsterdam,
The Netherlands), X-ray fluorescence (XRF, Lab Center XRF-1800, Shimadzu Corporation, Kyoto,
Japan), and SEM. PCM was characterized to evaluate its melting on-set, melting peak, melting
range, and heat of fusion through DSC and THM. The schematic diagram of the experimental set-up
used for THM is shown in Figure 2. DSC can accommodate a very small sample size that make
it vulnerable to the inaccuracies in the results [34,35]. The problem is more pronounced in case of
heterogeneous materials [36], which undergo sub cooling. The THM solves the problems faced in
DSC by accommodating larger sample sizes in the range of 20 to 50 g [37]. In the current experiment,
THM employed an equal mass of distilled water and PCM contained in two identical 20 cm long glass
tubes with the internal diameter of 1.8 cm and a wall thickness of 1 mm. These test tube dimensions
assured the Biot number is below 0.1 in order to apply the lumped capacitance heat transfer model,
according to Equation (1) [38].

Bi =
hc × Lc

K
(1)

where hc is the convective heat transfer co-efficient, Lc is the characteristic length of the tube, and
K is the effective thermal conductivity of the PCM and test tube material. With a system of such a
small Biot number, heat transfer can be considered along the length of the wall surface when only
recognizing it as the lumped capacitance method. Both test tubes were equipped with the k-type
thermocouples (RS Components, Corby, UK). These thermocouples were fixed at the center point of
the test tube by wrapping the wire of the thermocouple around a very thin but long insulated pin.
The pin was fixed with the cork in the mouth of the tube to ensure the position of the thermocouple
joint at the center. Both tubes were kept heated simultaneously at 45 ◦C in the heating chamber
(ESPEC–Temperature and Humidity Chamber–Platninous J Series, Osaka, Japan) while the tubes were
cooled by dipping into chilled water simultaneously. These thermocouples were attached to the data
acquisition device (Compact DAQ (NI-cDAQ-9178), National Instruments, Austin, TX, USA) by using
the module NI-9213, which was connected to the pc computer.
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Figure 2. Schematic diagram of the experimental set-up used for the temperature history method.
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2.3. PCM Encapsulation

2.3.1. Immersion

A total of 100 g of each of LECA1, LECA2, and LECA3 were immersed separately in the liquid
PCM, which is shown in Figure 3. The immersion time was varied from 30 min to 24 h while keeping
the temperature of the PCM at 40 ◦C during the test. In another trial, the PCM temperature was
changed from 35 ◦C to 70 ◦C to study the effect of PCM temperature on its penetration into LECA
voids. The effect of stirring after 10 min of an interval was also tested. After immersion time, the left
over molten PCM was drained into the metallic sieve. The prepared LECA-PCM was dried and weight
was measured to determine the amount of PCM encapsulated inside the LECA.
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2.3.2. Vacuum Impregnation

Different trials of PCM impregnation were carried out to impregnate the maximum amount of
PCM inside the pores of LECA. The procedure of the most effective trial is reported herein. LECA1,
LECA2, and LECA3 were heated at 100 ◦C for 8 h to remove moisture content. The weighted amount
(100 g) of the aggregates was added in the vacuum desiccator at −0.95 bar by employing a suction
pump. The aggregate was spread in between two metallic sieves with a mesh size less than that
of particles’ sizes to enhance surface contact between the aggregate and the PCM in a molten state.
The melted PCM was injected from the top through a funnel to flow under gravity past the LECA
through sieves. The PCM was kept injected inside the desiccator until the porous aggregate was fully
submerged. The top sieve is installed to prevent LECA floating over the PCM surface when a vacuum
is applied. The bottom sieve is installed to prevent settling of the heavier LECA-PCM mix when the
vacuum is removed. The vacuum was applied for 30 min under PCM stirring once every 5 min where
the vacuum desiccator was shaken to achieve the stirring. The PCM is assumed to keep impregnation
into LECA as long as air bubbles keep appearing under vacuum in the melt desiccator containing
LECA-PCM mix. The temperature of the mix is maintained substantially above the PCM melting point
to prevent PCM solidification above the LECA surface during impregnation. The PCM temperature
was maintained substantially higher than the solidification temperature to prevent PCM solidification
within pores during impregnation to assure maximal encapsulation.
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2.3.3. Coating

A total of 18 molar NaOH solutions were blended with the Na2SiO3 solution and shake well
for five minutes to assure solution homogenization. The mixing ratios and solution molarities being
applied in the current research were reported to achieve a maximum compressive strength [33]. Due to
the exothermic nature of the reaction, the heated solution was kept for one day in ambient conditions to
cool down prior to being poured into a dry mix of FA, GGBS, and DS. The FA, GGBS, and DS powders
were mixed and homogenized in a steel container by using a mechanical stirrer simultaneously. Alkali
solution was poured into the powder mix to develop GP paste. Macro capsules of LECA-PCM were
added to the GP paste in the concrete mixer (Namson Trading GmbH, Frankfurt, Germany) to apply
a GP layer around the LECA-PCM particles. As soon as the hardening of the GP layer started over
the LECA-PCM surface, the macro capsules were taken out of the concrete mixer. The LECA-PCM
capsules were rolled over a bench until complete hardening of the GP paste occurred. An illustration
of the steps involved in the process are shown in Figure 4.

Materials 2018, 11, x FOR PEER REVIEW  7 of 17 

 

2.3.3. Coating 

A total of 18 molar NaOH solutions were blended with the Na2SiO3 solution and shake well for 
five minutes to assure solution homogenization. The mixing ratios and solution molarities being 
applied in the current research were reported to achieve a maximum compressive strength [33]. Due 
to the exothermic nature of the reaction, the heated solution was kept for one day in ambient 
conditions to cool down prior to being poured into a dry mix of FA, GGBS, and DS. The FA, GGBS, 
and DS powders were mixed and homogenized in a steel container by using a mechanical stirrer 
simultaneously. Alkali solution was poured into the powder mix to develop GP paste. Macro 
capsules of LECA-PCM were added to the GP paste in the concrete mixer (Namson Trading GmbH, 
Frankfurt, Germany) to apply a GP layer around the LECA-PCM particles. As soon as the hardening 
of the GP layer started over the LECA-PCM surface, the macro capsules were taken out of the concrete 
mixer. The LECA-PCM capsules were rolled over a bench until complete hardening of the GP paste 
occurred. An illustration of the steps involved in the process are shown in Figure 4. 

 
Figure 4. Illustration of the steps involved in encapsulation of PCM in LECA. 

The rolling of a spherical aggregate filled with PCM into the geo-polymer paste produced 
spherical capsules. The process yielded a GP-coated form stable LECA-PCM macro-capsules, which 
is shown in Figure 5. Newly produced capsules were kept at room temperature for 24 h for curing.  

 
Figure 5. PCM impregnated LECA with geo-polymer coating. 

2.4. Testing of Thermal Stability 

2.4.1. Weathering Test 

GP-coated LECA-PCM capsules were kept outdoors for 60 days with temperatures fluctuating 
above and below the melting point of PCM to visually observe degradation of coating under solar 
radiation and temperature cycles. The ambient temperature fluctuated between 38 °C and 23 °C 
during the daytime and nighttime of the test duration. 

2.4.2. Controlled Indoor Test 

The capsules were tested under RTC in a heating chamber (ESPEC–Temperature and Humidity 
Chamber–Platninous J Series, Osaka, Japan), which is shown in Figure 6. The temperature 
fluctuations during RTC were from 10 °C to 105 °C. The samples were kept in a perforated 

Blending of 
NaOH 

solution with 
Na2SiO3

Admixture of 
solution and 
dry mix of 
FA, GGBS, 

and DS

Macroencaps
ulation Curing

Development 
of form-

stable 
capsules

Figure 4. Illustration of the steps involved in encapsulation of PCM in LECA.

The rolling of a spherical aggregate filled with PCM into the geo-polymer paste produced spherical
capsules. The process yielded a GP-coated form stable LECA-PCM macro-capsules, which is shown in
Figure 5. Newly produced capsules were kept at room temperature for 24 h for curing.
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Figure 5. PCM impregnated LECA with geo-polymer coating.

2.4. Testing of Thermal Stability

2.4.1. Weathering Test

GP-coated LECA-PCM capsules were kept outdoors for 60 days with temperatures fluctuating
above and below the melting point of PCM to visually observe degradation of coating under solar
radiation and temperature cycles. The ambient temperature fluctuated between 38 ◦C and 23 ◦C
during the daytime and nighttime of the test duration.

2.4.2. Controlled Indoor Test

The capsules were tested under RTC in a heating chamber (ESPEC–Temperature and Humidity
Chamber–Platninous J Series, Osaka, Japan), which is shown in Figure 6. The temperature fluctuations
during RTC were from 10 ◦C to 105 ◦C. The samples were kept in a perforated containment to let any
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produced vapors escape and this counted as weight loss. The samples were subjected to 1000 RTC and
the weight was measured after 100 cycles along with visual observation to determine the apparent
wetting of the surface.
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2.4.3. Diffusion-Oozing Circle Test

A DOCT was conducted to check the leakage of PCM out of GP-LECA-PCM capsules by following
the method proposed in Reference [39]. In the test, a circle of 30 mm diameter was plotted on a filter
paper and capsules of GP-LECA-PCM were placed inside the circle. It was heated up to 105 ◦C inside
the heating chamber so that inside PCM can melt completely. After cooling it to a normal temperature,
the capsules were removed and the circle was measured again. Leakage was measured by using
Equation (2) [40].

η =
DLK
DSD

× 100% (2)

where the value of η will decide the leakage performance of the material, D is the diameter of the circle
with the subscripts of LK representing the leakage circle and SD for the standard circle.

3. Results

Leak proofing of the GP-LECA-PCM capsules is the most important parameter of investigation.
The results for impregnation efficiency, DSC, THM, RTC, and DOCT are presented below.

3.1. Composition and Microstructure of the Materials

3.1.1. X-ray Diffraction Analysis

The dry constituent materials were grounded to a fine powder and x-ray diffraction analysis was
conducted with a Cu-Kα radiation at room temperature. The prepared samples were scanned at 2θ
between 10◦ and 80◦. The experimentally obtained X-ray diffractograms are shown in Figure 7.
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The large halo located between 25◦ and 35◦ (2θ) in the X-ray diffractogram of GGBS (Figure 7a)
indicates that it contains mostly amorphous compounds. The amorphous composition of GGBS is
due to the quenching process where water is used during its production. Small reflections for Quartz
(SiO2), Mullite (Al6Si2O13), and Gehlenite (Ca2Al(AlSiO7)) were also identified. Figure 7b displays
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the X-ray diffractogram of fly ash, which revealed several sharp crystalline peaks in 2θ range from
20◦ and 70◦. The observed sharp crystalline peaks were assigned to the main crystalline phases of
Quartz (SiO2), Mullite (Al6Si2O13), and Hematite (Fe2O3). The presence of these relatively inactive
crystalline phases is typical in low-calcium flay ash. The wide diffusive hump shows the presence of a
small quantity of amorphous solids as well. The ground LECA powder showed phase composition
similar to that expected for autoclaved clays (Figure 7c). Quartz (SiO2) was the major crystalline phase
identified in the dune sand (Figure 7d) with other minor phases identified to include Calcite (CaCO3),
Dolomite (CaMg(CO3)2), Mullite (3Al2O32SiO2), and Hematite (α-Fe2O3).

3.1.2. Scanning Electron Microscopy Analysis

The scanning electron microscopic (SEM) analysis was carried out by using accelerating voltages
of 10 kV and 15 kV. Interconnected porosity of LECA can be observed in Figure 8a,b. The pore size was
not uniform and ranged from a few µm to almost 1 mm. This porosity can be installed in buildings
for thermal insulation, sound proofing, and lightness of concrete. This research exploited its ability
to host PCM in its porosity because of its interconnected type. A microstructure of DS was noted to
be nodular with the size range approximately 80 µm to 200 µm (Figure 8c). SEM investigation of FA
revealed that its particles were spherical in shape and mainly smaller than 30 µm (Figure 8d) but had a
broad particle size distribution (Figure 8e). GGBS particles were noted to have different microstructures
(Figure 8f) i.e., coarser than fly ash and were angular in structure with a mean particle size of about 27 µm.
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of the geo-polymer. It can be observed that FA spheres were intermixed with angular slag particles 
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Figure 8. Microstructure of (a) LECA Mag. 20, (b) LECA Mag. 250, (c) DS Mag. 100, (d) FA Mag. 1000,
(e) FA Mag. 3000, and (f) GGBS Mag. 3000.

Detailed SEM and EDX analysis of the geo-polymer paste has been reported by authors in a
precedent study [33] and key findings are reported here for relevance. Figure 9 shows the micrograph
of the geo-polymer. It can be observed that FA spheres were intermixed with angular slag particles and
reaction products can adhere to the surface of FA spheres. To further characterize the reaction products,
energy dispersive X-ray (EDX) spot analysis was employed. The EDX plot highlighted the presence
of calcium (Ca), silicon (Si), sodium (Na), aluminum (Al), and oxygen (O). This indicated that an
aluminium-modified C–S–H gel co-existed with an N–A–S–H geopolymer gel. A silicon-to-aluminum
(Si/Al) ratio of 1.80 was reported in the aluminosilicate phase.
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3.1.3. X-ray Fluorescence Analysis

Received densities and chemical composition of the GGBS, FA, and DS are presented in Table 3.
The FA used here was categorized as class F in accordance with ASTM C618 [41].

Table 3. X-ray fluorescence (XRF) test results.

Constituent SiO2 % Al2O3 % Fe2O3 % CaO % MgO % LOI %

Fly ash 48 23 12.5 3.2 1.5 1.1
Slag 34.7 14.4 0.8 41.9 6.8 1.1

Dune sand 64.9 3 0.7 14.1 1.3 0.5

3.2. Thermo-Physical Properties of PCM

3.2.1. Differential Scanning Calorimetry

Figure 10 shows the DSC thermogram of a 5-mg PCM sample at a scanning rate of 1 ◦C/min.
The heating run shows that heat absorption starts at 28 ◦C and is completed at 33.8 ◦C with the peak at
31.2 ◦C with a heat of fusion of 124.1 J/g. The cooling run shows that solidification started at 32.3 ◦C and
completed at 27.38 ◦C with the peak at 29.62 ◦C. DSC results agree with the manufacturer’s catalogue
melting points of 27–33 ◦C while it substantially disagrees with the solidification range of 33–27 ◦C [42].Materials 2018, 11, x FOR PEER REVIEW  12 of 17 
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3.2.2. Temperature History Method

The THM results slightly disagrees with the DSC in melting and solidification temperatures
possibly due to the hysteresis nature of the material and thermal gradient inside the PCM sample [34]
or the uncertainty in the measuring instruments [43]. In THM, the end of melting in the heating
phase and solidification onset in the cooling phase were almost the same at 32 ◦C as shown in
Figure 11. During heating, it represents a delay in the PCM temperature rise when compared to
distilled water due to its higher heat of fusion. The melting initiated at 27 ◦C and completed at 32 ◦C
was represented by a drop in the temperature gradient, which indicates latent heat absorbed by the
PCM. In comparison, the temperature rise for water is consistent and uniform. The difference in the
gradient of the temperature rise of the materials is also visible in the cooling regime. It represents a
delay in the cooling of PCM as compared to water due to higher heat release of the PCM during its
phase transition. For the cooling phase, solidification started at 33 ◦C and was completed at 26.5 ◦C.
The heating phase was completed in almost 3150 seconds while cooling required 1350 s. The difference
in time required is due to different heating and cooling rates in both phases. Quenching of both tubes
in cold water at 10 ◦C enhanced the cooling rate, which resulted in rapid cooling and a sharp curve
when compared to the heating phase.Materials 2018, 11, x FOR PEER REVIEW  13 of 17 
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3.3. Impregnation Efficiency

3.3.1. Immersion

There was no observable difference in weight gain of the aggregate and consequently no
impregnation. Therefore, the immersion technique is not effective and should not be used.

3.3.2. Vacuum Impregnation

The size of the LECA particle and its morphology have a marginal effect on its absorption
efficiency. The crushing of the particles of LECA2 and LECA3 slightly increased the PCM absorption
from 83 wt % to 87 wt %. This increment may be attributed to the utmost filling of pores because the
surface treatment of LECA was removed when crushed. For further investigations, crushed particles
and LECA3 were not considered because they could not be rolled in the GP paste due to irregular
morphology. In the best case, a maximum of 87 wt % was achieved in LECA1 but a smaller size of
the LECA caused agglomeration while coating with GP. Therefore, LECA2 were finalized for further
research because of comparable absorption of 83 wt %, which is a suitable size and regular shape for
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GP coating. In a study, only 31 wt % was impregnated into LECA using vacuum impregnation [44,45].
Yet, Na2SiO3 was impregnated with the density at much higher levels than that of PCM. Absorption
efficiency is important for a compact but dense thermal energy storage system. The higher the quantity,
PCM is filled in the pores of the same LECA as compared to the smaller quantity required when
used in the building components for thermal energy management. Therefore, by developing denser
particles and using less quantity, it will generate the same thermal effects and less compromised
structural strength.

3.4. Thermal Stability

3.4.1. Weather and Rapid Thermal Cycling

Thermal stresses may induce cracks or rupture on the coating layer. No apparent sign of leakage
or rupture was observed over the GP coated LECA-PCM surface indicating the durability of the
coating. To validate the presence of PCM inside the GP-LECA-PCM, a capsule at the high temperature
was crushed with a high impact load. A good amount of PCM was observed inside the GP shell
in a molten form, which is shown in Figure 12. This confirms the longevity of the coating material.
Two different types of expanded clay aggregates have been investigated for PCM absorption to develop
thermal energy storage concrete. Although the reported value for the PCM absorption is 89.8% at the
maximum, the investigation included only the weight loss method to test the thermal stability in a
narrow range of thermal cycles between 10 ◦C to 60 ◦C [46]. The study has limitations because, at an
even higher temperature, materials will behave differently because of the mismatch of volume changes
of PCM, the aggregate, and its coating. Aguayo et al. used four different types of LECA to host PCM
and achieved 21.2% PCM absorption efficiency at the maximum. The study investigated cement-based
insulation to reduce the insulation layer thickness with the dampened temperature peaks [47].
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3.4.2. Diffusion-Oozing Circle Test

The test claims that the maximum of 15% increase in the diameter of the circle is acceptable for
leakage of PCM out of the porous media [48]. Results of our study revealed there was absolutely no
increase in the ooze circle, which indicated the perfect leak proofing of the capsules. Figure 13 shows
the filter paper with and without GP-LECA-PCM capsules on its surface after exposing it to higher
temperatures. Hence, the materials and methods can be used for leak proofing of PCMs contained in
the porous media.
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4. Conclusions

A paraffin based PCM is characterized through DSC and THM for building integration aimed
at enhancing the thermal performance of buildings. The material exhibited a reasonable thermal
energy storage capacity of 124.1 J/g with a phase transition temperature of 28 ◦C being close to a
human thermal comfort. The PCM is macro-encapsulated into porous lightweight expanded clay
aggregate (LECA) by vacuum impregnation to form LECA-PCM composite capsules. A low porosity
Geo-polymer paste is prepared through alkali-activated polymerization of fly ash, glass slag, and dune
sand and applied to LECA-PCM surface by mechanically rolling capsules over the paste. The paste
forms a uniform layer that hardens over the LECA-PCM surface and fills the open pores, which forms
a leak proof layer that prevents PCM leakage during the liquid phase. Thermal cycling durability
of the leak proof layer is tested both under an indoor temperature change of 15 ◦C to 105 ◦C and
outdoor temperatures irradiated by solar radiation undergoing a temperature change of 23 ◦C to 65 ◦C.
The protective coating remained intact for the tested duration showing no obvious surface wetting as
well as weight loss. It is, therefore, concluded that the Geo-polymer coating is effective at preventing
the leakage of macro-encapsulated PCMs contained in a porous shell under extreme indoors and
outdoors conditions for limited thermal cycles. The durability of the leak proof layer still needs to
tested for longer exposure times in a range of several years through rapid thermal cycling indoors
and outdoors.
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