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Background: The correlation between exosomes and the tumor immune

microenvironment has been proved to affect tumorigenesis and progression

of colon adenocarcinoma (COAD). However, it remained unclear whether

exosomes had an impact on the prognostic indications of COAD patients.

Methods: Expression of exosome-related genes (ERGs) and clinical data were

downloaded from The Cancer Genome Atlas (TCGA) and Gene Expression

Omnibus (GEO) database. The ERGs associated with prognosis were identified

and exosome-related prognostic signaturewas constructed. Patients in two risk

groups were classified according to the risk score calculation formula: Risk

score = 1.0132 * CCKBR + 0.2416 * HOXC6 + 0.7618 * POU4F1. The expression

of three ERGs was investigated by qRT-PCR. After that, we developed a

nomogram predicting the likelihood of survival and verified its predictive

efficiency. The differences of tumor immune microenvironment, immune

cell infiltration, immune checkpoint and sensitivity to drugs in two risk

groups were analyzed.

Results: A prognostic signature was established based on the three ERGs

(CCKBR, HOXC6, and POU4F1) and patients with different risk group were

distinguished. Survival analysis revealed the negative associated of risk score

and prognosis, ROC curve analyses showed the accuracy of this signature.

Three ERGs expression was investigated by qRT-PCR in three colorectal cancer

cell lines. Moreover, risk score was positively correlated with tumor mutational

burden (TMB), immune activities, microsatellite instability level, the expression

of immune checkpoint genes. Meanwhile, the expression level of three ERGs

and the risk score were markedly related with the sensitive response to

chemotherapy.
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Conclusion: The novel signature composed of three ERGs with precise

predictive capabilities can be used to predict prognosis and provide a

promising therapeutic target for improving the efficacy of immunotherapy.
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microenvironment, immunotherapy

Introduction

COAD is the ordinary histological subtype of Colorectal

cancer (CRC) (Siegel et al., 2021). Among the top four

malignant tumors in the world, nearly 900 000 COAD

patients die annually (Dekker et al., 2019). In addition, it is

estimated that the incidence of colon cancer in patients aged

20–34 will increase by 90.0% in 2030 (Siegel et al., 2021). More

and more attention has been paid to the early diagnosis and

prevention of COAD (Benson et al., 2018). Biomarkers are

rapidly being discovered through the study of the

transformation process of COAD. Previous studies have

revealed that M2 macrophage-derived exosomes (MDE) and

cancer-associated fibroblasts related exosomes regulated the

migration and invasion of CRC cells (Hu et al., 2019; Lan

et al., 2019), circulating exosome microRNAs can also reflect

pathological changes in COAD patients (Ogata-Kawata et al.,

2014). However, large-scale clinical trials are required to verify

these tumor biomarkers before they can be used in clinic. Overall,

the pathogenesis of COAD is complex, and more researches are

needed to further explore the signature of exosomes associated

with COAD to improve the accuracy of early diagnosis and

prediction.

As a type of extracellular vesicles (EV), exosomes are

30–150 nm-sized vesicles, surrounded by lipid bilayer and

containing a variety of biomolecules (Zhang et al., 2015). In

the past few years, the important role of exosomes in tumor

progression, initiation, metastasis and immunity has been deeply

discussed (Möller and Lobb, 2020). First of all, exosomes not only

regulate gene expression level of cancer cells (Farooqi et al.,

2018), but also directly affect cell polarity and directional cell

movement, so as to establish a good ecological niche of cancer

cells before metastasis in tumor microenvironment (TME) (Rana

et al., 2013). Exosomes are important mediators in the translation

of inflammation related colorectal cancer (Zhang et al., 2018),

and the previous studies suggested that cancer cell-derived

exosomes could regulate tumor immune response by

indirectly or directly activating T-cell function (Zhang and

Yu, 2019). In addition, exosomes are associated with immune

escape that can be driven by tumor associated macrophages and

neutrophils (Kim and Bae, 2016). Interaction between exosome-

carried programmed death ligand 1 (PD-L1) and T-cells that

produce programmed death 1 (PD-1), significantly reduce the

response to immune checkpoint blocking drugs (Lee et al., 2022).

Consequently, exosomes have emerged as one of the key

mechanisms regulating the immunotherapy of malignant

tumors and it is crucial to investigate exosome-related

prognostic signature in COAD patients.

In this study, we integrated ERGs expression profiles and

clinical information of COAD patients to construct a novel

signature based on 3 key ERGs for prognosis prediction,

references for clinical chemotherapy and immunotherapy.

Materials and methods

Data acquisition

The gene expression profiles and the clinical information of

the COAD patients were retrieved from TCGA database (Wang

et al., 2016) and the matching information from the

GSE39582 dataset was availed from GEO database (Barrett

et al., 2013). Therefore, 514 samples which included

41 normal samples from TCGA, and 585 samples which

contained 566 cancer samples and 19 normal samples

(557 samples had prognostic information) from the GEO were

introduced for further study.

Differentially expressed exosome-related
genes and functional annotation

The “limma” software package in R software was used to

analyze the differentially expressed genes (DEGs) of 121 ERGs

which were acquired from ExoBCD database (https://exobcd.

liumwei.org/) (Qiu et al., 2021). The genes with threshold of |

log2FC| ≥ 1 and FDR ≤ 0.05 were treated as the DEGs. Univariate

Cox regression and Kaplan-Meier (KM) survival analysis were

used to identify the prognostic DEGs with p less than 0.05.

ClusterProfiler package of R software for Gene Ontology (GO)

analysis and Kyoto Encyclopedia of Genes and Genomes

(KEGG) pathway analysis were utilized to identify the

biological functions of the prognostic DEGs.

Establishment and validation of an
exosome-related prognostic signature

After removing the COAD samples from TCGA database

with unknown survival time, and unknown survival status, a
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total of 417 patients were enrolled by integrating the

transcriptome and clinical data in this study. At a ratio of

1:1, half of the samples randomly obtain from the entire set

(n = 417) containing all COAD samples were assigned to the

training set (n = 209) and the other half to the testing set (n =

208). No significant difference was observed among the entire

set, training set and testing set for the clinical-pathological

factors (Supplementary Table S1). After the prognostic

signature was constructed in training set, we performed

model validation on the test set, the entire set, and the

GEO set to improve accuracy. Univariate cox regression

analysis was utilized to identify DEGs associated with

overall survival (OS). We evaluated the performance of

LASSO regression using 10-fold cross-validation approach

in our analysis, p-value of 0.05, as well as running 1,000 times.

“Glmne” package was used for LASSO regression analysis to

further identify key ERGs. The coefficient of each gene

analysis was extracted for the establishment of the

prognostic signature by multivariate Cox regression. After

that, we calculated the risk score with the formula:

Risk score � ∑ coefpExp(genes). The median score served

as a demarcation line to help us divide COAD patients into

high-risk and low-risk groups. The Kaplan-Meier (K-M)

analysis was performed with the “survival” package to

investigate the correlation of risk score and OS. ROC

analysis was performed to reveal the sensitivity and

specificity of exosome-related signature and principal

component analysis (PCA) was used for dimensionality

reduction.

Cell culture

The colorectal cancer cell lines (Caco-2, HT-29, and

HCT116) were purchased from China Center for Type

Culture Collection (CCTCC). The normal colorectal cell line

(FHC) was obtained from Cell Bank of Type Culture Collection

of the Chinese Academy of Sciences (Shanghai, China). Caco-2,

HT-29, HCT116, and FHC cells were cultured in McCoy’s 5A,

RPMI-1640, DMEM respectively (Gibco, China) containing 10%

fetal bovine serum (Gibco, China) in a humidified incubator at

37°C and 5% CO2.

qRT-PCR

TRIZOL reagent (Thermo Fisher Scientific, United States)

was used to isolate total RNA from cell lines and complementary

DNA (cDNA) was synthesized using Revert Aid First Strand

cDNA Synthesis kit (Vazyme, China). qRT-PCR was performed

using ChamQ Universal SYBR qPCR Master Mix (Vazyme,

China) and β-actin was chosen as the internal referenece. The

relative expression of the target gene was estimated using the

2−ΔΔCT method. The primer sequences are listed in

Supplementary Table S2.

Construction of a predictive nomogram

The Nomogram was generated by R software with the

“rms” package. The “rms” R package, risk scores, age, gender,

and tumor stage were used to create a nomogram for

different years OS (Iasonos et al., 2008). Calibration

curves were conducted to assess the predictive value of

the nomogram, and the closer the 45° line is, the better

the prediction will be.

Evaluation of tumor microenvironment

Tumor-infiltrating immune cells (TIICs) was estimated

in a number of databases including TIMER, CIBERSORT,

CIBERSORT-ABS, QUANTISEQ, MCPCOUNTER, XCELL,

and EPIC. We download the profile of infiltration

estimation from the TIMER 2.0 database to explore the

relationship of risk score and infiltration of TIICs. The

level of immune score and stromal score can be utilize to

evaluate TME and its correlation with risk score was also

revealed by ESTIMATE algorithm (Yoshihara et al., 2013).

Single-sample gene-set enrichment analysis (ssGSEA) was

utilized to quantify the difference of immune activity

including tumors immune related cells and immune-

related functions. One-class logistic regression (OCLR)

machine-learning algorithm was used to quantify the

stemness of tumor samples by calculating cancer stem

cell indices Malta et al. (2018).

Analysis of immune states

Tumor Immune Dysfunction and Exclusion (TIDE) score

is based on the analysis of T-cell dysfunction in genes

characterized by high levels of cytotoxic T-cell infiltration

and T-cell rejection in immunosuppression to predict tumor

immune evasion potential and tumor response to immune

checkpoint inhibitors (ICIs). The TIDE score consists of two

parts: The dysfunction score and the exclusion score (Jiang

et al., 2018). Immunophenoscore (IPS) refers to regulation

the immunogenicity, and is calculated impartially with

machine learning methods (Charoentong et al., 2017). The

potential responses of immune checkpoint inhibitors were

compared by calculating IPS fractions based on gene

expression levels of immune checkpoint genes through The

Cancer Immunome Atlas (TCIA). Information of mutations,

microsatellite instability (MSI), and tumor stem cells in each

COAD patient was obtained from TCGA, the “maftools”
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packages was used to generate the waterfall diagram to show

the mutation frequency of the top 10 mutated genes, the

relationship between risk score and tumor mutational burden

(TMB), immunogenicity was assessed.

Drug sensitivity analysis

Through Genomics of Drug Sensitivity in Cancer (GDSC),

boxplots show the response of patients in different risk groups

to chemotherapy and small molecule compound (Yang et al.,

2013). Half-maximal inhibitory concentrations (IC50)

representing the drug response were estimated (Sebaugh,

2011). In this study, we referenced the NCI-60 database and

the differences of drug sensitivity was explored. So far, the NCI-

60 database is the most frequented database in relation to

cancer drug testing and is accessible in CellMiner database

(Hurwitz et al., 2016).

Statistical analysis

All analyses were performed in R software (Yu et al., 2012).

The continuous variables in normal distribution are analyzed by

Student’s t-test, which is presented as mean ± standard deviation,

and the continuous variables in abnormal distribution are

presented as median (range). A p-value less than 0.05 was

considered as statistical significance.

Results

Identification of differentially expression
of exosome-related genes

In order to better understand the methods and results of this

study, a brief workflow was drawn (Figure 1). To screen the DEGs,

121 ERGs expression was investigated between the normal and tumor

samples and the expression profiles of 30 differentially expressed

ERGs were visualized in the heatmap, including 13 genes with

upregulated and 17 genes with downregulated (Supplementary

Figure S1A). Then, we performed enrichment analysis on

exosome-related gene sets by GO function analysis. The biological

process (BP) of was mainly involved in the cellular response to

fibroblast growth factor, cellular response to xenobiotic stimulus,

FIGURE 1
Flow chart of this study.

TABLE 1 Univariate COX regression analysis of 6 exosome-related
genes in training set.

Genes HR Low 95%CI Up 95%CI p value

CCKBR 4.5298 2.2377 9.1699 <0.0001
CYP11A1 5.8097 1.5848 21.2979 0.0079

HOXC6 1.2669 1.0626 1.5104 0.0084

NEUROD1 1.6917 1.0611 2.6969 0.0272

UCHL1 1.4394 1.0049 2.0619 0.0470

POU4F1 3.0398 1.5067 6.1326 0.0019
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intrinsic apoptotic signaling pathway and regulation of DNA damage

checkpoint. Cellular component (CC) wasmainly concentrated in the

excitatory synapse, and Molecular function (MF) was mainly related

to sulfur compound binding, ubiquitin-protein ligase binding,

heparin-binding and glycosaminoglycan binding (Supplementary

Figure S1B). The results of KEGG analysis showed that ERGs

were mainly enriched in the calcium signaling pathway, platinum

drug resistance, inflammatory mediator regulation of TRP channels

(Supplementary Figure S1C).

Construction of exosome-related
prognosis signature in training set

To verify the prognostic potential of ERGs, 30 differentially

expressed ERGs were evaluated for prognostic potential and

ultimately, 6 ERGs were identified to be correlated with

prognosis in the training set (Table 1). To prevent overfitting

the prognostic signature, Lasso regression was applied and tenfold

cross-validation for penalty parameter selection is shown in

Supplementary Figure S2. Afterward, 3 ERGs were identified as

key prognostic genes and in turn, the risk score of each patient was

calculated based on the coefficient of these 3 prognostic ERGs: Risk

score = 1.0132 * CCKBR + 0.2416 * HOXC6 + 0.7618 * POU4F1.

Themedian risk score was used as a criterion for defining high-risk

and low-risk groups. According to the OS of COAD patients, the

ranked dot plot illustrated the survival status and expression of

3 key ERGs was showed in heatmap (Figure 2A). The OS of

patients in the low-risk group was much better than those in the

high-risk group by the Kaplan–Meier survival analysis (Figure 2B).

The ROC curves demonstrated sensitivity and specificity of our

signature in predicting OS (Figure 2C).

FIGURE 2
Identification and validation of the exosome-related genes signature. Risk scores for all patients in each cohort are listed in ascending order,
with themedian as the threshold, COAD patients were divided in low-risk (green) and high risk (red). The ranked dot plot illustrated the distribution of
survival status and the heatmap showed the expression profiles of 3 ERGs in the training set (A), testing set (D), entire set (G) and GEO set (J). Kapan-
Meier survival curves analyses and ROC analysis in predicting prognoses in the training set (B,C), testing set (E,F), entire set (H,I) and GEO
set (K,L).
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Validation of exosome-related prognostic
signature

To certify the accuracy of risk scores, similar analysis was

performed in the validation set including testing set, entire set, and

GEO set. Based on same calculation formula, we calculated the risk

score of each patient, determined the median risk score as the

standard, and divided the patients into low-risk and high-risk

group in the validation set. The distribution of risk score, survival

status and the heatmap of 3 key ERGs were exhibited in the

validation set (Figures 2D,G,J). Meanwhile, survival curves

revealed that survival duration of the low-risk group was much

longer in the validation set (Figures 2E,H,K). In addition, the AUC

value of validation set confirmed the consistency and accuracy of

this prognostic model (Figures 2F,I,L). The PCA analysis showed

that patients in different risk groups tended to be well

distinguished based on this classification (Supplementary Figure

S3). We further validated the expression of 3 ERGs in colorectal

cancer cell line HCT116, HT-29, Caco-2 by qRT-PCR. As shown

in Supplementary Figure S4, the expression of CCKBR, HOXC6,

and POU4F1 were significantly higher in colorectal cancer cell

lines compared to those in FHC cells.

Construction of predictive nomogram
based on exosome-related prognostic
signature

To assess whether risk score was independent prognostic

factors, univariable and multivariable Cox regression analysis

were performed in three set. The results showed that age, stage

and risk score were independent prognostic factors and there was

FIGURE 3
Analyses of the independent predictor of COAD patients. Univariate and multivariate COX regression analysis of clinical factors (age, gender,
stage, histological types, and risk score) in the training set (A), testing set (B), and entire set (C). Kapan-Meier survival curves reveal prognostic value of
risk score in COAD patients with different ages (D), genders (E), histological types (F), and stages (G).
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no significant specificity in gender and histological type (Figures

3A–C). We performed subgroup survival analysis to reveal the

prognostic value of risk score in COAD patients who varied in

age, gender, histological type and stage. The results revealed that

the risk score could distinguish the prognosis in patients aging

below and over 60 years old (Figure 3D), male and female

patients (Figure 3E), patients with adenocarcinoma

(Figure 3F), patients with different stages (Figure 3G).

Subsequently, to predict OS, a prognostic nomogram was

established based on the clinical factors and risk scores

(Figure 4A). The calibration curves suggested that the survival rate

as revealed by the nomogram was highly consistent with the actual

survival rates, which indicated that the nomogram boasted important

clinical significance (Figure 4B). Compared with the AUC value of

clinical features, risk score showed good sensitivity and specificity in

predicting OS of COAD patients (Figure 4C). To further prove the

predictive role of this signature, we verified the performance

differences between our signature and other recently reported gene

signatures of prognostic model in COAD (Liang et al., 2020; Cui et al.,

2021; Zhu et al., 2021). Based on the same patient set, the AUC of our

TCGA signature for 1, 3, 5 years OS were significantly higher than

exiting gene-related signature in COAD (Figure 4D).

FIGURE 4
Construction of nomogram for predicting OS of patients with COAD. (A) The nomogram combining signature with clinicopathological features
(risk score, age, stage) predicts probability of 1-, 3-, and 5-years OS. (B) The calibration plots reveal nomogram-predicted survival probabilities
corresponded closely to the actually observed percentages. (C) The area under the curve (AUC) value of risk score and clinical factors was
determined in 1-, 3- and 5-years OS. (D) The AUC of 3 ERGs-related signature and existing gene-related signature in 1-, 3-, and 5-years OS.
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Immune status analysis

To determine the biological processes involved, GSEA analysis

was performed to analyze transcript information from high-risk and

low-risk patients and identify representative KEGG pathways

(Supplementary Figure S5). To better explain the relationship

between immune status and risk score, tumor immune-related

cells were compared in different risk groups and the ssGSEA

results showed that multiple immune cells were elevated, so there

was more immune activity in the high-risk group (Figure 5A). Next,

13 immune-related functions were also compared and the confirming

the variability between the low-risk and high-risk groups (Figure 5B).

Accordingly, we investigated the expression of human leucocyte

antigen (HLA) related genes and found that the most HLA genes

expression were higher in the high-risk group (Figure 5C). Moreover,

we implemented the ESTIMATE algorithm and identified that

stromal score and immune score were significantly higher in the

high-risk group and were positively associated with the risk score

(Figures 5D,E). RNA stemness score (RNAss) and DNA stemness

score (DNAss) were employed to measure tumor stemness and both

of them were significantly negatively associated with the risk score

(Figure 5F). Different types of immune infiltration correspond to

promotion and inhibition of tumor (Tamborero et al., 2018), such as

C4 (lymphocyte depleted) which was significantly related with risk

score (Figure 5G).

To explore tumor-infiltrating immune cells (TIICs) in the

microenvironment of tumors, we used multiple databases to

estimate infiltration of 21 types of TIICs (Figure 6A). The

significant association between TIICs and the expression level of

3 prognostic ERGs were shown in Figure 6B. In addition, the

percentage of each TIICs was compared and the significant

correlation between risk score and TIICs was exhibited (Figures 6C,D).

Mutation profile and microsatellite
instability in ERG-based risk score

Tumor mutational burden is an important factor in tumor

occurrence and development, so it can be used to predict the

effectiveness of immune checkpoint inhibitors (ICIs) (Ai et al.,

2020). In this study, cancer-related gene mutation data were used

to assess the TMB level in two risk groups. The results showed

FIGURE 5
Situation of immune cell infiltration in high-risk and low-risk groups. (A,B) Comparison of the 16 tumors immune related cells and 13 immune-related
functions. (C) The levels of HLA-related gene expression. (D)Comparison of ESTIMATES score, Immune score, and Stromal score. (E,F) Association between
risk score and ESTIMATES score, Immune score, Stromal score, RNAss, andDNAss. (G)Comparisonof the risk score in four immune infiltration subtypes. *p<
0.05, **p < 0.01, *** p< 0.001. ns, not significant.
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that the top 3 mutation frequencies were APC, TP53, KRAS and

the mutation frequencies of APC, TP53, and KRAS were lower in

the high-risk group (Figure 7A). In addition, patients with high-

risk score tended to have a higher TMB and TMB was positively

correlated with risk score (Figure 7B). DNA mismatch repair

(MMR) proteins is involved in the correction of mismatched

bases in the process of DNA replication, and its inactivation will

cause microsatellite instability (MSI) (Kim et al., 2022). We

compared the expression level of MMR-related genes

including MLH1, MSH2, PMS2, and MSH6 in different risk

group and found that MMR-related genes expression was

upregulated in low-risk group and negatively correlated with

risk score (Figure 7C). Moreover, 28% of patients with MSI-high

(MSI-H) were in high-risk group, which had larger number of

patients than those with MSI-H in the low-risk group. Similarly,

patients with MSI-H had higher risk score than patients in MSI-

low (MSI-L) group and microsatellite stability (MSS) group

(Figure 7D).

Exosome-related prognosis signature and
immune checkpoint

Immune checkpoints help assess the patient’s immune

response to immunotherapy (Yasunaga, 2020). The results

demonstrated that 25 immune checkpoints expressed

differently, and 24 of the 25 immune checkpoints had lower

expression in the low-risk group, except for the HHLA2 gene,

which had higher expression in the low-risk group (Figure 8A).

In view of the distribution of immune checkpoint expression, we

focused on CTLA4 and CD274 (PD-L1), and the results revealed

that there was positively correlated of risk score and CTLA4 and

PD-L1 expression (Figures 8B,C). To reveal the difference of

immune evasion, we calculated the TIDE score of the two risk

groups. The results showed that the TIDE scores in the high-risk

group were significantly higher than that in low-risk group,

which indicated that the patients in the high-risk group had

greater potential for immune escape and worse effect on

FIGURE 6
Relationship between risk score and tumor-infiltration immune cells in high-risk and low-risk groups. (A) The infiltration of TIICs was assessed
by multiple databases (TIMER, CIBERSORT, CIBERSORT-ABS, QUANTISEQ, MCPCOUNTER, XCELL, and EPIC). (B) The relation between the
expression of 3 ERGs and immune cell infiltration. (C,D) Comparison of TIICs and the association between risk score and TIICs. *p < 0.05, **p < 0.01,
***p < 0.001.
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immunotherapy (Figure 8D). Furthermore, IPS analysis revealed

the potential effects of anti-CTLA4 and anti PD-L1 between

high-risk and low-risk group (Figure 8E).

Exosome-related prognosis signature and
chemotherapy sensitivity

Previous studies revealed that exosomes had a strong impact

on drug resistance and induced drug resistance through a

variety of mechanisms (Zhang and Yu, 2019; Namee and

O’Driscoll, 2018). Considering that IC50 values reflect the

drug sensitivity of cells to chemotherapeutic agents, four

chemical drugs including cyclopamine, thapsigargin,

dasatinib, nilotinib had been estimated. Patients in high-risk

group had greater advantage in four chemotherapeutic drug

sensitivity (Figure 9A). In addition, the relationship between

expression of 3 prognostic ERGs and chemotherapy sensitivity

was analyzed. The results indicated that 3 prognostic ERGs

expression were strongly correlated with the sensitivity of some

chemotherapeutic drug (Figure 9B). For instance, the higher

expression of CCKBR was associated with upregulated

sensitivity of tumor cells to nelarabine, idarubicin,

pipobroman, decitabine, thiotepa, fluphenazine,

triethylenemelamine, raltitrexed, cytarabine and hydroxyurea.

Moreover, increased expression of POU4F1 was related to

resistance to abiraterone and sensitivity to cladribine, while

upregulated HOXC6 expression was associated with resistance

to eribulin mesilate and palbociclib.

Discussions

At present, COAD is one of the highest mortality cancers in

the world, which still brings a heavy burden to families and

society. Although there are many treatment methods, the

curative effect is limited (Dekker et al., 2019). So far,

exosomes have been widely involved in stem cells, immunity,

microRNA, targeted drug delivery, cancer diagnosis and

treatment. Exosomes have the characteristics of both

promoting and inhibiting cancer. It has great potential in the

field of tumor immunotherapy, thus, exosomes are expected to

FIGURE 7
Tumor mutational burden, somatic mutation, and microsatellite instability (MSI) analysis in high-risk and low-risk groups. (A) The waterfall plot
displayed the mutation of 20 genes. (B) The differences of TMB, the relationship between TMB and risk score. (C) The expression level of MLH1,
MSH2, EPCAM, PMS2 and the relationship of expression and risk score. (D) The proportion of different microsatellite states and the risk score of
different microsatellite states.
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become immunotherapeutic targets and biomarkers for

diagnosis, prognosis and treatment of COAD (Xu et al.,

2020). Therefore, we established an exosome-related signature

model and the results showed that this signature was an

independent prognostic factor for COAD patients, and had

the ability to identify tumor microenvironment, immune

response and chemotherapy sensitivity in patients with

different risk groups. Therefore, this model can be used to

evaluate the prognosis of patients and provide insight for the

treatment strategies in COAD patients.

Firstly, we collected data of COAD patients from the TCGA

database and found that 30 ERGs were differentially expressed in

tumor and normal samples. Then, 3 prognostic ERGs (CCKBR,

HOXC6, and POU4F1) were identified to establish the

prognostic signature and in this signature, patients were

divided into high-risk and low-risk groups. The nomogram

provided the predictive score for patients to confirm the

survival possibility and the predictive ability further

demonstrated by the ROC analysis. Moreover, the differences

of tumor immune microenvironment, immune cell infiltration,

immune checkpoint and sensitivity to drugs in two risk groups

were also analyzed.

Cholecystokinin B receptor (CCKBR), also known as gastrin

receptor, belongs to the G-protein coupled receptors (GPCRs).

The activation of CCKBR stimulates the release of extracellular

vesicles (EVs) (Conrad et al., 2020). Moreover, CCKBR are

widely expressed in colorectal polyps, the activation of

CCKBR occurs in the early stage of adenoma progression to

cancer and promotes tumor progression (Smith and Watson,

2000). The occurrence of most colorectal cancer is directly

correlated to the abnormal gastrin expression (Mao et al.,

2014). Based on the aberrant expression of CCKBR and the

FIGURE 8
Immune checkpoint analysis in high-risk and low-risk groups. (A) The expression of immune checkpoints genes. (B,C) The relation between
CD274, CTLA4 expression and risk score. (D) The differences of Tumor ImmuneDysfunction and Exclusion (TIDE) scores. (E) The differences of IPS in
patients with different risk group. *p < 0.05, **p < 0.01, ***p < 0.001.
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functional binding interaction with gastrin, CCKBR might be a

promising target for immunotoxin therapy (Grzmil et al., 2020;

Li et al., 2022). Homeobox C6 (HOXC6) is a transcription factor

that is implicated in the malignant progression of several cancers,

including gastric cancer (Liu et al., 2020a; Lin et al., 2020),

hepatocellular carcinoma (Li et al., 2018), colon carcinoma

(Liu et al., 2020b). Furthermore, HOXC6 plays a key role in

the regulation of multiple cellular signaling pathways during

tumorigenesis, so it is considered as a novel biomarker for

various cancers (Hewitson et al., 2004; Jeong et al., 2021).

HOXC6 expression is also closely related to antitumor drug

sensitivity (Kim et al., 2013; He et al., 2021). Our results suggested

that upregulated HOXC6 expression was associated with

resistance to chemotherapeutic drugs including eribulin

mesilate and palbociclib. POU class 4 homeobox 1 (POU4F1),

a stem cell-associated transcription factor, is considered to have

tumor genetic function and promote tumor growth. Recently, it

has been reported that POU4F1 enhance the proliferation and

drug resistance of melanoma (Liu et al., 2020c). In addition,

targeting POU4F1 may be a new effective treatment for

trastuzumab (TRA) resistance in human HER2 positive breast

cancer (Wu et al., 2020). Similarly, we found that the expression

level of POU4F1 were significantly correlated with certain

chemotherapy drugs.

Cancer stem cells (CSCs) are self-renewal cells found in

tumors as normal stem cells (Kreso and Dick, 2014). CSCs

can not only transform into cancer cells and enhance their

resistance to chemoradiotherapy, but also secrete

immunosuppressive cytokines such as transforming growth

factor-β (TGF-β), interleukin-6 (IL-6), IL-10, and IL-13,

FIGURE 9
Chemosensitivity analysis in high-risk and low-risk groups. (A) Estimation of IC50 value for cyclopamine, thapsigargin, dasatinib, and nilotinib.
(B) Scatter plot of the association between 3 ERGs expression and drug sensitivity.

Frontiers in Genetics frontiersin.org12

Cui et al. 10.3389/fgene.2022.995644

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.995644


which can induce immune evasion of tumor cells (Schatton and

Frank, 2009; Zhang et al., 2019; Jahanafrooz et al., 2020). In

addition, for many tumors, stemness indices are negatively

correlated with the expression level of PD-L1 (Malta et al.,

2018). In this study, risk score was negatively associated with

stemness indices. Our results also found that the IC50 of

cyclopamine, thapsigargin, dasatinib, nilotinib was lower in

the high-risk group, indicating that the high-risk group with a

lower stemness indices was more sensitive to chemotherapy

drugs. Furthermore, PD-L1 expression was down-regulated in

low-risk group with higher stemness indices, which was

consistent with previous findings. However, the high-risk

group with lower stemness indices shows stronger immune

evasion ability, which may be related to the complex

mechanism of immune evasion, involving the co-regulation of

genes, metabolism, immune cells, blood vessels and other aspects.

Metastatic CRC patients with mismatch repair deficient (dMMR)

or microsatellite instability-high (MSI-H) respond better to

immunotherapy (Andre et al., 2021). TMB refers to the total

number of replacement, insertion and deletion mutations per

megabyte in the exon coding region of evaluated genes in the

genome of tumor cells. Highly mutated tumors are thought to

contain an increased neoantigen load, making them

immunogenic and responsive to immunotherapy

(McGranahan et al., 2016). Large amounts of neoantigen

production are associated with an enhanced response to

checkpoint blocking and are thought to be the mechanism by

which immune checkpoint inhibitors treat tumor tissues (Ott

et al., 2017). Therefore, TMB can also effectively predict the

efficacy of immunotherapy (Díaz-Gay and Alexandrov, 2021).

Results of our study found that risk score was helpful to

distinguish the COAD patients with different level of TMB,

MMR, and MSI. Combined with the results of immune escape

and immunotherapy analysis in different risk groups, suggesting

that risk score is an effective indicator to reveal the effect of

immunotherapy.

As an important regulator of tumor progression, the

heterogeneity of tumor microenvironment can significantly

affect the prognosis and treatment response of patients

(Whiteside, 2008). The existence of tumor infiltrating

lymphocytes (TILs) is related to the improvement of survival

rate in COAD (Chandra et al., 2021). To identify the immune

mechanism of this signature, we compared the difference of

Tumor-infiltrating immune cells (TIICs) and its correlation

with risk score was also revealed. We found that T-cells

CD4 memory resting had a larger proportion in the low-risk

group, while NK cells activated had a larger percentage in the high-

risk group. High CD4 + T-cell density is associated with improved

relapse free survival and disease-specific survival (Kuwahara et al.,

2019). Tumor-derived exosomes induce proinflammatory

cytokine expression and PD-L1 regulation in M0 macrophages

through IL-6/STAT3 and TLR4 signaling pathways (Pucci et al.,

2021). PD-L1 is highly expressed on tumor-associated

macrophages and thus inhibits antitumor immune responses

(Lin et al., 2018; Petty et al., 2021). Tumor cells can secrete

exosomes carrying PD-L1, inhibit the activation of CD8+T-cells

in tumor microenvironment or peripheral circulation, inhibit the

proliferation of CD4+T-cells, upregulate the immunosuppressive

function of Treg cells, downregulate the expression level of

NKG2D in NK cells to inhibit immune killing, and finally

promote immune evasion (Chen et al., 2018). Our results

revealed that resting CD4 memory T-cells, resting dendritic

cells and activated dendritic cells had higher levels in patients

with lower risk score, while the level of activated NK cells was

higher in high-risk group patients. In addition, risk score was

positively correlated with M0 macrophages, M1 macrophages and

naïve B cells, while had negative association with activated

dendritic cells, resting dendritic cells, active CD4 memory

T-cells, resting CD4 memory T-cells and memory B cells.

Moreover, there were certain correlations between 3 ERGs and

TIICs, including regulatory T cells (Tregs). These results revealed

that the exosome-related signature constructed by ERGs can

distinguish the different factors of tumor immune cells in COAD.

Compared with dendritic cells from healthy persons, the

antigen presentation capacity of dendritic cells in COAD patients

was impaired and the expression of costimulatory molecules was

reduced (Orsini et al., 2013). Up-regulation of HLA-B/C may be

beneficial to COAD patients (Michelakos et al., 2022), and this

risk model help distinguish the different expression level of HLA.

Furthermore, there were statistical differences between risk score

and TIICs as well as four immune subtypes, suggesting that

therapeutic potential of immunotherapy for COAD patients.

The presence of PD-L1 on the surface of tumor-derived

exosomes is critical to the low response to immune checkpoint

inhibitors (Poggio et al., 2019). In this study, we found that the

expression of immune checkpoints such as CTLA4, PD-L1, and

HAVCR2 was significantly positively correlated with risk score,

thus patients with higher risk score may benefit more from

immunotherapy. In addition to immunotherapy, the curative

effect of chemotherapeutic drugs including cyclopamine,

thapsigargin, dasatinib, nilotinib in different risk group was also

assessed. As shown in the above results, patients in high-risk group

were more sensitive to chemotherapeutic drugs. Therefore, this

signature was constructed based on ERGs, whichmay be helpful to

identify COAD patients with different risk score and provide

beneficial treatment strategies.

It must be admitted that this study is not without inevitable

limitations. First is the limited access to the public data set. Due

to limited volume of data, the clinicopathological parameters

analyzed in this study are not comprehensive, giving rise to errors

or deviations. Second, we did not consider the heterogeneity of

tumor microenvironment associated with exosomes. Finally, it is

generally believed that prediction data without systematic

validation lack the acceptability of clinical application.

Therefore, the development of clinical application analysis will

be the direction of our future work.
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Conclusion

In summary, we introduced a risk signature constructed by

3 ERGs for COAD patients and systematically evaluated its

prognostic significance, and its role in tumor

microenvironment and immune cell infiltration. What is

more, the relationship of risk score and immune checkpoint,

chemosensitivity was revealed, which may help to determine

individual treatment strategies and give insights into advancing

treatment methods.
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