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Automatic Detection and Quantification of
Tree-in-Bud (TIB) Opacities From CT Scans
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Omer Aras, and Daniel J. Mollura

Abstract—This study presents a novel computer-assisted detec-
tion (CAD) system for automatically detecting and precisely quan-
tifying abnormal nodular branching opacities in chest computed
tomography (CT), termed tree-in-bud (TIB) opacities by radiol-
ogy literature. The developed CAD system in this study is based
on 1) fast localization of candidate imaging patterns using local
scale information of the images, and 2) Möbius invariant feature
extraction method based on learned local shape and texture prop-
erties of TIB patterns. For fast localization of candidate imaging
patterns, we use ball-scale filtering and, based on the observa-
tion of the pattern of interest, a suitable scale selection is used
to retain only small size patterns. Once candidate abnormality
patterns are identified, we extract proposed shape features from
regions where at least one candidate pattern occupies. The com-
parative evaluation of the proposed method with commonly used
CAD methods is presented with a dataset of 60 chest CTs (labo-
ratory confirmed 39 viral bronchiolitis human parainfluenza CTs
and 21 normal chest CTs). The quantitative results are presented
as the area under the receiver operator characteristics curves and
a computer score (volume affected by TIB) provided as an output
of the CAD system. In addition, a visual grading scheme is ap-
plied to the patient data by three well-trained radiologists. Inter-
observer and observer–computer agreements are obtained by the
relevant statistical methods over different lung zones. Experimen-
tal results demonstrate that the proposed CAD system can achieve
high detection rates with an overall accuracy of 90.96%. Moreover,
correlations of observer–observer (R2 = 0.8848, p < 0.01) and
observer–CAD agreements (R2 = 0.824, p < 0.01) validate the
feasibility of the use of the proposed CAD system in detecting and
quantifying TIB patterns.
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I. INTRODUCTION

INFECTIOUS lung diseases, such as novel swine-origin
H1N1 influenza, tuberculosis (TB), etc., are among the lead-

ing causes of disability and death all over the world [1]–[3], [5].
Computed tomography (CT) examination of the lungs during
acute respiratory tract infections has become an important part
of patient care, both at diagnosis and monitoring progression
or response to therapy. Although CT examination serves as a
primary (imaging) diagnostic tool for assessing lung infections,
visual analysis of CT images is restricted by low specificity
for causal infectious organisms and a limited capacity to assess
severity and predict patient outcomes [2].

Common CT findings associated with respiratory tract infec-
tions include tree-in-bud (TIB) nodularity, ground-glass opac-
ities (GGO), random distribution of pulmonary nodules, linear
interstitial/bronchovascular thickening, and consolidations [6].
Although none of these visual patterns are specific for one
pathogen, the amount of lung volume exhibiting these features
could provide insights into the extent or severity of infection.
Among these patterns, TIB opacities, represented by thickened
bronchial structures surrounded locally by clusters of 2–3 mm
micronodules, are associated with inflammation of the small
airways (bronchioles), such as in viral or bacterial bronchiolitis,
and the increasing sizes of abnormal regions on CT can suggest
the progression of disease [6]. Often considered to have a limited
differential diagnosis-M TB infection, infection with nontuber-
culous mycobacteria, viral infection, cystic fibrosis, this pattern
is recognized as a CT appearance of many different entities.
Unlike the other imaging patterns such as GGO and consolida-
tions, it is an extremely challenging task to detect and quantify
the regions with TIB opacities due to interobserver variations
and inconsistent visual scoring methods [2]. Therefore, an accu-
rate method for detecting TIB is a critical in computer-assisted
detection (CAD) schemes from chest CT. Although the correct
diagnosis for TIB pattern is very important, it is also one of
the most difficult tasks for radiologists because the contrast of
lesions is often low and the disease patterns are very complex.
All these limitations suggest that CAD could make a valuable
contribution to the management of respiratory tract infections
by assisting in the early recognition of pulmonary parenchymal
lesions and providing quantitative measures of disease severity.
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Fig. 1. Single-axial CT slice with a significant amount of TIB patterns and an
example labeling process of TIB patterns (blue) on the right lung are shown.

A. Respiratory Tract Infections and TIB Patterns

Respiratory tract infections, caused by viruses, bacteria,
fungi, and parasites, are a major component of global infectious
disease mortality. TIB patterns, in particular, usually represent
the disease of the small airways such as infectious-inflammatory
bronchiolitis as well as bronchiolar luminal impaction with mu-
cus, pus, cells, or fluid causing normally invisible peripheral
airways to become visible on CT [7]. Fig. 1 shows typical TIB
patterns in a chest CT (Fig. 1 shows labeled TIB patterns with
blue). As its name implies, this pattern resembles a budding tree
in CT due to the branching opacities with adjacent centrilobu-
lar nodularity [2]. It is not specific for a single disease entity,
but suggests pathology in the peripheral airways, which can be
associated with air trapping or subsegmental consolidation in
the surrounding alveolar airspaces. Because any organism that
infects the small airways can cause a TIB pattern, pulmonary
infections are its most common cause.

TIB is difficult to be detected with conventional CAD sys-
tems due to high complexity of their irregular shapes, as well as
strong textural similarity of micronodules and thickened airways
to other normal and abnormal lung structures. Currently, no re-
ported CAD system is capable of automatically detecting a TIB
pattern, therefore, which warrants a need for the development
of such a system to improve the diagnostic decision process and
quantitative measurement of respiratory tract infections. In this
paper, we develop a new CAD system to evaluate respiratory
tract infections by automatically detecting and quantifying TIB
patterns on CT images.

B. Our Contributions

The main contributions of this study are twofold. 1) A can-
didate selection method that locates possible abnormal patterns
in the images. This process comes from a learning perspective
such that the size, shape, and textural characteristics of TIB
patterns are learned a priori. The candidate selection process
removes large homogeneous regions from consideration which
results in a rapid localization of candidate TIB patterns. The
local regions enclosing candidate TIB patterns are then used
to extract shape and texture features for automatic detection;

Fig. 2. Flowchart of the proposed CAD system for automatic TIB detection.

2) another novel aspect in this study is to extract Möbius invari-
ant local shape features (i.e., Willmore energy-based features).
Extracted local shape features are combined with statistical tex-
ture features to classify lung tissues. In addition, we also in-
vestigate the extraction and use of different local shape features
as compared to the proposed shape features to facilitate local
structure analysis. To the best of our knowledge, this is the first
study that uses automatic detection of TIB patterns for a CAD
system in infectious lung diseases. Since there is no published
work on automatic detection of TIB patterns in the literature,
we compare our proposed CAD system on the basis of different
feature sets previously shown to be successful in detecting lung
diseases in general. Early version of this study appeared in [3],
and can be accessed in [8].

This paper is organized as follows. Section II explains the
methods of the proposed CAD system. We discuss our proposed
and conventional feature extraction methods in Section III.
Next, we present the feasibility of the proposed CAD system
by evaluating the detection and quantification performances in
Section IV followed by a discussion and conclusion in Section V
and Section VI, respectively.

II. CAD METHODOLOGY

The proposed CAD methodology is illustrated in Fig. 2. First,
lungs are segmented from chest CTs. Second, we use locally
adaptive scale-based filtering method to detect candidate TIB
patterns. Third, segmented lung is divided into local patches in
which we extract Möbius invariant shape features and statisti-
cal texture features followed by support vector machine (SVM)
classification. We extract features from local patches of the seg-
mented lung only if there are candidate TIB patterns in the
patches. The details of the proposed methods are described in
the following.
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Fig. 3. (Left) Axial single chest CT and its (middle and right) FC delineation
correspondence are seen.

A. Lung Segmentation

Prior to detection, segmentation is often the first step in CAD
systems. In this study, fuzzy connectedness (FC) image segmen-
tation algorithm is used to achieve successful delineations [9].
In FC framework, as illustrated in Fig. 3, left and right lungs are
“recognized” by user-defined or automatically assigned seeds,
which initiate FC segmentation. In this study, one seed per lung
volume (i.e., left or right) is automatically set by only consid-
ering the locations of small intensity valued voxels inside the
body region (see [9] for a detailed description of the use of FC
in anatomy segmentation). Fig. 3 (middle and right) shows the
resulting segmentation of the chest CT given on the left. Al-
though we use FC algorithm to segment lung regions, there are
many well-established lung segmentation methods in the liter-
ature [9]–[11], [29], and [41] such that they could possibly be
used as well to accomplish the delineation step. In that sense, we
do not have any strict restriction on the choice of segmentation
algorithm prior to detection system as long as it successfully
segments the lung regions.

B. Learning Characteristics of TIB Patterns

The size/volume of a region occupied by a typical TIB pat-
tern does not usually exceed a few mm2/mm3 . Together with
the fact that TIB pattern has a complex shape with varying in-
tensities over discontinues branches (i.e., buds), TIB patterns
have intensity characteristics with high variation toward nearby
voxels (see Fig. 1). In other words, TIB patterns do not consti-
tute sufficiently large homogeneous regions. Thus, TIB patterns
are localized only in the vicinity of small homogeneous regions,
and their boundaries have high curvatures due to the nature of
its complex shape. In the next section, we use these two ob-
servations to extract novel characteristic features to detect TIB
patterns.

Our candidate selection method comes from a learning per-
spective such that we assign every internal voxel of the lung a
membership value reflecting the size (i.e., scale) of the homo-
geneous region that the voxel belongs to. To do this, we use a
locally adaptive scale-based filtering method called ball-scale
(or b-scale for short) [9], [16], [17]. The b-scale is the simplest
form of a locally adaptive scale where the scene is partitioned
into several scale levels. Every voxel in each scale is assigned
the size of the local structure it belongs. For instance, voxels
within the large homogeneous objects have highest scale values,
and the voxels nearby the boundary of objects have small-scale
values. Voxels on the boundary of objects have smallest scale
values. Because of these observations, we conclude that TIB

Fig. 4. (a) b-scale scene. (b) Thresholding via selecting small-scale values
only [i.e., a scale of 1 is selected as a threshold cutoff (red bar)]. (c) Thresholded
b-scale scene; local regions without any b-scale pattern and with b-scale patterns
are shown in red and blue, respectively.

patterns constitute only small b-scale values; thus, it is reason-
able to consider voxels with small b-scale values as candidate
TIB patterns. Similarly, it is practical to discard voxels with high
b-scale values from the candidate selection procedure. Figs. 2
(candidate selection) and 4(a) show selected b-scale regions as
candidate TIB patterns. Once b-scale image correspondence of
segmented chest CT is obtained as noted in Fig. 4(a), we only
select small b-scale values via thresholding the large b-scale val-
ues [see Fig. 4(b)]. Justification of this selection procedure bases
on the observations defined previously. Resultant candidate TIB
patterns are shown in Fig. 4(c). We describe the computation
of b-scale patterns and the details of the candidate selection
process in the next section.

C. Candidate Pattern Selection Through B-Scale Encoding

There are several advantages to the local scale-based ap-
proach. For instance, boundary- and region-based represen-
tations of objects are explicitly contained in the scale-based
methods. Based on continuity of homogeneous regions, geo-
metric properties of objects (i.e., size information) can be iden-
tified, and this new representation is called scale images, i.e.,
b-scale, tensor-scale (t-scale), generalized-scale (g-scale) im-
ages [16], [18], [19]. The b-scale model has been shown to be
extremely useful in object recognition [17], image segmenta-
tion [9], [41], filtering [16], inhomogeneity correction [20], and
image registration [20], [21]. In this study, on the other hand, we
show how to use b-scale encoding together with a proper scale
selection method for detecting candidate abnormality patterns.
The main idea in b-scale encoding is to determine the size of
local structures at every voxel as the radius of the largest ball
centered at the voxel within which intensities are homogeneous
under a prespecified region-homogeneity criterion.

Although the conventional b-scale encoding method is well
established for nD images (n ≥ 2), we use 2-D b-scale en-
coding method in this study because low-resolution CT data
do not allow continuous analysis of TIB patterns through low-
resolution imaging direction. In the 2-D digital space (Z2 , ν),
a scene C = (C, f) is represented by a pair where C is a rect-
angular array of voxels, ν = (ν1 , ν2) indicates the size of the
voxels, and f is a function that assigns to every voxel an image
intensity value. A ball Bk (c) of radius k ≥ 0 and with center at
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a voxel c ∈ C in C is defined by

Bk (c) =
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The fraction of object is denoted by FOk (c) and indicates the
fraction of the ball boundary occupied by a region which is
sufficiently homogeneous with c. FOk,ν (c) is defined as

FOk (c) =

∑
e∈Bk (c)−Bk −1 (c) Wψ (|f(c) − f(e)|)

|Bk (c) − Bk−1(c)|
(2)

where |Bk (c) − Bk−1(c)| is the number of voxels in Bk (c) −
Bk−1(c) and Wψ is a homogeneity function [9]. In all experi-
ments, we use a zero-mean unnormalized Gaussian function for
Wψ . The size of the local structure is estimated using appearance
information of the gray-level images, i.e., region-homogeneity
criterion; b-scale scenes contain rough geometric information.
A detailed description of Wψ and FOk,ν is presented in [9].

The b-scale algorithm works as follows: the ball radius k
is iteratively increased starting from one, and the algorithm
checks for FOk,ν (c), the fraction of the object containing c
that is contained in the ball. When this fraction falls below a
predefined threshold, it is considered that the ball contains an
object region different from that to which c belongs [16]. This
process is repeated for every voxel within the scene. Voxels
are assigned their b-scale values discreetly from 1 to rmax .1 In
principle, b-scale partitions the scene into several levels based
on the size of local structures from 1 to rmax . Computing b-scale
values for every voxel leads b-scale scenes as shown in Fig. 4(a).
Note also that locally adaptive scale in regions with fine details
or in the vicinity of boundaries is small, while it is large in the
interior of large homogeneous objects.

III. CAD FEATURE EXTRACTION

Developing a successful CAD system for infectious lung dis-
eases requires acquisition of representative features characteriz-
ing shape and texture of TIB patterns efficiently. Since TIB is a
complex shape pattern consisting of curvilinear structures with
nodular structures nearby, we propose to use local shape fea-
tures (derived from geometry of the local structures) combined
with gray-level statistics derived from a given local patch (i.e.,
local window with a predefined size).

The shape operator is the second-order invariant (or curva-
ture) which determines the original surface. Since it is usu-
ally more convenient to work with scalar quantities rather than
vectorial shape quantities, symmetric functions of local Hes-
sian matrices are usually used to extract geometric meaning
of the surface/shape of interest. Therefore, curvatures play an
important role in the representation and recognition of intrin-
sic shapes. However, similarity of curvature values may not
necessarily be equivalent to intrinsic shape similarities, which
causes a degradation in recognition and matching performance.

1We set rm ax = 20 in all cases due to the fact that size of the largest ball
for one particular voxel rarely exceeds 15 voxels in length; see [16] for further
details on the selection of maximum radius of the ball.

To overcome this difficulty, we propose to use Willmore en-
ergy functional [22] and several different affine invariant shape
features parametrically related to the Willmore energy func-
tional. While local shape features characterize the curvilinear
and small nodular structures (via Willmore energy), gray-level
features characterize background and foreground intensity vari-
ation with objects’ pose and size for a given local window.
Moreover, for comparison purpose, we use different feature sets
previously shown to be successful in detecting lung diseases in
general. Fig. 5 enlists all the features that we extracted for the
proposed CAD system and for the experimental comparison.
Details of extracted features are defined in the following.

A. Willmore Energy and Shape Features

The Willmore energy of surfaces plays an important role in
digital geometry, elastic membranes, and image processing [23].
It is closely related to Canham–Helfrich model [24], where a
surface energy is defined as

S =
∫

Σ
α + β(H)2 − γKdA. (3)

where α, β, and γ are some constants, H is the mean curvature
vector on Σ (area space), K is the Gaussian curvature on ∂Σ
(boundary space), and dA is the induced area metrics on Σ. This
model is curvature driven, invariant under the group of Möbius
transformations (in particular, under rigid motions and scaling
of the surface) and shown to be very useful in energy minimiza-
tion problems [25]. Invariance of the energy under rigid motions
leads to conservation of linear and angular momenta, and invari-
ance under scaling plays a role in setting the size of complex
parts of the intrinsic shapes (i.e., corners, wrinkles, folds, etc.).
In other words, the position, gray-level characteristics, size, and
orientation of the pattern of interest have minimal effect on the
extracted features as long as the suitable patch is reserved for the
analysis. In order to have simpler and more intuitive represen-
tation of the given model, we simply set α = 0 and β = γ = 1,
and the equation turns into Willmore energy functional

Sw =
∫

Σ
(H2 − K)dA =

∫

Σ
|H|2dA −

∫

∂Σ
|K|ds (4)

where ds is the length metric on ∂Σ. The resultant energy of a
surface can be regarded as a function H and K, and captures
the deviation of a surface from local sphericity [22] such that a
sphere has zero Willmore energy. Note also that the Willmore
energy is always nonnegative. Since a homogeneity region that
a typical TIB pattern appears is small in size, total curvature (or
energy) of that region is high and can be used as a discriminative
feature.

The main motivation in describing intrinsic shapes by Will-
more energy is due to its ability to encode surface (i.e., image
area in 2-D) with Möbius invariant features (translation, con-
trast, rotation, and inversion invariant). In addition to Willmore
energy features that we adapt from Canham–Helfrich surface
model, we have included seven different local shape features,
which are parametrically related to Willmore energy formula-
tion, into the proposed CAD system due to their some invari-
ant properties and discriminative powers. Assume κ1 and κ2
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Fig. 5. List of textural and shape features used to detect TIB patterns in the lungs.

indicate eigenvalues of the local Hessian matrix He for any
given local patch L , the following shape features are extracted:
1) shape index (SI), 2) Gaussian curvature, 3) mean curvature,
4) elongation, 5) distortion, 6) shear, 7) compactness.

1) SI: The SI is a statistical measurement and used to de-
fine intrinsic shape of the localized structure within the im-
age [26], [27]. SI values are encoded as a continuous range of
values between−1 and 1, with zero SI indicates saddle-like local
structures, +1 and −1 SI values indicate umbilical minima and
maxima (i.e., cap and cup, respectively), and midpoints of the
two half-intervals (+0.5 and −0.5) indicate concave and convex
parabolic or line-like structures (i.e., rut and ridge, respectively).
SI can simply be computed through principal curvatures (κ1 , κ2)
as follows:

SI =
2
π

arctan
(

κ1 + κ2

κ1 − κ2

)

∈ [−1, 1] (5)

where κ1 ≥ κ2 . As suggested in [26], we obtain principal cur-
vatures from the eigenvalues of the local Hessian matrix (He)
as

[
κ1
κ2

]

= eig (He) = eig
([

Lxx Lxy

Lyx Lyy

])

(6)

where Lxx, Lxy = Lyx, and Lyy are second-order derivatives
of local image patch L , and eig() denotes eigenvalue decom-
position. We choose to use SI because of its invariance property
with respect to rotation, absolute gray value, and translation.

2) Gaussian Curvature: Gaussian curvature (K) is an intrin-
sic measure and simply the product of the principal curvatures
as K = κ1κ2 for a given point on a surface, equivalent to the de-
terminant of local Hessian matrix He . Note that K is unchanged

even by bending the surface without stretching it, meaning that
the Gaussian curvature is independent of the choice of unit
normal and it gives three types of classified local shapes: ellip-
tic shape (K > 0), hyperbolic shape (K < 0), parabolic shape
(K = 0) with one of the κ is equal to zero, planar shape (K = 0)
with both κ are equal to zero. Gaussian curvature is translation
and rotation invariant, but not scale invariant.

3) Mean Curvature: Mean curvature (H) is an extrinsic
measure and it describes the curvature as H = (κ1 + κ2)/2.
Unlike K, H is defined in the distributional sense. Note that
mean curvature measure is the trace of local Hessian matrix
He . Mean curvature can be thought as a negative gradient (as
a Laplacian) of the area functional due to its nice variational
interpretation over the surface. This does not only give insights
into the size of the local shape but also into the total symmet-
rical deviation from the sphere. Mean curvature is translation
and rotation invariant, but not scale invariant.

4) Elongation: Shape elongation is one of the basic shape
descriptors and it indicates flatness measure of the local shape
[28]. In this paper, we used the ratio of principal curvatures to
measure elongation as κ2/κ1 with κ2 ≤ κ1 . Elongation mea-
sure is invariant with respect to a similarity transformation, and
therefore, it is a robust feature that helps to identify curvilinear
shapes. Elongation varies from −1 to +1, from hyperbolic to
elliptic points.

5) Distortion: Distortion is an algebraic quantity defined as
the difference of eigenvalues (i.e., |κ1 − κ2 |) of the local Hes-
sian matrix He . Distortion is a valuable image analysis property
revealed by magnitude difference of principal curvatures. Dis-
tortion measure captures the deviation of principal curvatures,
thus nonplanarity of a region. Together with Gaussian or mean
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Fig. 6. (a) Single-axial CT slice of the left lung. (b) Selected b-scale patterns.
(c) Mean Curvature map (H ). (d) Gaussian curvature (K ). (e) Willmore energy
map. (f) zoomed (e).

curvature, distortion measure brings further information into
encoding of local shape. Distortion measure is translation and
rotation invariant, but not scale invariant.

6) Shear: The shear is another algebraic distortion quan-
tity defined as proportional to the normalized distortion: (κ1 −
κ2)2/4. The physical information contained in the shear is basi-
cally the same as that of the distortion; it is related to distortion
with powers of the difference of principal curvatures. Differ-
ent than distortion, shear descriptor captures higher degree of
nonplanarity of a region due to having more robustness against
noise.

7) Compactness: Compactness feature measures the simi-
larity between shape of interest and a perfect ellipse, and is
defined as 1/(4π

√
κ1κ2). Note that this ratio is a dimensionless

ratio between the area of the shape (1 for a normalized shape)
and the area of the best ellipse fitting the shape. Note also that
the compactness measure is invariant to affine transformations
and parametrically related to Gaussian curvature.

Given a single-axial CT slice of left lung, Fig. 6(b) indicates
a thresholded (i.e., selected candidate patterns) b-scale scene
encoded from the corresponding gray-level CT slice shown in
Fig. 6(a). Furthermore, Fig. 6(c) and (d) shows mean and Gaus-
sian curvature maps from which all the other local shape features
are extracted, respectively. In addition, Fig. 6(e) and (f) shows
Willmore energy maps using both mean and Gaussian curvature
maps as formulated in (4) and shown in Fig. 6(c) and (d).

Based on the observation in training step where we analyzed
the appearance and shape of TIB patterns, TIB patterns most
likely occur in the regions inside the lung with high variability of
intensity values over a small number of voxels and with certain
size (i.e., a few millimeter in length). These observations (size
and high intensity variation) facilitate one practically useful fact

Fig. 7. Local gradient maxima above different thresholds are shown.

in the algorithm that, in the feature extraction process, we only
extract features if and only if at least “one” small b-scale pattern
exists in the local regions (i.e., blue local regions in Fig. 4).

B. Local Gradient Shape Statistics (LGS) and Conventional
Shape Features

We also explore the use of alternative local shape features
as a comparison to Willmore energy-based features. Based on
the observations of spatial properties of the selected candi-
date patterns, it becomes apparent that instead of using con-
ventional high-dimensional feature extraction methods such as
Gabor wavelets, steerable wavelets, etc., one may extract much
fewer and more reliable statistical features to discriminate the
pattern of interest. Motivated from the fact that TIB patterns
consist of numerous small (or micro-) nodules nearby the main
curvilinear structure and those small structures have varying
opacities, the location and distribution of those small structures
can be obtained by simple thresholding method which has been
popular in estimation for more than two decades [30]. How-
ever, since the opacities are varying through different nodular
structures, it is challenging to find an optimum threshold value.
Therefore, instead of using one single threshold level, we em-
pirically choose n = 10 different threshold levels (λj ) to obtain
local statistics of those structures in a hierarchical way, where
λj = 10j, 1 ≤ j ≤ 10 [31]. This process is named LGS be-
cause we extract different statistical measurements in gradient
of the images. Note also that we confine ourselves into the local
patches where at least one b-scale pattern occupies.

To obtain shape statistics over local patches, we use gradient
fields because boundary information can be used much more
effectively in that sense. Fig. 7 shows an example thresholding
process over a candidate TIB pattern centered at c (only for four
levels are shown for demonstration purpose). After different
threshold levels are applied over the local regions of b-scale
images, resultant thresholded local patches are used to extract
the following features: mean SI values of the local patch for
each thresholding level (one feature), and the number of b-
scale patterns left after thresholding process (one feature). Since
we use ten different thresholding levels, we extract 20 features
totally. Moreover, for a local region centered at a voxel c of a
candidate TIB pattern, we extract one global feature as an SI
value of the voxel c, three features as the maximum, minimum,
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TABLE I
ACCURACY (Az ) OF THE CAD SYSTEM WITH GIVEN FEATURE SETS

and mean SI values over the local region prior to thresholding.
Therefore, a total of 24 features (LGS+SI) are extracted from a
typical local patch to be used in CAD system [4]. Although n and
λj are chosen empirically based on the observations of shape and
textural characteristics of normal and TIB patterns during the
training step, one may propose to use cross validation, control
of the global and local false discovery rate, and uncertainty
principles to decide those parameters near-optimally [30].

C. Conventional Texture Features

Steerable Features: It has been well documented in the litera-
ture that decomposition of images by using basis functions local-
ized in spatial position, orientation, and scale (e.g., wavelets) are
extremely useful in object recognition and detection [32], [33].
Since steerable filters are rotation and translation invariant,
they accurately represent the underlying image structure [34].
In this study, we use steerable derivative of Gaussian filters
to decompose local regions around each candidate pattern into
several oriented basis. These basis are used as features in voxel-
wise classification for TIB identification. We extract steerable
features (i.e., directional derivatives) from one scale and six
different orientations.

Gray-Level Co-Occurrence Matrix (GLCM) Features: Spa-
tial statistics based on GLCM [35] are shown to be very useful in
discriminating and quantifying patterns pertaining to lung dis-
eases. As texture can give a lot of insights into the classification
and characterization problem of poorly defined lesions, regions,
and objects, we combine our proposed shape-based invariants
with Haralick’s popular GLCM-based features [35]. We extract
18 features from each local patch including autocorrelation,
contrast, entropy, variance, dissimilarity, homogeneity, cluster
shade, energy, maximum probability, sum of squares of variance,
sum of averages, sum of variance, sum of entropy, difference of
entropy, difference of variance, normalized inverse difference
moment, cluster prominence, and mutual information. Read-
ers are encouraged to refer to [35] for further details on these
well-established features in machine learning, and [12]–[15] for

particular CAD systems in identification of lung abnormalities
from CT scans in general.

IV. EXPERIMENTS AND RESULTS

A. Data

Laboratory confirmed (with pathology identification tests) 39
CTs of human parainfluenza (HPIV) infection and 21 normal
lung CTs were collected for the experiments. All patients were
imaged at our institution using a 64-detector row Philips Bril-
liance or a 320-detector row Toshiba Aquilion CT scanner. The
noncontrasted chest CT studies were performed at end inspi-
ration with 1.0 or 2.0 collimation obtained at 10- or 20-mm
intervals from the base of the neck to upper abdomen with a
tube voltage of 120 kV and a current of 200–320 mA depending
on the subject’s weight. Imaging data were constructed to 512
× 512 matrices with slice thickness of 5 mm. The in-plane res-
olution was affected by patients’ size and varied from 0.62 to
0.82 mm. All 60 CT scans (both HPIV and normal) were col-
lected from different subjects (no multiple scans from subjects).

B. Training Step

A well-trained radiologist [with more than nine years ex-
perience (DMJ)] carefully examined the complete scan (i.e.,
60 CTs) and labeled the lung regions as normal and abnormal
(with TIB patterns) (see Fig. 1). As many regions as possible
showing abnormal lung tissues from 39 HPIV patients were la-
beled (see Table I for details of the number of regions used in
the experiments). Those 39 patients do not include only TIB
opacities, but also GGO, nodules, consolidations, and linear
thickening such that only TIB regions are labeled in training
step. Note also that the control group consisting of 21 subjects
with no observed lung abnormalities was constructed and lung
tissues pertaining to this group were labeled carefully.

In the training step, we also explored how the number of
b-scale patterns change for normal and diseased subjects. Our
observations from detail analysis in candidate selection part
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Fig. 8. First row: lungs are divided into (left) three zones. Rough anatomical
locations separating zones are shown in (middle) coronal and (right) axial CT
slices, respectively. Second row: visual grading scheme.

showed that only 21–40% of the segmented lung volumes were
chosen as candidate TIB patterns. This interval was subject
to change based on the severity of the diseases. For patients
without having infections (i.e., control group), for instance, the
percentage of the candidate regions was smaller than the pa-
tients with infections; therefore, an increase in the amount of
small-sized b-scale patterns is observed. In any case, local scale
could be used as a quantitative measure validating the sensitiv-
ity and specificity of the classification rates as we describe it in
Section IV-E.

C. Visual Grading Scheme

Occurrences of TIB abnormality and normality of subjects
were noted for each CT scan. To analyze existence and severity
of abnormality as well as normality of subjects, a visual grading
system was adapted from studies examining CT findings in other
infections [36]–[38]. Each lung was divided into three zones (for
a bilateral total of six) as shown in Fig. 8. Zone 1 included the
apex to the carina. Zone 2 extended from the tracheal carina to
the left atrium’s junction with inferior pulmonary veins. Zone
3 included the remainder of the lungs below the level of the
inferior pulmonary veins atrial junction. A severity score (0 to 5
such that 0 indicates no abnormality) was assigned to each zone
based on the percentage of the zone occupied as listed in Fig. 8
(second row). A total score was also extracted by considering
all zones during visual grading. Consensus visual scores2 from
participating radiologists [one with more than nine years of ex-
perience (DMJ) and one with more than one year of experience
(AW)] on a scale of 0–5 over lungs were recorded and compared
with computer scores (of the proposed CAD system). Following
the same visual scoring scheme, another participating radiolo-
gist [with more than seven years of experience (OA)], who was
blinded to the consensus visual scores previously obtained, was
involved in the visual grading process to provide information
on interobserver variability.

2Consensus visual scores were obtained when AW and DJM scored the cases
by mutual agreement.

D. Quantitative Evaluations

To measure and evaluate the detection capabilities of a CAD
system quantitatively, the area under the receiver operator char-
acteristic (ROC) curves is often used [39]. After the pro-
posed CAD system was tested via twofold cross validations
with labeled dataset, we presented ROC curves of the system
performances.

Table I summarizes the performance of the proposed CAD
system as compared to other feature sets. The performances are
reported as the areas under the ROC curves (Az ). Note that pro-
posed shape features (i.e., Willmore energy and parametrically
related local shape features) alone are superior to other meth-
ods even though the dimension of the proposed shape feature
is only 8. The best performance is obtained when we combine
the proposed shape and GLCM features. This is to be expected
because spatial statistics are incorporated into the shape features
such that texture and shape features are often complementary to
each other. On the other hand, compared to the proposed shape
features, the LGS and SI features have lower detection rates be-
cause they are not affine (and Möbius) invariant and eventually
having difficulty in appreciating the large amount of details of
TIB patterns. Another reason is that there is no optimal choice
of thresholding process and this may yield less remarkable sta-
tistical measurements over local patches. However, the LGS and
SI features alone perform better than the high-dimensional con-
ventional features similar to the proposed shape features. This
result itself suggests the use of local shape features and their
adapted extensions in detection of TIB patterns.

In what follows, we selected the best window size for each
feature set and plotted their ROC curves all in Fig. 9. Supe-
riority of the proposed shape features is clear in all cases. To
have a valid comparison, we repeated candidate selection step
for all the methods because we observed that the CAD perfor-
mances of compared conventional feature sets had much lower
accuracies if the candidate selection part was not applied (i.e.,
proposed method’s accuracy was decreased to Az = 0.6803,
while the best result of all compared methods were decreased
to Az < 0.5281). To show whether the proposed method was
significantly different than the other methods, we compared the
performances through paired t-tests. p-values of the tests indi-
cate that none of the feature set are significantly correlated with
the proposed CAD features such that highest and smallest p-
values are reported as 0.0195 (p < 0.05) and 0.0053 (p < 0.01),
respectively.

E. Qualitative Evaluations

Visual scoring by radiologists still lies at the heart of diagnos-
tic decisions, and often used as a validation tool. In this section,
we explore the correlation between computer score (i.e., CAD
score) and visual scores by participating radiologists. Further-
more, we investigate the effectiveness of the proposed method’s
ability to roughly discriminate normal and diseased patients by
only considering the size of the structures pertaining to lung
anatomy.

Based on the visual grading scheme explained in
Section IV-C, we compared the consensus reading of two expert
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Fig. 9. Comparison of CAD performances via ROC curves of different feature sets.

Fig. 10. (a) Interobserver agreements given by Pearson product–moment correlation ratios. (b) Bland–Altman scatter plot is drawn for analysis of variability of
change of scores between observers.

observers (AW and DJM) to another expert observer (OA),
who was blinded to the consensus scores. We used Pearson
product–moment correlation coefficients to determine interob-
server agreement over each zone, left, right, and all lung vol-
umes. The reported correlation ratios are shown in Fig. 10(a).
Note that interobserver agreement correlation values for all TIB
measurements were high for all zones and the lung. The lowest
agreement seen on the zone 1 may be because subtle abnor-
malities in this zone may have been given greater visual assess-
ment variance among the observers. Nevertheless, an overall

correlation coefficient of R2 = 0.8848 (p < 0.01) indicates an
excellent agreement on the existence of TIB patterns.

We further analyzed the variability of change of scores of
expert radiologists for each subject. For this, we constructed
Bland–Altman plot [40] where the limits of observer agreements
were indicated by bias± 1.96 std (bias: average difference, std:
standard deviation). In Bland–Altman plot, the difference of the
performances was plotted against the average of the perfor-
mances as shown in Fig. 10(b). It was noted from this figure
that the largest disagreement of the scoring between observers
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Fig. 11. Visual grading versus computer evaluation. A Pearson product–
moment correlation of R2 = 0.824 is reported.

never exceeded 1.2 over six levels of scores, validating the
good agreement shown by Pearson product–moment correlation
coefficients.

To obtain an overall computer score from the proposed CAD
system, on the other hand, TIB regions detected by the CAD
system were first labeled automatically during the detection pro-
cess. Then, a computer score was calculated by averaging the
volume occupied by the labeled TIB regions over the whole lung
volume. Calculated computer score was then normalized to fit
the visual grading scheme explained in Section IV-C. Linear re-
gression model was fitted to all subjects’ scores both from com-
puter and the consensus scores of the participating radiologists
(DMJ and AW) and Pearson product–moment correlation coef-
ficient was computed for this model. A scatter plot of the linear
regression model and the computer–observer agreement corre-
lation is shown in Fig. 11. It is clear from this plot that visual and
quantitative assessments correlate well as indicated by the Pear-
son product–moment correlation of R2 = 0.824 (p < 0.01). Fi-
nally, we illustrate an example of TIB and non-TIB region clas-
sification by expert annotation and computer quantification by
our proposed method in Fig. 12(a) and (b), respectively.

Scale-based analysis: In addition to visual scoring scheme,
we also show the effectiveness of the proposed scale-based
method on quantification of the disease extent and identifica-
tion. Scale-based analysis of the regions occupied by TIB pat-
terns is illustrated in Fig. 13. A CT slice of a patient with HPIV
shows fewer large homogeneous regions (green) with respect
to a normal control. It also shows a greater number of small
homogeneous regions (yellow and red).

Fig. 14, on the other hand, shows deviations of the number
of scale patterns over normal and disease cases. For each scale

Fig. 12. Random slice from an example HPIV case for quantification is shown.
(a) Expert annotation of TIB (blue) and non-TIB (green) regions. (b) Computer
quantification of TIB (blue) and non-TIB (green) regions.

Fig. 13. First column: segmented lungs. Second column: patterns occupying
in small homogeneous regions. Third column: patterns occupying in large homo-
geneous regions. Note that patient with HPIV shows large number small-scale
patterns, and less number of large-scale patterns.

Fig. 14. Diseased with HPIV (in blue). Normal controls (in red). Curves
show mean and standard deviation values of number of patterns in scales 1 to
10. Patients with HPIV show more small-scale patterns and fewer number of
large-scale patterns.

(from 1 to 10), we recorded the average number of b-scale pat-
terns. As readily seen from both curves, the existence of TIB pat-
terns was indicated through the small number of highly homoge-
neous regions (i.e., small number of large b-scale patterns) and
large number of less homogeneous regions (i.e., large number
of small b-scale patterns). This figure validated the qualitative
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TABLE II
COMPUTATIONAL COST ANALYSIS OF THE METHODS

results shown in Fig. 13. The difference between two curves
was at statistically significant level (p < 0.01).

F. SVM Classification, Computational Cost, and Algorithm
Details

All programs used in this study were developed using gcc
4.5 (Copyrigth (C) 2010 Free Software Foundation) on a Linux
platform (Pardus), and all statistical computations were pro-
cessed in R (Version 2.12.2) and MATLAB (Copyright (C)
2010 Mathworks). All the programs were executed on an
Intel (R) Core(TM) i7 CPU 930 at 2.80 GHz with 12 GB RAM
workstation. While segmentation of lung regions from CT scans
takes only about 10 s, the b-scale encoding algorithm takes a
couple of minutes (average 2 min, at most 5 min). The time
required to compute b-scale scenes changes from patient to
patient due to different number of slices in CT scans. Details
of the computational cost analysis for segmentation of lungs,
and feature extractions for particular algorithms are enlisted in
Table II.

A further feature selection method such as a principal compo-
nent analysis might be used to reduce the dimension of steerable
features that we used only for comparison purposes. Note that
the proposed features are having a small number of dimension
per local patch; there is not necessarily an additional feature
selection method needed; hence, it is outside the scope of this
paper.

Briefly, the whole dataset was randomly divided into train-
ing and test sets of 30 CT scans (20 HPIV-10 Normal ver-
sus 19 HPIV-11 Normal). Parameters of the SVM classifier
were learned based on the CT scans pertaining to training set.
SVM regression was based on pixel-wise classification [42].
Followed by feature extraction step, the trained SVM classifier
was applied to the test set. Note also that we have used twofold
cross-validation technique for training and testing; therefore, we
changed the role of training and testing dataset in the second
fold. We also noticed that there was no significant changes in
training and test performances of SVM classifications if twofold
cross validation was changed into n-fold cross-validation sys-
tem with n > 2. In addition, we have used Efron’s bootstrap [43]
method (i.e., repeating the experiments 100 times based on the
actual data) to assess the variability of the estimated classifi-
cations derived from SVM regressions, and provide confidence
intervals for ROC curves.

We used radial basis functions as kernel of SVM, and set to
epsilon parameter of SVM as 0.1 [42]. Resulting SVM values of

pixels are ranging from 0 to 1. This value indicates the likelihood
of a local patch belonging to a certain class (TIB or non-TIB);
low ratings indicate a non-TIB region, and high ratings indicate
a TIB region. Soon after the SVM values were computed for
the entire lung, we changed the cutoff values of SVM (0.5 as
default) several times to obtain ROC curves.

V. DISCUSSION

In this paper, we studied a very particular, yet important, pat-
tern of lung abnormality observed in chest CTs. Our proposed
detection system is tuned to detect TIB regions from non-TIB
regions; therefore, a multiclass classifier (with specifically tuned
detection filters for each abnormality class) might be needed as
an extension of this study to detect as much abnormality as pos-
sible in a whole system. Although such a system will bring its
unique challenges into the CAD platform, it would be a valu-
able second opinion tool for radiologists. As a further step, we
are currently investigating combining different imaging patterns
pertaining to lung abnormalities as well as clinical laboratory
information into our CAD system.

One question arises as to the use of high-resolution CT
(HRCT) scans instead of conventional CT scans in detecting
TIB patterns, as well as the effect of using HRCT scans in this
process. Although HRCT scans appreciate detection of small
nodular patterns, they have more noise and lungs might not be
fully covered due to large gaps between slices (i.e., 10–30 mm).
Furthermore, at our institution and in many other institutions,
the protocol for acute pulmonary infection is 5 mm contigu-
ous slice images of the chest without IV contrast, for which we
adapted our CAD method. Nevertheless, the method we present
is not data dependent and can be used for HRCT scans as well.

Considering 2-D computation of b-scale scenes, one may
doubt if the algorithm can be extended into 3-D. Based on our
observations on appearance and location of TIB patterns over
the lung regions and experiences on feature extraction in 3-D,
as we stated previously, TIB patterns rarely extend in depth
direction for more than a few slices due to constraints of low-
resolution imaging direction. Therefore, there is no significant
classification rate changes in 3-D; however, there is an increase
in computational cost. Nevertheless, 3-D b-scale encoding and
feature extraction for a similar pattern detection problem or the
same problem with high-resolution images (with thinner slice
thickness compared to low-resolution CT images) can readily
be combined and used with similar accuracies reported in this
study.

Number of large and small b-scale patterns might perhaps
be used to identify other type of abnormality patterns such as
GGO and consolidations where we expect to have more large
b-scale patterns than small b-scale patterns. Therefore, as an
extension of this study, we will tune our proposed methodology
with different types of abnormalities to generalize the CAD
systems for infectious lung diseases in general.

Our proposed method is capable of detecting and quantifying
TIB patterns very accurately as validated by the statistical tests
compared to the expert annotations (i.e., ground truth). There-
fore, both in detection and quantification steps, the proposed
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CAD system will highly possibly be helpful for clinicians as a
second opinion tool in routine clinical examinations.

VI. CONCLUDING REMARKS

In this study, we have proposed b-scale-based binary classifi-
cation approach for automatic TIB pattern detection and quan-
tification from chest CTs. The proposed system integrates 1) fast
localization of candidate TIB patterns through b-scale filtering
and scale selection, and 2) combined shape and textural features
to identify TIB patterns. Note that texture-based recognition
methods offer a complementary view to shape-based methods;
therefore, the integration of spatial information and the pro-
posed shape features achieves high detection rates. Moreover,
our proposed local shape features illustrate the usefulness of the
invariant properties, Willmore energy in particular, to analyze
TIB patterns in chest CT. We have also compared computer
scoring of the proposed CAD system with subjective visual
grading. A high correlation between objective (CAD) and sub-
jective (visual grading) scores is obtained, which implies highly
satisfactory accuracy of the proposed CAD system.
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