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Abstract: Carotid atherosclerosis is a major cause for stroke, with significant associated disease
burden morbidity and mortality in Western societies. Diagnosis, grading and follow-up of carotid
atherosclerotic disease relies on imaging, specifically ultrasound (US) as the initial modality of choice.
Traditionally, the degree of carotid lumen stenosis was considered the sole risk factor to predict
brain ischemia. However, modern research has shown that a variety of other imaging biomarkers,
such as plaque echogenicity, surface morphology, intraplaque neovascularization and vasa vasorum
contribute to the risk for rupture of carotid atheromas with subsequent cerebrovascular events.
Furthermore, the majority of embolic strokes of undetermined origin are probably arteriogenic and are
associated with nonstenosing atheromas. Therefore, a state-of-the-art US scan of the carotid arteries
should take advantage of recent technical developments and should provide detailed information
about potential thrombogenic (/) and emboligenic arterial wall features. This manuscript reviews
recent advances in ultrasonographic assessment of vulnerable carotid atherosclerotic plaques and
highlights the fields of future development in multiparametric arterial wall imaging, in an attempt to
convey the most important take-home messages for clinicians performing carotid ultrasound.
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1. Introduction

Carotid atherosclerosis is an important cause of transient ischemic attack (TIA) and
stroke, which are associated with significant morbidity and mortality. Albeit advances
in cross-sectional imaging, ultrasound (US) remains at the forefront of screening, diagno-
sis, grading and follow-up of carotid atherosclerotic disease [1]. The technique’s value
not only relies on cost-effectiveness, widespread availability, excellent safety profile and
reproducibility but also on its evolving multiparametric nature. Multiparametric ultra-
sound combines anatomic information on B-mode and flow-visualization techniques with
physiologic information acquired by pulsed wave Doppler techniques. Contrast-enhanced
ultrasound (CEUS) and elastography represent recent advances adding to the spectrum of
diagnostic information related to carotid atherosclerosis.
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The term “vulnerable plaque” describes plaques associated with increased risk for
brain ischemia. A number of imaging and histological features have been closely associated
with increased stroke risk, dictating a paradigm shift from the traditional sole reliance on the
degree of lumen stenosis. Such features include lipid content or intra-plaque hemorrhage,
superficial ulcerations, fibrous cap thickness and intra-plaque neovascularization. Modern
noninvasive US with its multiparametric capabilities is well-suited to provide accurate
evaluation of the vulnerability of carotid plaques [1–3]. This comprehensive review presents
current advances on vulnerable carotid atheroma detection focusing on plaque echogenicity,
plaque surface morphology, CEUS and elastography; discusses the diagnostic value of
different ultrasonographic techniques and illustrates characteristic clinical cases.

2. Plaque Echogenicity

Ultrasound remains the most commonly used imaging modality for the assessment
of the extracranial carotid atherosclerotic disease, as it generates high-resolution images
of atherosclerotic plaques providing information about their contour, composition and
stenosis degree [4]. The percentage of luminal stenosis as a marker of carotid atherosclerotic
burden has been criticized because both studies and clinical observations have shown that
certain plaques producing milder degrees of stenosis may still lead to acute cerebral infarc-
tion [5]. Furthermore, the concept that embolic strokes of undetermined source (ESUS) are
primarily of cardiogenic origin potentially meriting anticoagulation has not been confirmed
by randomized clinical trials [6]. Conversely, nonstenosing thrombogenic atheromas may
be the underlying pathology in a significant proportion of the etiologically heterogeneous
ESUS population [7]. Large non-stenosing internal carotid artery plaques ipsilaterally to the
side of cerebral ischemia have been identified in 35% of ESUS patients using CT angiogra-
phy [8] and in 25% using color Doppler imaging [9]. Furthermore, intraplaque hemorrhage
was identified using MRI in ipsilateral carotid atheromas in one out of five patients with
ESUS [9]. Therefore, it is critical that besides luminal stenosis measurement, carotid plaque
characteristics such as echogenicity, intraplaque neovascularization, ulceration and surface
irregularity be evaluated and reported [5]. The association between imaging character-
istics of atherosclerotic mural lesions and stroke risk to guide optimal management and
prevention of associated brain ischemia is an evolving field of research [10]. The growth of
atheromas leading to luminal stenosis and impairment of blood flow with altered hemody-
namics is assessed by the well-established US velocity measurements [11]. Luminal stenosis
caused by such atheromatous deposits can, within certain limits, be compensated by carotid
wall remodeling processes including limited vessel wall expansion [11]. Nowadays, size of
the plaque is no longer considered the main criterion for evaluating carotid disease and
the risk for cerebrovascular ischemia [12]. A considerable percentage of stroke survivors
with symptomatic carotid plaques have <70% stenosis [13]. Hence, traditional parameters
used for the description of carotid atheromas (degree of stenosis, systolic peak velocity)
seem to be insufficient predictors of the risk of embolization [13]. Rupture of the plaque
can lead to thrombus formation, acute occlusion of the lumen (and/or) and ipsilateral
embolic events [14]. The early detection and management of atheromas that are prone to
rupture (“vulnerable”) may reduce the risk of future cerebrovascular events [14]. The main
vulnerability features of carotid plaques are summarized in Figure 1.

Plaque formation is the result of a chronic progressive inflammatory process leading to
deposits inside the sub-endothelial layer of the carotid wall consisting of lipids, connective
tissue extracellular matrix (collagen, proteoglycans and fibronectin elastic fibers) and cells
such as macrophages, T-lymphocytes and smooth muscle cells [15]. Plaque echogenicity is
the imaging visualization of this process. The use of carotid plaque hypo-echogenicity as
a risk stratification biomarker for predicting the annual risk for cerebrovascular ischemic
events (stroke, TIA, amaurosis fugax) is supported by histopathologic studies showing that
echolucent plaques mostly consist of lipid-rich necrotic cores (and/or) and intraplaque
hemorrhage [15]. A meta-analysis involving 7557 asymptomatic patients followed for more
than 3 years, demonstrated that plaques described as echolucent, showing intraplaque
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neovascularization and ulceration were associated with twice the risk of ischemic symptoms
compared to stable echogenic plaques [16].
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Figure 1. Schematic drawing showing the vulnerability features of carotid plaque: intraplaque
hemorrhage appears as a red area; lipid rich necrotic core appears as a yellow area; plaque surface
irregularity and ulceration appears as a line covering the plaque; intraplaque neovascularization
appears as thin red branching vessels inside the plaque. Calcification with acoustic shadowing is also
included but is a protective feature of carotid atherosclerosis.

In a historical throwback toward the end of the 1980s, Gray-Weale et al. studied the
importance of carotid plaque echogenicity showing a correlation between the preoperative
ultrasound atherosclerotic carotid plaque appearance and carotid endarterectomy specimen
histological characteristics [17]. They demonstrated that plaques of lower echogenicity
were associated with an increased frequency of hemorrhage and lipid burden [17]. Based
on B-Mode US, Gray-Weale and Nicolaides proposed a grading system based on echogenic-
ity, that classified atherosclerotic plaques in five types: type 1 is uniformly echolucent;
type 2 is predominantly echolucent with small areas of echogenicity; type 3 is predom-
inantly echogenic with small areas of echolucency; type 4 is uniformly echogenic and
type 5 consisted of plaques that could not be classified owing to heavy calcification and
acoustic shadows [17,18] (Figure 2). Hypoechoic plaques (type 1 and 2) are associated
with intraplaque hemorrhage and lipid accumulation, whereas hyperechoic homogeneous
plaques are predominantly fibrous or calcified in nature [19]. As a result, the first two
categories appear to be associated with a higher risk for surface disruption or rupture
and yield a subsequent significantly higher risk of ipsilateral stroke when compared with
non-echolucent plaques [17]. On the contrary, type 4 and 5 plaques are mainly encountered
in patients with asymptomatic carotid disease [19,20]. Calcifications have been found to
play an important role in plaque stabilization and lipid-rich plaques appear to be more
often actively inflamed than either calcified or collagen-rich plaques (hyperechoic). Thus,
heavily calcified carotid plaques could represent a chronic, less actively inflamed form of
atherosclerosis [21]. Nevertheless, calcified intraluminal plaques may occasionally cause
ischemia when the calcified material embolizes into the brain (Figure 3).

Echolucent unstable plaques with intraplaque hemorrhage and a lipid-rich necrotic
core may cause microembolic phenomena to the arterial bed of the brain [22]. Patients with
asymptomatic carotid plaques of low echogenicity have more frequently MRI (T2/FLAIR)
T2 hyperintensities in the periventricular and subcortical white matter, silent lacunar
lesions or cerebral microbleeds, conveying an increased risk of cognitive decline and
vascular dementia [23]. Moreover, echolucent plaques are associated with an increased
risk of stroke in patients undergoing carotid stenting and are associated with new cerebral
ischemic lesions following endarterectomy [24]. A study performed on 1061 patients
undergoing carotid endarterectomy associated plaque hypoechogenicity and ulcerations
with the occurrence of new ischemic lesions on diffusion-weighted imaging 30 days post-
surgery [25].
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Figure 2. Subjective and objective assessment of carotid plaque echogenicity. Type 1 (A) refers
to a uniformly echolucent plaque. Type 2 (B) is a plaque mainly echolucent with small areas of
echogenicity. Type 3 (C) is predominantly echogenic with small areas of echolucency. Type 4 (D) is a
uniformly echogenic plaque. Type 5 (E) is a plaque that cannot be otherwise classified owing to heavy
calcification and acoustic shadow. Images presented are B-mode scans. In A and B colour Doppler
was also used to delineate the plaques. Embedded panels at the right down corner represent Gray
Scale Median (GSM) histograms. Notice that in type 1 and 2 plaques the histogram is heavily skewed
to the left (lower GSM values, closer to total black) whereas in type 3 and 4 plaques GSM values are
more evenly distributed or even skewed to the right (higher GSM values, closer to total white).

J. Clin. Med. 2022, 11, x FOR PEER REVIEW 4 of 23 
 

 

  
(A) (B) (C) 

 

 

(D) (E)  

Figure 2. Subjective and objective assessment of carotid plaque echogenicity. Type 1 (A) refers to a 
uniformly echolucent plaque. Type 2 (B) is a plaque mainly echolucent with small areas of echo-
genicity. Type 3 (C) is predominantly echogenic with small areas of echolucency. Type 4 (D) is a 
uniformly echogenic plaque. Type 5 (E) is a plaque that cannot be otherwise classified owing to 
heavy calcification and acoustic shadow. Images presented are B-mode scans. In A and B colour 
Doppler was also used to delineate the plaques. Embedded panels at the right down corner repre-
sent Gray Scale Median (GSM) histograms. Notice that in type 1 and 2 plaques the histogram is 
heavily skewed to the left (lower GSM values, closer to total black) whereas in type 3 and 4 plaques 
GSM values are more evenly distributed or even skewed to the right (higher GSM values, closer to 
total white). 

 
(A) (B) 

 
(C) (D) 

Figure 3. A free-floating calcified plaque causing embolic stroke. B-mode image (A) showing a
free-floating intraluminal calcified plaque in the origin of the internal carotid plaque (arrowheads).
Power Doppler technique (B) showing the moderate stenosis caused. Brain Computed Tomography
(C) performed in the setting of multiple acute left-sided strokes showing multiple calcific emboli
(arrowheads) not seen in previous scans. Computed Tomographic Angiography (D) confirming the
intraluminally projecting calcified plaque (arrowhead) at the origin of the internal carotid artery.
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Another parameter widely used to assess carotid atheromas on B-mode ultrasound
is the Gray Scale Median (GSM). It has been introduced to quantify plaque echogenicity
in a more objective and reproducible manner. Quantitative assessment of the plaque is
performed by a computer system assigning certain grayscale values to blood and adven-
titia [26]. GSM values from known tissue components are used and the measurement of
the region of interest is expressed in a 256 gray-tone range where 0 is black and 255 is
white. The GSM value of an entire plaque is obtained from a histogram calculated by
software analysis. Plaques containing more calcium and fibrous tissue have higher GSM
values, whereas plaques with richer lipid core and hemorrhagic components have lower
GSM [26] (Figure 2). Atherosclerotic lesions with lower GSM are more prone to rupture and
a lower GSM value may be considered an independent risk factor for stroke [27]. Carotid
bifurcation plaques in patients with silent non-lacunar infarcts are usually hypoechoic (/)
and of low GSM even in the absence of critical luminal stenosis [28].

During the last decade the term of juxtaluminal black area (JBA) has been introduced
in the study of plaque echogenicity. It is defined as an area with a GSM value <25 adjacent
to the lumen without a visible fibrous cap and has been linked linearly to elevated stroke
risk [29]. Histologic studies performed on endarterectomy specimens have shown that JBA
in ultrasound images is associated with lipid core proximity to the vascular lumen. The lipid
rich necrotic core is closer to the lumen in symptomatic plaques causing thromboembolic
phenomena in comparison to more stable asymptomatic plaques [30]. A study showed
that the size of the JBA in asymptomatic carotid atheromas is linked to the possibility of a
future ischemic event and can be used in stroke risk stratification models. A JBA > 4 mm is
a considerable carotid disease indicator: the annual risk is 1.4% for patients with JBA of
4–8 mm, 3.2% for patients with JBA of 8–10 mm and 5% for patients with JBA > 10 mm [31].

The fibrous cap is a layer of fibrous connective tissue containing macrophages and
smooth-muscle cells within a collagen-proteoglycan matrix associated with T-lymphocytes [30].
It covers the necrotic lipid core and constitutes a barrier separating the vascular lumen from
the thrombogenic atheromatous contents of the plaque. Different caps vary in thickness,
composition, and collagen content and thus in stability [30]. The rupture usually occurs
in areas where the cap is the thinnest and often most heavily infiltrated by macrophage
foam cells [31]. Fibrous cap thickness measurement of carotid atheromas with ultrasound
is feasible, albeit technically demanding. Furthermore, discrimination of symptomatic from
asymptomatic plaques based on ultrasound-measured mean cap thickness values is good
and merits further development [32]. However, it must be noted that some fibrous caps
may be so thin that they are usually not visible on classical ultrasound, while in heavily
calcified plaques cap visualization may be impossible [33]. Newer high-resolution US
devices with shear-wave elastography are able to visualize thick fibrous caps, especially in
hypoechoic plaques (Figure 4).

A recently introduced imaging technology, MicroPure™ (Toshiba Medical Systems
Corp., Tokyo, Japan) may improve visualization of microcalcifications on US [34]. This
imaging technology allows the identification of the “Firefly sign”: microcalcifications are
displayed as white dots in a blue background, similar to fireflies flickering in the dark.
These signs are located in the fibrous caps of carotid atheromas and may be associated with
plaque vulnerability. A 4-point Firefly score system has been developed and recent studies
indicate that Firefly-positive atherosclerotic lesions are at an increased risk for rupture and
embolic cerebral infracts [35].

Evaluating atherosclerotic carotid lesion echogenicity is not only useful as an indicator
for its vulnerability and its association with ischemic events. A plaque that appears to
become progressively more echogenic is possibly an indicator that its histological compo-
sition is changing and its stability is increasing [36]. Early and aggressive treatment with
statins at high doses seems to increase the echogenicity of carotid plaques, making them
less prone to rupture [36].



J. Clin. Med. 2022, 11, 6196 6 of 21

J. Clin. Med. 2022, 11, x FOR PEER REVIEW 6 of 23 
 

 

while in heavily calcified plaques cap visualization may be impossible [33]. Newer high-
resolution US devices with shear-wave elastography are able to visualize thick fibrous 
caps, especially in hypoechoic plaques (Figure 4). 

  
(A) (B) 

(C) (D) 

Figure 4. Ultrasonographic assessment of plaque stiffness. B-mode axial image (A) showing a hy-
poechoic plaque causing positive remodeling. Note a thin echogenic layer representing the plaque’s 
fibrous cap (arrowheads). Shear-wave elastography (B) showing low shear-wave velocity values 
and thus lower stiffness in the plaque’s core (dark blue colour, asterisks) but a slightly higher value 
and stiffness for the fibrous cap (slightly brighter blue layer covering the core on the luminal aspect 
of the plaque). The Power Doppler vocal fremitus artifact could be appreciated with the soft plaque 
covered by signals when the patient spoke (C, asterisks). A smooth surface of the plaque (asterisks) 
was appreciated when the patient was still (D). 

A recently introduced imaging technology, MicroPure™ (Toshiba Medical Systems 
Corp., Tokyo, Japan) may improve visualization of microcalcifications on US [34]. This 
imaging technology allows the identification of the “Firefly sign”: microcalcifications are 
displayed as white dots in a blue background, similar to fireflies flickering in the dark. 
These signs are located in the fibrous caps of carotid atheromas and may be associated 
with plaque vulnerability. A 4-point Firefly score system has been developed and recent 
studies indicate that Firefly-positive atherosclerotic lesions are at an increased risk for 
rupture and embolic cerebral infracts [35].  

Evaluating atherosclerotic carotid lesion echogenicity is not only useful as an indica-
tor for its vulnerability and its association with ischemic events. A plaque that appears to 
become progressively more echogenic is possibly an indicator that its histological compo-
sition is changing and its stability is increasing [36]. Early and aggressive treatment with 
statins at high doses seems to increase the echogenicity of carotid plaques, making them 
less prone to rupture [36]. 

There has been a lot of research during the last years towards the use of radiomics 
and machine learning [37]. Carotid US being operator-dependent is expected to benefit 
from the use of artificial intelligence [38]. US-based radiomics models can be constructed 
by extracting features from grayscale images and may identify and quantify target fea-

Figure 4. Ultrasonographic assessment of plaque stiffness. B-mode axial image (A) showing a
hypoechoic plaque causing positive remodeling. Note a thin echogenic layer representing the
plaque’s fibrous cap (arrowheads). Shear-wave elastography (B) showing low shear-wave velocity
values and thus lower stiffness in the plaque’s core (dark blue colour, asterisks) but a slightly higher
value and stiffness for the fibrous cap (slightly brighter blue layer covering the core on the luminal
aspect of the plaque). The Power Doppler vocal fremitus artifact could be appreciated with the soft
plaque covered by signals when the patient spoke (C, asterisks). A smooth surface of the plaque
(asterisks) was appreciated when the patient was still (D).

There has been a lot of research during the last years towards the use of radiomics and
machine learning [37]. Carotid US being operator-dependent is expected to benefit from
the use of artificial intelligence [38]. US-based radiomics models can be constructed by
extracting features from grayscale images and may identify and quantify target features as
the total plaque volume and composition (calcium, intraplaque hemorrhage, lipids) thereby
predicting cerebrovascular ischemia risk [38]. Latest studies show that radiomics can reveal
information invisible on advanced ultrasound imaging [37,38].

3. Surface Morphology

The histological definition of carotid plaque ulceration refers to the exposure of a
plaque’s necrotic core to the circulation due to an endothelial defect of at least 1000µm
in width [39,40]. This histologic entity is variably translated into various imaging criteria
depending on the modality applied or the investigated study group [41,42]. In general,
carotid plaques are characterized based on their surface morphology as smooth, irregular
or ulcerated [43]. A smooth plaque exhibits a regularly outlined surface, whereas an
irregular’s plaque outline fluctuates from 0.3 mm to 0.9 mm. An ulcerated plaque is one
carrying a cavity measuring at least 1 or 2 mm, depending on the criteria followed [39].
The ulcer’s neck and base significantly vary in terms of shape and size, justifying the
classification of ulcerations into distinct types [44] (Figure 5). Previously unclassified
ulcerations such as “handle-shaped” can be occasionally seen, especially with the use of
non-Doppler sensitive flow visualization techniques (Figure 6).
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Figure 5. Schematic diagram showing the five morphologic types of carotid plaque ulcerations. Ulcer
perpendicular to lumen with parallel (type Ia) or converging (type Ib) sides. Type 2: ulcer with
narrow neck (“mushroom shaped”). Ulcer oriented parallelly (type III) or antiparallelly (type IV) to
blood flow direction. Familiarity with these types will help identification of ulcerations.
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(E) as an area of enhancement (arrowhead) inside the plaque. Note the blurred appearance of ulcer-
ation on CTA due to the lower spatial resolution of the technique as compared with ultrasound, 
which offers excellent spatial resolution in the field-of-view, particular in the near field. 
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improved image quality, owing to the wide use of higher-frequency transducers and ad-
vanced visualization technologies [21,39,57]. Initial publications showed that US is more 
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Figure 6. “Handle-shaped” ulceration visualization on Doppler and non-Doppler techniques. Colour
Doppler image (A) showing a moderately stenotic internal carotid artery plaque with irregular surface
(asterisk). Power Doppler technique (B) confirming the findings but visualizing more pronounced
irregularity (asterisk). B-Flow technique with (C) and without static tissue suppression (D) show
that there is actually a tunnel-like ulceration (arrowheads), also partially identified on CTA (E) as an
area of enhancement (arrowhead) inside the plaque. Note the blurred appearance of ulceration on
CTA due to the lower spatial resolution of the technique as compared with ultrasound, which offers
excellent spatial resolution in the field-of-view, particular in the near field.
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Carotid plaque ulceration has been long considered a major risk factor for stroke [45,46].
Carotid plaques with different ulcer depths have been correlated with embolic signals on
transcranial Doppler US regardless of the degree of stenosis [47,48]. In a study where
patients with symptomatic low-grade (<50%) carotid stenosis underwent endarterectomy,
all plaques showed histological ulceration or rupture [49]. Of utmost importance is the
(NASCET) The North American Symptomatic Carotid Endarterectomy Trial (NASCET)
study, which established the higher risk for cerebrovascular events in patients with ulcer-
ated plaques compared to those without ulceration, the risk further increasing in higher
levels of stenosis [45,50]. A prospective multivariate analysis of patients with asymptomatic
carotid stenosis significantly correlated ulceration with the onset of new neurologic symp-
toms [51]. Studies comparing symptomatic and asymptomatic carotid stenosis groups
of patients showed higher frequency of ulcerated plaques in the former group, while
ulcerations correlated with the occurrence of new events in the latter group [52,53]. Ul-
cerated plaques may actually increase the ipsilateral stroke risk up to seven times [54].
The combination of a hypoechoic plaque with an ulcerated surface on US appears to have
a causative association with thromboembolic events, yielding a significant odds ratio of
9.34 [55]. In light of these results, carotid plaque ulceration should be sought with every
available imaging modality, including US [1].

The role of mere irregularities without frank ulceration is controversial. Although
initial studies proposed a degree of correlation with acute ischemic stroke, a later systemic
meta-analysis defining the risk for stroke based on ultrasound characteristics of carotid
atheromas concluded that only plaques with echolucency, intraplaque neovascularization,
ulceration and intraplaque motion were associated with stroke [5]. One of the important
studies to report that plaque irregularity on digital substraction angiography was associated
with stroke was the ECST study [56].

US diagnostic accuracy for detecting carotid plaque ulceration is controversial, possi-
bly due to the variety of techniques and diagnostic criteria used. It is undoubted though
that the increased spatial and temporal resolution of modern ultrasound machines has im-
proved image quality, owing to the wide use of higher-frequency transducers and advanced
visualization technologies [21,39,57]. Initial publications showed that US is more accurate
in diagnosing ulcers in plaques with <50% stenosis, though with poor correlation with
histology, partially due to low intraobserver agreement for ulceration [58–60]. According
to the criteria by De Bray et al. [42], an ulcer is a cavity > 2 mm in length and depth, with a
well-defined back wall at its base on B-mode and flow reversal on Color Doppler technique.
Although these criteria were widely adopted and used in the literature, they are associ-
ated with 35% sensitivity and 75% specificity [41,42]. Carotid atheroma ulceration criteria
were renewed in 2012, achieving a sensitivity of 85% and specificity of 81%, despite the
diagnostic limitation of acoustic shadowing caused by calcifications. The so-called Muraki
criteria suggest that an ulcer is a cavity on plaque surface, regardless of its size, and that
echogenicity at the cavity base should be less than that of the adjacent intima-blood border.
The latter is characterized by higher acoustic impedance than that of ulcer basal thrombus
or soft tissue. When the echogenicity criterion is not fulfilled there is the pitfall of char-
acterizing as an ulcer what could be a mere atheroma indentation or two juxtapositioned
but distinct lesions with normal endothelium between them (tandem plaques) [41]. As a
consequence, an ulcer should only be diagnosed if it lies within the limits of a plaque and
does not reach the level of intima-media interface and when it does form a cavity with sharp
margins with or without overhanging edges. The term “yin-yang” sign is found in the
literature describing this blood-flow reversal inside ulcerations, which can be demonstrated
on most available flow visualization ultrasonographic techniques [2]. Another modern
application of conventional US is the B-flow technique which demonstrates more accuracy
in depicting plaque cavities owing to its improved flow sensitivity and both spatial and
temporal resolution. More precisely, it depicts a swirling pattern of blood flow within the
ulcer, in accordance with experimental and colour Doppler observations [61,62] (Figure 7).
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Figure 7. A 57-year-old man undergoing pre-operative carotid ultrasound. B-mode image (A) show-
ing a severely stenotic internal carotid artery plaque with a large ulceration cavity (asterisk). Colour-
Doppler technique images showing the classic ulceration signs of blood flow reversal (B) (arrow-
head) and “yin-yang” sign (C) (arrowhead). Pulsed wave Doppler technique (D) showing the “to-
and-fro” flow pattern. B-Flow technique (E) accurately visualizing full extent of the ulceration (ar-
rowhead) and stenotic lumen (arrow), without overwriting, aliasing or Doppler-Dependence arti-
fact. The need for echocontrast agent (microbubbles) is obviated. CTA image (F) confirming the 
findings and closely correlating with US. 

Quantification analyses attempted to correlate atheroma surface morphology with 
symptomatology to improve inter-observer agreement. Tegos et al. used the approach of 
‘bending energy’, which failed to achieve significant correlation with symptoms [63]. Con-
versely, Kanber et al. proposed the surface irregularity index (SII), a quantitative index 

Figure 7. A 57-year-old man undergoing pre-operative carotid ultrasound. B-mode image
(A) showing a severely stenotic internal carotid artery plaque with a large ulceration cavity (as-
terisk). Colour-Doppler technique images showing the classic ulceration signs of blood flow reversal
(B) (arrowhead) and “yin-yang” sign (C) (arrowhead). Pulsed wave Doppler technique (D) showing
the “to-and-fro” flow pattern. B-Flow technique (E) accurately visualizing full extent of the ulceration
(arrowhead) and stenotic lumen (arrow), without overwriting, aliasing or Doppler-Dependence
artifact. The need for echocontrast agent (microbubbles) is obviated. CTA image (F) confirming the
findings and closely correlating with US.

Quantification analyses attempted to correlate atheroma surface morphology with
symptomatology to improve inter-observer agreement. Tegos et al. used the approach
of ‘bending energy’, which failed to achieve significant correlation with symptoms [63].
Conversely, Kanber et al. proposed the surface irregularity index (SII), a quantitative index
taking into account the angular deviation of the plaque surface from a straight line, divided
by the plaque’s surface length. SII provided an improved diagnostic accuracy for the
detection of ipsilateral hemispheric cerebrovascular symptoms when combined with the
degree of stenosis. Importantly, SII values were higher in symptomatic plaques but did not
show association with the degree of stenosis, representing an independent risk factor [64].
Accordingly, SII was higher in symptomatic atheromas using both color Doppler and CEUS
technique, whereas the subjective classification into smooth-irregular-ulcerated did not
correlate with stroke occurrence [65]. Combining more than one indices into one composite
index of “vulnerability” seems promising. Kanber et al. combined SII, degree of stenosis
and GSM into a single index, which outperformed the degree of lumen stenosis alone for
the detection of symptomatic plaques [66]. The same results were reproduced by a second
study using both conventional color Doppler technique and CEUS. The latter achieved a
slightly higher area under the curve, suggesting additional clinically significant information
in the visualization of carotid plaque surface irregularities using CEUS compared with
conventional techniques [67].

Last but not least, three-dimensional (3D) US is another promising modality in detect-
ing ulcerated carotid plaques. 3D US is a new technique that multiplies the information
taken from conventional 2D scanning. As a result, studies found that it reliably charac-
terized plaque surface and defined ulceration in asymptomatic patients, offering slightly
superior inter-observer reproducibility [68]. The addition of ulcer detection with 3D US
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appeared to increase the rate of patients with asymptomatic carotid stenosis who would
benefit from interventional treatment [69].

4. Contrast-Enhanced Ultrasound (CEUS)

Intraplaque neovascularization and inflammation are the two important factors in
plaque vulnerability. In comparison to normal vasa vasorum, aberrant micro-vessels are
prone to hemorrhage, leading to increased risk of plaque rupture [70]. Inflammation
can increase fibrous cap erosion and activate the platelet thrombogenic cascade, both
important events in the pathogenesis of plaque rupture and thrombosis [71]. Detection
and quantification of intraplaque neovascularization by CEUS may identify vulnerable
atheromas. CEUS findings may correlate with pathology, intraplaque inflammation, and
past cardiovascular or cerebrovascular events. Ongoing research focuses on the predictive
value of CEUS concerning cardiovascular or cerebrovascular events.

4.1. CEUS and Histopathology
4.1.1. Intraplaque Neovascularization

A recent meta-analysis has shown that the diagnostic odds ratio between intraplaque
neovascularization and CEUS enhancement was 20.11 (95% confidence interval: 4.81–84.03) [72].
Further, studies have demonstrated direct correlation between the degree of CEUS in-
traplaque enhancement and the degree of histological intraplaque neovascularization,
using semi-quantitative or quantitative measures. Semi-quantitative measurement typi-
cally utilizes visual grading of intraplaque enhancement. Shah et al. suggested a 4-tiered
visual grading scale, with grade zero defined as no intraplaque enhancement, grade one
defined as limited enhancement, grade two defined as moderate enhancement, and grade
three defined as pulsating arterial enhancement [73]. The authors found a direct correlation
between the degree of CEUS enhancement and histological micro-vessel density, measured
by CD34 staining. Accordingly, another study found correlation between CEUS visual
enhancement grading and histological micro-vessel density [74].

Quantitative measurement of CEUS enhancement is typically performed using spe-
cialized software, and varies widely. In one study, patient-specific parameters such as
mean plaque filling, mean plaque intensity, and calcification percentage, were derived from
time-intensity curves within intraplaque regions of interest. [75]. Another study found a
strong correlation between quantitative CEUS enhancement and the degree of micro-vessel
density, measured by CD34 staining, in consecutive patients undergoing evaluation for
carotid endarterectomy [76,77].

4.1.2. Intraplaque Inflammation

Carotid plaque inflammation documented by PET imaging is associated with increased
risk of recurrent stroke at five years [78]. The association between CEUS enhancement and
intraplaque inflammation is less clear. Using CD68 (a marker for the presence of intraplaque
macrophage) as a surrogate for inflammation, a study found no correlation between CD68
and both semi-quantitative and quantitative CEUS intraplaque enhancement [74]. Similarly,
Demeure et al. did not find correlation between CD68 staining intensity and qualitative
CEUS intraplaque enhancement; however, they showed a direct correlation between CEUS
intraplaque enhancement and histologic micro-vessel density [79]. Conversely, a study
using the ratio of CEUS enhancement area to plaque area showed correlation between
intraplaque enhancement and CD68 staining intensity [76]. Similarly, another study found
correlation between late-phase CEUS intraplaque enhancement and markers of inflamma-
tion (CD68 and CD31 immuno-reactivity) [80]. In the future, targeted plasma proteomics in
conjunction with ultrasound techniques may predict the development of carotid athero-
matosis [81].



J. Clin. Med. 2022, 11, 6196 11 of 21

4.1.3. Vulnerable Plaques

Instead of comparing CEUS intraplaque enhancement to markers of plaque vulnerabil-
ity (neovascularization and inflammation), some studies examined directly the relationship
between CEUS and histologically vulnerable plaque composition. However, the defini-
tion of histological vulnerability varied among studies and may have contributed to the
heterogeneity in outcomes. A study defined vulnerability as a combination of large lipid
core, increased inflammatory cell presence, and a lack of smooth muscle cells [82] whereas
other studies used the American Heart Association (AHA) classification of atherosclerotic
plaque [83,84].

Dynamic qualitative CEUS assessment had a sensitivity of 94.7%, a specificity of
76.9%, and an accuracy of 87.5% in diagnosing asymptomatic, histologically vulnerable
plaques. Of note, on quantitative analysis, no significance was observed between histo-
logically stable and unstable plaques [82]. In contrast, another study showed that CEUS
intraplaque enhancement was associated with histological vessel density in AHA grade V
(non-vulnerable) but not in AHA grade VI (vulnerable) plaques [85]. D’Oria et al. studied
consecutive asymptomatic carotid stenosis patients who underwent carotid endarterectomy.
Qualitative CEUS intraplaque enhancement was compared to histological analysis (AHA
classification of atherosclerotic plaques). The authors showed that vulnerable plaques
(AHA grade VI) were associated with increased micro-vessel density compared with those
with non-vulnerable plaques (AHA grade IV and V) (p = 0.004). Nevertheless, there was
no significant difference in CEUS enhancement between patients with vulnerable and
non-vulnerable plaques [84].

4.1.4. Plaque Ulceration

Many recent studies have investigated the role of CEUS in detecting carotid plaque
ulceration and simple surface irregularities [86] (Figure 8). Hamada et al. compared his-
tological results to US and CEUS, confirming CEUS superiority and calculating optimal
cut-off values of a cavity’s orifice (1.4 mm), depth (1.3 mm) and width (1.88 mm). If one
of these cut-off values is exceeded, the sensitivity of CEUS for diagnosis of fibrous cap
disruption is 91% [87]. Other studies used multi-detector CT angiography (MDCTA) as
the reference method and confirmed that CEUS improved diagnostic accuracy for the
diagnosis of plaque ulceration [2,88,89]. The widely accepted definition for ulceration
using CEUS is the projection of microbubbles columns within the plaque measuring at
least 1 × 1 mm. [29,31] CEUS can also depict a swirling pattern of microbubbles in 18%
of ulcer-associated cavities, indicative of the underlying mechanism of arterio-arterial
embolization [90,91]. The sensitivity of CEUS for ulcer detection was 88% in a symptomatic
patient population compared to 29% for color Doppler [88], and 94.1% in a mixed symp-
tomatic and asymptomatic patient population compared to 41% for color Doppler [91].
CEUS offers excellent spatial and temporal resolution, achieving nearly real-time imaging,
within the focused field-of-view containing a carotid plaque. A recent study showed that
the direction of microbubble flow is important and is associated with the likelihood for
plaque rupture and with vulnerability features on histology. Microbubbles flowing from
the lumen toward the center of the plaque are associated with fibrous cap rupture with
a sensitivity of 87.5% and a specificity of 92.6%. The “inside-out” microbubble direction
pattern is an independent risk factor for plaque rupture, yielding an OR of 8.5 [92]. Modern
technology can create parametric color maps objectively visualizing the flow pattern of
microbubbles (Figure 9).

4.2. CEUS and Intraplaque Inflammation

Though CEUS is a strong surrogate of intraplaque neovascularization, this is likely
less so for intraplaque inflammation. Multiple CEUS parameters, such as late-phase en-
hancement may serve as markers of plaque inflammation [93]. Pathogenesis of vulnerable
atheromas is an intricate interplay between carotid neovascularization and local inflamma-
tion. There may be a temporal difference between the former and the latter implying that
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the presence of neovascularization does not necessarily predispose to plaque rupture if the
concurrent localized inflammation is minimal; alternatively, neovascularization could be
sequelae of prior inflammation. The above may explain why up to 40% of asymptomatic
plaques are associated with intraplaque neovascularization [94]. It is now clear that there
is an association between inflammatory markers in atherosclerotic patients and stroke
occurrence rate [95]. Furthermore, it is impressive that circulating proteins have been found
able to predict the development of preclinical atherosclerosis [96].
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Figure 8. A 60-year-old man with stroke. B-mode (A) showing an elongated hypoechoic plaque in 
the near carotid wall (arrowheads). Note the echogenic thin fibrous cap and the distal calcification 
(asterisk). Colour (B) and power Doppler (C) images showing a smooth surface with limited distal 
flow signals, raising suspicion of occlusion (asterisk). Maximum-Intensity-Projection (MIP) CEUS 
image (D) showing a pre-occlusive stenosis (asterisk) with patent distal lumen, along with a small 
superficial ulceration (arrow) and adventitial neovascularization (arrowheads). CTA (E) confirming 
the presence of ulceration (arrowhead) and pre-occlusive stenosis (asterisk). Note the blurred ap-
pearance of ulcer outline owing to the lower spatial resolution of CTA compared to CEUS.  

Figure 8. A 60-year-old man with stroke. B-mode (A) showing an elongated hypoechoic plaque in
the near carotid wall (arrowheads). Note the echogenic thin fibrous cap and the distal calcification
(asterisk). Colour (B) and power Doppler (C) images showing a smooth surface with limited distal
flow signals, raising suspicion of occlusion (asterisk). Maximum-Intensity-Projection (MIP) CEUS
image (D) showing a pre-occlusive stenosis (asterisk) with patent distal lumen, along with a small
superficial ulceration (arrow) and adventitial neovascularization (arrowheads). CTA (E) confirming
the presence of ulceration (arrowhead) and pre-occlusive stenosis (asterisk). Note the blurred
appearance of ulcer outline owing to the lower spatial resolution of CTA compared to CEUS.

4.2.1. Serum Inflammatory Markers

Systemic serum inflammatory markers are possible surrogates for intraplaque inflam-
mation. One of the best studied serum inflammatory markers is C-reactive protein (CRP)
and elevated levels have been associated with plaque vulnerability [96]. Chang et al. have
shown significant correlation between semi-quantitative CEUS intraplaque enhancement
and serum CRP levels [97]. Similarly, another study examined the relationship between
high-sensitivity CRP and qualitative or quantitative CEUS findings in patients with and
without acute ischemic stroke. The authors found significant differences in serum CRP
levels between enhancing and non-enhancing plaques in patients with acute ischemic
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stroke, Furthermore, the peak intensity ratio was found to correlate with serum CRP levels.
Of note, this relationship was not significant in the control group [98]. Other inflammatory
markers have been studied as well. A recent study showed significant correlation between
quantitative CEUS intraplaque enhancement and circulating lymphocyte and neutrophil
counts [99].
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echogenicity causing severe stenosis. Colour-Doppler technique (B) shows blood flow turbulence 
confirming haemodynamically significant stenosis. Note the presence of a superficial ulceration (ar-
rowhead). Consecutive CEUS images (C–E) confirm the presence of an ulceration (arrow), while 
microbubbles are progressively seen plaque core and adventitial layer, in keeping with severe intra-
plaque neovascularization (arrowheads). Temporal Maximum Intensity Projection Image (F) show-
ing all the microbubbles visualized within a specific time frame and thus creating a vascular map of 
intra-plaque neovascularization (arrowheads). Time-intensity Curve analysis (G) showing the en-
hancement of the plaque (green line) compared with the lumen (yellow line), providing quantitative 
data. Colour-coded parametric image (H) showing the flowing pattern and direction of microbub-
bles inside the plaque core based on their time of arrival. A direction from lumen towards the ad-
ventitia can be appreciated. 

  

Figure 9. A 65-year-old man with stroke. B-mode US (A) shows an internal carotid plaque of mixed
echogenicity causing severe stenosis. Colour-Doppler technique (B) shows blood flow turbulence
confirming haemodynamically significant stenosis. Note the presence of a superficial ulceration
(arrowhead). Consecutive CEUS images (C–E) confirm the presence of an ulceration (arrow), while
microbubbles are progressively seen plaque core and adventitial layer, in keeping with severe intra-
plaque neovascularization (arrowheads). Temporal Maximum Intensity Projection Image (F) showing
all the microbubbles visualized within a specific time frame and thus creating a vascular map
of intra-plaque neovascularization (arrowheads). Time-intensity Curve analysis (G) showing the
enhancement of the plaque (green line) compared with the lumen (yellow line), providing quantitative
data. Colour-coded parametric image (H) showing the flowing pattern and direction of microbubbles
inside the plaque core based on their time of arrival. A direction from lumen towards the adventitia
can be appreciated.
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4.2.2. PET Imaging

Positron-emission tomography (PET) imaging of the carotid artery is capable of de-
tecting localized intraplaque inflammation and may enable risk stratification, albeit at a
significant cost [100]. Comparison of nuclear medicine and CEUS studies yielded conflict-
ing results. A small study of 13 patients showed positive correlation between quantitative
CEUS enhancement and the degree of 18-fluorofeoxyglucose (FDG) uptake in the carotid
plaque [101]. Conversely, a more recent study of 30 patients utilizing multimodality imag-
ing and histological analysis of carotid plaques found that the mean FDG uptake was
similar between patients with CEUS intraplaque enhancement and those without. The
study documented association of CD68 immuno-positivity with FDG uptake but not with
CEUS intraplaque enhancement [79].

4.3. CEUS and Clinical Events
4.3.1. Prior Cardiovascular/Cerebrovascular Events

One of the earliest studies which evaluated the potential association between qualita-
tive CEUS enhancement and history of cardiovascular events (CVE: myocardial infarction,
stroke or transient ischemic attack) found that patients with intraplaque enhancement
had higher incidence of prior CVE than those without. However, there was no significant
association between intraplaque enhancement and history of cardiovascular disease (CVD:
CVE, coronary artery disease, peripheral arterial disease) [102]. Another study found
that patients with symptomatic carotid plaques had higher quantitative CEUS intraplaque
enhancement compared to those with asymptomatic plaques [77]. Symptomatic plaques
were defined as those with major or minor stroke, TIA, or amaurosis fugax within the past
6 months. Conversely, Demeure et al. showed no correlation between qualitative CEUS
intraplaque enhancement and past cardio/cerebrovascular events in a small number of
patients [79]. Nevertheless, a recent meta-analysis showed that the presence of intraplaque
enhancement was associated with previous cardiovascular (OR: 4.25, 95% CI: 2.48–7.29)
and cerebrovascular events (OR: 4.83, 95% CI: 2.66–8.78) [103].

4.3.2. Future Cardiovascular/Cerebrovascular Events

An early study on the predictive value of CEUS on cardiovascular events enrolled
a total of 304 patients. The authors found significant correlation between the degree of
CEUS intraplaque enhancement and coronary extent score, number of complex coronary
lesions, and number of diseased coronary arteries. Importantly, 84 patients experienced
acute coronary syndrome (ACS) during the follow-up period. Multivariate analysis showed
that higher grade of CEUS intraplaque enhancement was an independent risk factor for
ACS (OR: 1.91, 95% CI: 1.04–3.53) [104]. A recent larger study by Mantella et al. con-
firmed that increased CEUS intraplaque enhancement was associated with significant
(>50% stenosis) coronary artery disease (CAD). Kaplan-Meier analysis showed that patients
with CEUS intraplaque enhancement score > 1.25 had higher risk of CAD with a sensitivity
of 92% and a specificity of 89% [105]. Similarly, a recent study showed that increased
CEUS intraplaque enhancement was associated with higher risk of CAD during follow up
(OR 4.88, 95% CI: 1.77–13.49) [106]. Regarding cerebrovascular events, Camps-Renom et al.
showed that CEUS intraplaque neovascularization was an independent predictor for re-
current stroke (hazard ratio, 6.57, 95% CI: 1.66–26.01) [107]. Similarly, a more recent study
found that grade 2 intraplaque enhancement (extensive enhancement) was associated with
ischemic stroke recurrence (hazard ratio 4.54, 95% CI: 1.89–10.87) [108].

5. Elastography of Carotid Atherosclerotic Disease

Elastography can be used to assess the stiffness of a plaque, reflective of its histo-
logic composition. Elastography evaluates mechanical properties by measuring plaque
displacement and deformation. Two elastographic methods exist for the measurement of
elastic deformation of a tissue: strain (SE) and shear wave elastography (SWE) [109,110].
SE measures plaque displacement caused by an external force, such as blood pressure
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oscillations or manual compression of the probe. It –semi-quantitative parameters such as
strain, strain velocity or strain rate through deformation estimating algorithms. In SWE,
the transducer emits shear waves through an acoustic radiation force impulse [111]. These
waves disseminate perpendicularly to the impulse. The technique measures the velocity
with which shear waves propagate through the tissue, expressed as Young’s modulus
(YM) [109]. YM defines the tissue resistance to elastic deformation: it quantifies the amount
of stress needed to achieve a unit of deformation, essentially measuring tissue elasticity.
Soft tissues, such as plaque lipid core, demonstrate significant elastic deformation, lower
YM and lower shear wave velocities (SWV), whereas more rigid tissues such as calcified
plaques demonstrate less elastic deformation and higher SWV [112] (Figure 10).
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Figure 10. Shear-wave elastography image showing an echogenic plaque. The plaque yields high
shear wave velocity values (yellow to red colour in left-hand scale), suggesting that this is a stiff
plaque containing fibrous and calcific tissue.

Ultrasound elastography can assess carotid atherosclerotic plaques in combination
with other techniques in the setting of multi-parametric ultrasound [113,114]. However,
sensitivity and specificity vary: using MRI as the reference, sensitivity was 71.4% and speci-
ficity was 87.1%; using histology, sensitivity decreased to 50% while specificity reached
100% [115,116]. Significantly lower mean YM and SWV values were found in symptomatic
plaques compared to the asymptomatic group [117–120]. Shang et al. demonstrated lower
SWV values in hypoechoic plaques suggesting that SWE indices could be used to discrimi-
nate vulnerable from less vulnerable plaques. The same study compared SWV values to
homocysteine serum levels and found a negative correlation with higher homocysteine
values associated with lower SWV values in carotid plaques of stroke patients [118]. Ram-
narine et al. demonstrated the value of SWE imaging to identify carotid plaques prone
to rupture by correlating YM values with the Gray-Weale echogenicity grading and GSM
values [119]. Another study showed that YM was superior vulnerability marker than GSM,
and that combining YM values with the degree of stenosis improved diagnostic perfor-
mance [118]. Doherty et al. showed increased SWE displacements in regions identified as
lipid on MRI, while Huang et al. suggested that larger local deformations and increased
complexity in deformation patterns are more likely to occur in vulnerable plaques [121–123].
Using histology as the reference method, Czernuszewicz et al. showed increased diagnostic
accuracy of elastography when fibrous cap thickness was included in the measurements,
with smaller thickness associated with higher rupture risk at a cut-off value of 0.5 mm [124]
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Although quantification of elastography indices will not replace grading of stenosis
to determine eligibility for surgery, the additional information provided may improve
detection of vulnerable plaques and patient risk stratification. To date, however, most
studies include small number of patients limiting the clinical value of elastography and
warranting larger studies with longitudinal follow-up.

6. Conclusions

The entity of vulnerable carotid plaque is currently well-established and the associated
cerebrovascular risk assessment could rely on multiparametric ultrasound examination. Re-
cent developments have highlighted a spectrum of ultrasound characteristics contributing
to plaque risk for rupture and extending far beyond the degree of lumen stenosis. Further
research will consolidate their clinical value and steer the incorporation of novel ultrasound
modalities into daily practice assessment of carotid atherosclerotic disease.
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