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Over the last decade, our understanding of acute kidney injury (AKI) has evolved

considerably. The development of a consensus definition standardized the approach

to identifying and investigating AKI in children. As a result, pediatric AKI epidemiology

has been refined and the consequences of renal injury are better established. Similarly,

“big data” methodologies experienced a dramatic evolution and maturation, leading the

critical care community to explore potential AKI/big data synergies. One such concept

with tremendous potential is electronic health record (EHR) enabled informatics. Much of

the promise surrounding these approaches is due to the unique position of the EHRwhich

sits at the intersection of data accumulation and care delivery. EHR data is generated

simply via the provision of routine clinical care and should be considered “big” from the

standpoint of volume, variety, and velocity as a myriad of diverse elements accumulate

rapidly in real time, spontaneously generating an immense dataset. This massive

dataset interfaces directly with providers which creates tremendous opportunity. AKI

can be diagnosed more accurately, AKI-related care can be optimized, and subsequent

outcomes can be improved. Although applying big data concepts to the EHR has proven

more challenging than originally thought, we have seen much success and continue

to explore its potential. In this review article, we will discuss the EHR in the context

of big data concepts, describe approaches applied to date, examine the challenges

surrounding optimal application, and explore future directions.
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INTRODUCTION

Acute kidney injury (AKI) has become a common complication amongst hospitalized
children (1–3). Studies utilizing modern, consensus definitions report a prevalence of ∼5
and 25% in children receiving acute and critical care, respectively (3, 4). The frequency
with which AKI occurs is of particular concern given its outcome implications. AKI
has been associated with greater mortality, longer lengths of hospital and intensive care
unit (ICU) stay, and the subsequent development of chronic kidney disease (CKD) (3,
5, 6). Recently, the critical care and nephrology communities have standardized the
definition of AKI, culminating in the Kidney Disease: Improving Global Outcomes (KDIGO)
guidelines which identify AKI events based on increasing serum creatinine and/or decreasing
urine output (UOP) (7). With this development, AKI can be identified consistently
across practice environments, data sets, and health care platforms. In parallel, we have
seen substantial growth in the adoption of electronic health records (EHRs) as well as
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the development of innovative clinical informatics methods (8–
10). While the establishment of a uniform approach to AKI
identification and the evolution of healthcare informatics are not
causally related, the temporal relationship has created unique
opportunities for AKI research and care improvement.

Many of the aforementioned informatics techniques and
methodologies have been categorized as “big data,” a relatively
novel concept to healthcare practitioners. Big data (or Big Data)
is defined by the Oxford English Dictionary as, “data of a very
large size, typically to the extent that its manipulation and
management present significant logistical challenges; (also) the
branch of computing involving such data (11).” Based on this
definition, it is relatively easy to see the connection between big
data and the EHR. The data contained within the EHR is “big”
from the standpoint of volume (amount of data present), velocity
(speed at which new data is generated), and variety (number
of different types of data) (12–14). With regard to AKI, this
means that the EHR contains all creatinine and UOP data for
all patients affiliated with a particular organization, accrues new
creatinine and UOP data in real time, and possesses a near-
infinite number of AKI related data elements which are created
and stored through the provision of routine patient care.

Thus, the EHR and its data create a unique opportunity
(14, 15). The ability to accurately identify AKI events within
a clinical platform allows AKI to be explored retrospectively,

FIGURE 1 | Automated, Real-time AKI Identification. In this figure, temporal creatinine (daily) and urine output (hourly) trends are displayed. In (A), the creatinine

gradually increases from a baseline of 0.6 mg/dL, meeting AKI criteria (serum creatinine > 1.5× baseline) on 1/5/19. Likewise, in (B), the patient develops progressive

oliguria, meeting AKI criteria (UOP < 0.5 mL/kg/h for 6 h) at 15:00. In both cases, the ability to detect the threshold value upon documentation allows real-time

diagnosis. This, in turn, opens up a myriad of big data AKI solutions.

investigated prospectively, and studied for quality improvement
or benchmarking purposes. Although the application of big
data approaches to AKI research and care has proven
more challenging than originally thought, we continue to
explore refined, clinically applicable synergies. The goal of this
manuscript is to consider the EHR in the context of big data
concepts, appraise the approaches applied to date, examine
the challenges surrounding optimal application, and explore
future directions.

AKI IDENTIFICATION AND DIAGNOSIS

The cornerstone of EHR-enabled, big data AKI research and
quality improvement is the ability to precisely diagnosis AKI
events (14, 15). EHR data allows us, in a relatively straightforward
manner, to identify AKI in real time by applying the KDIGO
serum creatinine and/or UOP criteria (Figure 1) (7, 16, 17). For
example, as creatinines become available, they may be compared
to all prior creatinine values for that patient, and AKI may be
diagnosed when the relative change threshold is met (Figure 1A).
Serum creatinine results are discrete data which accumulate with
an associated date and time; this, in turn, allows application of
the full temporal components of the KDIGOdefinition. The same
principles can be applied to the UOP criteria (Figure 1B). UOP is
recorded hourly in milliliters (mL) and dividing this value by the
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patient’s weight in kilograms (kg) generates a per-kg-per-unit-
time rate (mL/kg/h).

Although automated, real-time AKI identification is
technically feasible, aspects of the definition itself can be
challenging to operationalize. One example is baseline creatinine
determination. Setting each patient’s baseline is important as
it forms the basis for relative change determinations. Several
approaches exist, each of which poses a different big data concern
(16, 18–22). If available, a pre-admission creatinine may be used
for the baseline. Many studies employing this approach have
selected the lowest creatinine value available from the preceding
3–6 months. Outside of neonates and children under 3–6
months of age, creatinine is not likely to undergo a physiologic
change in that timeframe. Unfortunately, prior creatinines are
often unavailable within the EHR; this may be due to patients
receiving ambulatory care in other health systems or it is
possible, especially in pediatrics, that no prior creatinine has ever
been obtained. When an actual value is not available, many have
recommended using the admission creatinine as the baseline.
This approach, while simple and effective from an informatics
standpoint, will miss community acquired AKI which is manifest
on admission; previously published studies suggest that this may
underestimate the AKI burden by a third (20). Alternatively,
a baseline creatinine can be estimated by back-calculating
using a presumed creatinine clearance (CrCl). Studies in adults
and children have tended to assume the CrCl to be 75 and
100–120 mL/min/1.73 m2, respectively (18, 20, 21). This will
capture community acquired AKI but misclassifies patients
with chronic kidney disease (CKD) as having AKI. In adults,
where CKD is highly prevalent, this approach can overestimate
AKI incidence by AKI 50% (20). Technically, this method does
requires a computation, adding complexity any automated AKI
identification diagnostic tool. Furthermore, nearly all estimating
equations require data which are unreliably available within
the EHR (i.e., height and ethnicity). A final option for patients
without a known baseline, is to apply an age-based normative
creatinine value. In this scenario, a population-based serum
creatinine is assigned to each patient based on their demographic
characteristics (23, 24). Each of these potential solutions have
been validated and, ultimately, the approach applied should
reflect the goals of the diagnostic tool.

The UOP criteria also pose challenges, however, in this
case the issues tend to be related to EHR limitations rather
than definitional shortcomings. The most substantial issue is
urine volumes are not obtained with the rigor or regularity of
creatinine. Outside of the ICUs, very few children have indwelling
urinary catheters capable of providing hourly data. As a result,
these patients may not have urine data recorded for hours.
In children, urine may be documented only as a void count,
without giving a specific volume. Given the short temporal
interval set by KDIGO, this could result in patients with normal
renal function being inaccurately diagnosed with AKI. Secondly,
EHRs tend to aggregate intake and output data at static 8–12 h
intervals which coincide with nursing shifts. The UOP criteria,
however, necessitate a dynamic approach which utilizes a rolling
6–24 h window. Processing a rolling calculation for each patient
across an institution may pose resource, computational, and

logistic challenges. Despite these potential issues, the ability to
accurately diagnose AKI in real-time is technically feasible and
this capacity unlocks numerous big-data approaches to AKI care.
To fully realize its potential, however, a standardized solution and
approach to the aforementioned problems must be adopted by
the critical care nephrology community.

While no established approach yet exists, information is
available to inform our approach. With regard to the creatinine
criteria, most agree that a previously obtained creatinine should
be used as the baseline value if it is available (3, 14, 15, 25).
If computational resources are unlimited, one could determine
and use the mean serum creatinine from the prior 12 months
(25, 26). However, using the creatinine most proximal to the
admission is a simpler solution which has demonstrated similar
efficacy (26). If a creatinine is not available, given the relatively
low incidence of CKD in children, using an imputed value as
the baseline is a reasonable approach. Most studies to date have
back calculated the imputed serum creatinine using an estimated
creatinine clearance of 120 mL/min/1.73 m2. However, using
an age based normative value may be equally effective and
will reduce computational requirements (3, 24); either approach
should be considered valid. With regard to UOP, it is important
to note that studies in adults and children demonstrate that some
children meet only the UOP criteria for AKI; non-application
of these KDIGO thresholds may underestimate AKI incidence
(3, 27). Thus, if possible, the UOP criteria should be integrated
into any diagnostic tool if possible. One reasonable compromise
is to utilize the 12 h summative information in its static form to
generate a volume-per-kg-per-hour rate. Although this is not as
accurate as a dynamic window and will miss oliguria of <12 h
duration, it is a simple way to implement the UOP criteria that
will capture a larger portion of the true AKI population.

PREDICTING ACUTE KIDNEY INJURY
EVENTS

Once AKI is accurately diagnosed in real-time, a number of
EHR-enabled interventions become viable. One of the most
exciting prospects is AKI prediction—detecting events before
they occur. AKI events can be temporally anchored within the
EHRwhich creates a pre-disease phase of care containing the data
which accumulated prior to AKI. High-content, high-throughput
techniques can be applied to this data to identify a pre-AKI signal
which, in turn, can help discriminate between patients at low and
high risk for AKI. The ability to predict AKI risk in this way
may have dramatic impact as there are not currently treatments
for AKI once it has developed (28–30). As patients at high risk
are identified, care can be modified and preventative and harm
avoidance strategies can be implemented (Figure 2) (31–36).

AKI prediction was the subject of the 15th Acute Dialysis
Quality Initiative (ADQI) conference (13, 37–39). This
conference highlighted several aspects related to AKI prediction
and risk stratification which impact our ability to fully realize the
potential of this big data approach. This consensus statement
noted that at the time of publication, almost all AKI prediction
models had employed a “supervised” approach, meaning that
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FIGURE 2 | Impact of Big-Data AKI Interventions. Real-time AKI diagnosis temporally separates EHR data into pre-illness and post-illness categories. The pre-AKI

data can be used for predictive analytics. The ability to accurately identify patients at high AKI risk allows preventative strategies to be employed. An episode of Stage

2 AKI (dashed line) could be completely prevented, flattening the creatinine trajectory (dotted line). After AKI is diagnosed, real time notification allows providers to

modify care with the goal of mitigating disease severity. Appropriate interventions might result in a patient developing Stage 2 (dashed line) rather than Stage 3 AKI

(unbroken line). This, in turn, might improve long term (AKI resolution) outcomes. Regardless, once the AKI has resolved, the ability to identify these patients

accurately, allows them to be “tagged” and followed whether they developed ESRD, CKD, or experienced full recovery.

potential predictors were chosen a priori based upon their
association with AKI in prior studies (40–45). While certainly
statistically sound, these approaches do not take full advantage
of big data informatics methods. “Unsupervised” techniques
identify predictors without oversight or prior prejudice.
Although they represent a departure from more traditional
model building approaches, the use of these innovative, dynamic
techniques are necessary to completely optimize the use of EHR
data (13).

Since the 15th ADQI conference, a number of studies
examining AKI prediction models have been performed. An
excellent systematic review of prognostic models was published
in 2017 (46). Hodgson et al. identified 53 models designed to
predict hospital acquired AKI, 11 of which met their inclusion
criteria. Although the area under the receiver operative curve
(AUROC) ranged from 0.71 to 0.8 in the model derivation
populations, AUROC dropped significantly during the validation
phase (0.66–0.8 and 0.65–0.71 in the internally and externally
validated studies, respectively). The manuscript highlighted
methodologic shortcomings and inadequate consideration of
electronic automation as significant limitations to successful
implementation. In 2019, a similarly styled review identified
comparable issues with currently published predictive strategies
(47). Interestingly, this study highlighted the fact that much AKI
in adults is community acquired which cannot be addressed
using most EHR-enabled prediction models. While this is
true in adult populations, pediatric AKI tends to be hospital
rather than community acquired (48, 49). Thus, it is possible
that pediatric populations will benefit more substantially from
predictive models.

To give you a better sense of how big data predictive
techniques can be applied within the EHR, it may be helpful
to discuss an exemplar in greater detail. Tomasev et al. applied
deep learning techniques to a US Veteran’s Affairs (VA) dataset
(50). The dataset consisted of de-identified EHR data for
all patients aged 18–90 years who were admitted to a VA
hospital between October 2011 and September 2015. In total,
the set comprised 703,782 patients and 6,352,945,637 clinical
events (individual data elements). Unsupervised, deep learning
modeling was applied to this dataset with the goal of predicting
AKI. This approach predicted 56% of AKI events and 90% of
dialysis-requiring AKI. 84% of Stage 3 AKI was predicted up
to 48 h in advance of the event and only two false positive
predictions were generated for each true positive. Although this
may initially sound like a high false positive rate, responding
to all alerts (positive and negative) would require attending to
<1% of hospitalized patients. Although this population isn’t
representative of pediatric inpatients, the technique is certainly
applicable and holds great promise. Future efforts should likely
utilize similar machine learning methodologies and insure that
any final models have the capacity for EHR integration.

ACUTE KIDNEY INJURY ALERTS

Accurately diagnosing AKI in real time also allows generation
of automated notifications or alerts. Simply put, AKI alerts
notify care providers as soon as a patient meets the diagnostic
criteria for AKI. This information, in turn, allows practitioners to
modify care in order to eliminate injurious agents or conditions,
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prevent progression, and mitigate AKI sequelae (Figure 2).
While AKI alerts seem straightforward and effective at first
glance, in practice they have proven complex and challenging to
implement effectively.

In 2017, Lachance et al. performed a systematic review of AKI
alerting studies (51). Six studies comprised of 10,165 patients
were included in the analysis. While some of the studies reported
improvement in specific care processes, the pooled analysis did
not demonstrate improved mortality or a reduced need for
renal replacement therapy. Unlike many of the predictive studies
described in the above section, the majority of the alerting
systems were automated and fully integrated with the EHR.
Perhaps the most telling aspect of the studies was the fact that
most did not include a clinical decision support component.
The studies performed to date are clear on this issue—real time
AKI alerting in isolation is inadequate; any such alert must be
accompanied by relevant care recommendations.

Since then, several additional alerting studies have been
published. Al-Jaghbeer et al. studied 64,512 adult patients with
AKI and found that an AKI alert combined with clinical
decision support had a significant impact on patient outcomes
(52). Although the effect was small, this intervention led to
a sustained decreased in length of stay, need for RRT, and
mortality. Park et al. studied an alerting mechanism in 3,193
adults (53). In this analysis, the AKI alert was accompanied by
an automated nephrology consultation. While they did not find
a significant reduction in mortality, they did find that AKI was
accurately diagnosedmore frequently, the risk for severe AKI was
reduced, and AKI recovery was more common. Unfortunately,
no outcome driven AKI alerting studies have been performed
in children. Holmes et al. did prospectively implement an AKI
diagnosis/alerting tool within the national Wales laboratory
information management system, however, no intervention was
included with the alert (54). As a result, it was not possible to
assess the outcome impact of the alert, however, the authors did
report a significantly increased incidence of AKI detected by this
approach. It is clear that while alerting has great promise, we have
not yet fully realized its potential. The combination of an alert
with clinical decision support is a large part of the solution, but
until better therapeutic options become available, AKI alerts may
continue to have only an incremental impact.

LONGITUDINAL AKI CARE AND AKI
TRACING: THE POST-DISEASE STATE

Traditionally, AKI was considered a self-limited disease.
However, the long-term ramifications associated with renal
injury have now been well-described. AKI has been linked
with greater risk for new or progressive chronic kidney disease
(CKD), hypertension, stroke, and cardiovascular disease (5, 55–
58). Despite this, patients who experience AKI often do not
receive adequate follow up care (59). Largely, this can be traced to
a lack of awareness amongst patients and providers of both AKI
and its consequent risks (60). This lack of recognition hampers
our ability to track AKI survivors, especially across institutional
boundaries and administrative datasets (60, 61).

One of the greatest potential benefits of applying big data
concepts to AKI is the ability to overcome many of these barriers.
Tracking patients with AKI hinges on our ability to apply an
AKI identifier “tag” (61). The aforementioned EHR enabled
identification technique described above allows such a tag to be
reliably applied. While a myriad of potential identifiers could
be used, something as simple as the International Classification
of Diseases Ninth/Tenth Revision (ICD-9/10) AKI code might
be adequate. Electronically applying the KDIGO AKI definition
in an automated fashion within the EHR infrastructure will
essentially eliminate the low sensitivity historically associated
with ICD9/10 coding (62, 63). Regardless of the tag ultimately
chosen, once applied, patients with AKI can be followed at the
patient, institution, and population level.

At the patient level, children tagged as AKI survivors could
be directed into the appropriate follow up clinic. For example,
the AKI tag could, at discharge, automatically notify the primary
provider of the diagnosis and place a nephrology referral (64).
The discharge order could even generate outpatient orders for
creatinine and albumin/creatinine ratios, which is consistent the
recommendations of the KDIGO guidelines onAKI (7); currently
patients who experience AKI should be assessed within 3 months
of the event (7, 25). This is relevant as observational studies
have suggested that ambulatory nephrology follow up care after
AKI improves outcomes (65). Within an institution, this tag
could increase awareness and support clinical decision making.
Providers could be directed to avoid nephrotoxic medications or
employ more frequent creatinine monitoring in tagged patients.
Clearly, at the population and intuitional level, this will be
most effective in a self-contained health care organization. Some
degree of system integration will be required if follow up care
will be provided outside of the institution which applies the tag
(61). At the population level, accurate AKI diagnosis and tagging
allows patients to be tracked over time. Patients could be assigned
a unique identifier which would allow them to be followed
between institutions and across administrative databases. The
ability to trace patients in this manner would likely lead to a more
comprehensive description of the healthcare burden generated
by AKI. Administrative databases currently rely upon ICD9/10
codes to identify and track AKI events which is associated with
underdiagnosis and a bias toward more severe episodes (60). As
a result, the cost and morbidity data based upon analysis of these
databases inaccurately reflects of the entire spectrum of disease.
Additionally, at the population level, this approach could enable
more efficient recruitment into clinical trials and registries which,
in turn, creates greater opportunity for scientific advancement.

CONCLUSIONS

Over the past decade, the healthcare community has seen a
surge in EHR adoption and the development of innovative
informatics methods. Contemporaneously, the critical care and
nephrology communities have created a standardized definition
for AKI based upon relative chances in discrete data elements.
This confluence of events has created unique opportunities for
AKI research and care improvement. Integrating the definitional
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criteria for AKI into the EHR can identify patients who develop
AKI precisely at disease onset. This enables the application
of predictive models, real time AKI alerting, and tracking of
events and patients across institutions, registries, and databases.
These interventions, in turn, allow us to better describe
AKI epidemiology and improve outcomes at the patient and
population level (Figure 2). The promise of EHR enabled big

data approaches to AKI discovery and care improvement are
substantial and the potential benefits warrant additional work to
overcome existing challenges and barriers.
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