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ABSTRACT
Introduction We report a 34-year-old Japanese female
with a Silver-Russell syndrome (SRS)-like phenotype and
a mosaic Turner syndrome karyotype (45,X/46,XX).
Methods/Results Molecular studies including
methylation analysis of 17 differentially methylated
regions (DMRs) on the autosomes and the XIST-DMR on
the X chromosome and genome-wide microsatellite
analysis for 96 autosomal loci and 30 X chromosomal loci
revealed that the 46,XX cell lineage was accompanied by
maternal uniparental isodisomy for all chromosomes
(upid(AC)mat), whereas the 45,X cell lineage was
associated with biparentally derived autosomes and
a maternally derived X chromosome. The frequency of
the 46,XX upid(AC)mat cells was calculated as 84% in
leukocytes, 56% in salivary cells, and 18% in buccal
epithelial cells.
Discussion The results imply that a parthenogenetic
activation took place around the time of fertilisation of
a sperm missing a sex chromosome, resulting in the
generation of the upid(AC)mat 46,XX cell lineage by
endoreplication of one blastomere containing a female
pronucleus and the 45,X cell lineage by union of male
and female pronuclei. It is likely that the extent of overall
(epi)genetic aberrations exceeded the threshold level for
the development of SRS phenotype, but not for the
occurrence of other imprinting disorders or recessive
Mendelian disorders.

Although a mammal with maternal uniparental
disomy for all chromosomes (upd(AC)mat) is
incompatible with life because of genomic
imprinting,1 a mammal with a upd(AC)mat cell
lineage could be viable in the presence of a co-
existing normal cell lineage. In the human, Strain
et al2 have reported 46,XX peripheral blood cells
with maternal uniparental isodisomy for all chro-
mosomes (upid(AC)mat) in a 1.2-year-old pheno-
typically male patient with aggressive behaviour,
hemifacial hypoplasia and normal birth weight.
Because of the 46,XX disorders of sex development,
detailed molecular studies were performed,
revealing the presence of a normal 46,XY cell
lineage in a vast majority of skin fibroblasts and
a upid(AC)mat 46,XX cell lineage in nearly all blood
cells. In addition, although the data are insufficient
to draw a definitive conclusion, Horike et al3 have
also identified 46,XX peripheral blood cells with
possible upd(AC)mat in a phenotypically male
patient through methylation analyses for plural
differentially methylated regions (DMRs) in 11
patients with SilvereRussell syndrome (SRS)-like
phenotype. This patient was found to have

a normal 46,XY cell lineage and a triploid 69,XXY
cell lineage in skin fibroblasts.
However, such patients with a upd(AC)mat cell

lineage remain extremely rare, and there is no
report describing a human with such a cell lineage
in the absence of a normal cell lineage. Here, we
report a female patient with a upid(AC)mat 46,XX
cell lineage and a non-upd 45,X cell lineage who
was identified through genetic screenings of 103
patients with SRS-like phenotype.

MATERIALS AND METHODS
Case report
This Japanese female patientwas conceivednaturally
andborn at 40 weeks of gestationbyanormal vaginal
delivery. At birth, her length was 44.0 cm (�3.1 SD),
her weight 2.1 kg (�2.9 SD) and her occipitofrontal
head circumference (OFC) 30.5 cm (�2.3 SD). The
parents and the younger brother were clinically
normal (the father died from a traffic accident).
At 2 years of age, she was referred to us because

of growth failure. Her height was 77.7 cm (�2.5
SD), her weight 8.45 kg (�2.6 SD) and her OFC
43.5 cm (�2.5 SD). Physical examination revealed
several SRS-like somatic features such as triangular
face, right hemihypoplasia and bilateral fifth finger
clinodactyly. She also had developmental retarda-
tion, with a developmental quotient of 56. Endo-
crine studies for short stature were normal as were
radiological studies. Cytogenetic analysis using
lymphocytes indicated a low-grade mosaic Turner
syndrome (TS) karyotype, 45,X[3]/46,XX[47].
Thus, a screening of TS phenotype4 was performed,
detecting horseshoe kidney but no body surface
features or cardiovascular lesion. Chromosome
analysis was repeated at 6 and 32 years of age using
lymphocytes, revealing a 45,X[8]/46,XX[92]
karyotype and a 45,X[12]/46,XX[88] karyotype,
respectively. On the last examination at 34 years of
age, her height was 125.0 cm (�6.2 SD), her weight
37.5 kg (�2.0 SD) and her OFC 51.2 cm (�2.8 SD).
She was engaged in a simple work and was able to
get on her daily life for herself.

Sample preparation
This study was approved by the Institutional
Review Board Committees at National Center for
Child health and Development. After obtaining
written informed consent, genomic DNA was
extracted from leukocytes of the patient, the
mother and the brother and from salivary cells,
which comprise w40% of buccal epithelial cells and
w60% of leukocytes,5 of the patient. Lymphocyte
metaphase spreads and leukocyte RNA were also
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obtained from the patient. Leukocytes of healthy adults and
patients with imprinting disorders were utilised for controls.

Primers and probes
The primers utilised in this study are summarised in supple-
mentary methods and supplementary tables 1e3.

DMR analyses
We first performed bio-combined bisulfite restriction analysis
(COBRA)6 and bisulfite sequencing of the H19-DMR (A) on
chromosome 11p15.5 by the previously described methods7 and
methylation-sensitive PCR analysis of the MEST-DMR (A) on
chromosome 7q32.2 by the previously described methods8 with
minor modifications (the methylated and unmethylated allele-
specific primers were designed to yield PCR products of different
sizes, and the PCR products were visualised on the 2100 Bioa-
nalyzer (Agilent, Santa Clara, California, USA)). This was
because hypomethylation (epimutation) of the normally meth-
ylated H19-DMR of paternal origin and maternal uniparental
disomy 7 are known to account for 35e65% and 5e10% of SRS
patients, respectively.9 10 In addition, fluorescence in situ
hybridisation (FISH) analysis was performed with a w84-kb
RP5-998N23 probe containing the H19-DMR (BACPAC
Resources Center, Oakland, California, USA). We also examined
multiple other DMRs by bio-COBRA. The ratio of methylated
clones (the methylation index) was calculated using peak
heights of digested and undigested fragments on the 2100
Bioanalyzer using 2100 expert software.

Genome-wide microsatellite analysis
Microsatellite analysis was performed for 96 autosomal loci and
30 X chromosomal loci. The segment encompassing each locus
was PCR-amplified, and the PCR product size was determined
on the ABI PRISM 310 autosequencer using GeneScan software
(Applied Biosystems, Foster City, California, USA).

PCR analysis for Y chromosomal loci
Standard PCR was performed for six Y chromosomal loci. The
PCR products were electrophoresed using the 2100 Bioanalyzer.

Expression analysis
Quantitative real-time reverse transcriptase PCR analysis was
performed for three paternally expressed genes (IGF2, SNRPN
and ZAC1) and four maternally expressed genes (H19, MEG3,
PHLDA2 and CDKN1C) that are known to be variably (usually
weakly) expressed in leukocytes (UniGene, http://www.ncbi.
nlm.nih.gov/sites/entrez?db¼unigene), using an ABI Prism 7000
Sequence Detection System (Applied Biosystems). TBP and
GAPDH were utilised as internal controls.

RESULTS
DMR analyses
In leukocytes, the bio-COBRA indicated severely hypomethy-
lated H19-DMR, and bisulfite sequencing combined with
rs2251375 SNP typing for 30 clones revealed maternal origin of
29 hypomethylated clones and non-maternal (paternal) origin of
a single methylated clone in this patient (figure 1A). Thus, the
marked hypomethylation of the H19-DMR was caused by
predominance of maternally derived clones rather than hypo-
methylation of the H19-DMR of paternal origin. FISH analysis
for 100 lymphocyte metaphase spreads excluded an apparent
deletion of the paternally derived H19-DMR or duplication of
the maternally derived H19-DMR (Supplementary figure 1).

Methylation-sensitive PCR amplification for the MEST-DMR
delineated a major peak for the methylated allele and a minor
peak for the unmethylated allele (figure 1B). This also indicated
the predominance of maternally derived clones and the co-
existence of a minor portion of paternally derived clones.
Furthermore, autosomal DMRs invariably exhibited markedly
abnormal methylation patterns consistent with predominance
of maternally inherited DMRs, whereas the methylation index
of the XIST-DMR on the X chromosome remained within the
female reference range (figure 1C). The abnormal methylation
patterns were less obvious in salivary cells (thus, in buccal
epithelial cells) than in leukocytes, except for the methylation
index for the XIST-DMR that mildly exceeded the female
reference range (figure 1AeC).

Microsatellite analysis
Major peaks consistent with maternal uniparental isodisomy
and minor peaks of non-maternal (paternal) origin were identi-
fied for at least one locus on each autosome, with the minor
peaks of non-maternal origin being more obvious in salivary cells
than in leukocytes (figure 1D and supplementary table 4).
Furthermore, the frequency of the upid(AC)mat cells was
calculated as 84% in leukocytes, 56% in salivary cells and 18% in
epithelial buccal cells, using the area under curves for the
maternally and the non-maternally inherited peaks (supple-
mentary note). Such minor peaks of non-maternal origin were
not detected for all the 30 X chromosomal loci examined.

PCR analysis for Y chromosomal loci
PCR amplification failed to detect any trace of Y chromosome-
specific bands in leukocytes and salivary cells (Supplementary
figure 2).

Expression analysis
Expression analysis using control leukocytes indicated that, of
the seven examined genes, SNRPN expression alone was strong
enough to allow for a precise assessment (Supplementary
figure 3). SNRPN expression was extremely low in this patient
(figure 1E).

DISCUSSION
These results imply that this patient had a upid(AC)mat 46,XX
cell lineage and a non-upd 45,X cell lineage. Indeed, methylation
patterns of the XIST-DMR is explained by assuming that the
two X chromosomes in the upid(AC)mat cells undergo random
X-inactivation and that 45,X cells with the methylated XIST-
DMR on a single active X chromosome11 are relatively prevalent
in buccal epithelial cells. Furthermore, lack of non-maternally
derived minor peaks for microsatellite loci on the X chromosome
is explained by assuming that the two X chromosomes in the
upid(AC)mat cells and the single X chromosome in the 45,X
cells are derived from a common X chromosome of maternal
origin, with no paternally derived sex chromosome. It is likely,
therefore, that a parthenogenetic activation took place around
the time of fertilisation of a sperm missing a sex chromosome,
resulting in the generation of the 46,XX cell lineage with upid
(AC)mat by endoreplication (the replication of DNA without
the subsequent completion of mitosis) of one blastomere
containing a female pronucleus and the 45,X cell lineage with
biparentally derived autosomes and a maternally derived X
chromosome by union of male and female pronuclei (figure 2),
although it is also possible that a paternally derived sex chro-
mosome was present in the sperm but was lost from the normal
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cell lineage at the very early developmental stage. Hence, in
a strict sense, this patient is neither a chimera resulting from the
fusion of two different zygotes nor a mosaic caused by a mitotic
error of a single zygote. In this regard, a triploid cell stage is
assumed in the generation of a upid(AC)mat cell lineage, and
such triploid cells may have been detected in skin fibroblasts of
the patient reported by Horike et al.3

Theupid(AC)mat cells accounted for themajority of leukocytes
even in adulthood of this patient, despite global negative selective
pressure.12 13 This phenomenon, though intriguing, would not be
unexpected in human studies because leukocytes are usually
utilised for genetic analyses. Rather, if the upid(AC)mat cells were
barely present in leukocytes, they would not have been detected.
It is likely, therefore, that upid(AC)mat cells have occupied
a relatively large portion of the definitive haematopoietic tissues
primarily as a stochastic event. Furthermore, parthenogenetic
chimera mouse studies have revealed that parthenogenetic cells
are found at a relatively high frequency in some tissues/organs
including blood and are barely identified in other tissues/organs
such as skeletal muscle and liver.13 Such a possible tissue-specific
selection in favour of the preservation of parthenogenetic cells in
the definitive haematopoietic tissues may also be relevant to the
predominance of the upid(AC)mat cells in leukocytes. In addition,
a reduced growth potential of 45,X cells14 may also have
contributed to the skewed ratio of the two cell lineages.

Clinical features of this patient would be determined by several
factors. They include: (1) the ratio of two cell lineages in various
tissues/organs, (2) the number of imprinted regions or DMRs
relevant to the development of specific imprinting disorders (eg,
plural regions/DMRs on chromosomes 7 and 11 for SRS9 10 and
a single region/DMR on chromosome 15 for PradereWilli
syndrome (PWS)),15 (3) the degree of clinical effects of dysregu-
lated imprinted regions/DMRs (an (epi)dominant effect has been

Figure 1 Representative molecular
results. Pat, paternally derived allele;
Mat, maternally derived allele;
P, patient; M, mother; B, brother;
L, leukocytes; and S, salivary cells.
Filled and open circles in A and B
represent methylated and unmethylated
cytosine residues at the CpG
dinucleotides, respectively. A.
Methylation patterns of the H19-DMR
(A) harbouring 23 CpG dinucleotides and
the T/G SNP (rs2251375) (a grey box).
The PCR products are digested with
BsaBI when the cytosine at the sixth
CpG dinucleotide (highlighted in yellow)
is methylated and with MwoI when the
two cytosines at the ninth and the 11th
CpG dinucleotides (highlighted in
orange) are methylated. For the bio-
COBRA data, the black histograms
represent the distribution of methylation
indices (%) in 50 control participants,
and L and S denote the methylation
indices for leukocytes and salivary cells
of this patient, respectively. For the
bisulfite sequencing data, each line
indicates a single clone. B. Methylated
and unmethylated allele-specific PCR
analysis for the MEST-DMR (A). In
a control participant, the PCR products
for methylated and unmethylated alleles are delineated, and the unequal amplification is consistent with a short product being more easily amplified
than a long product. In a previously reported patient with upd(7)mat,8 the methylated allele only is amplified. In this patient, major peaks for the
methylated allele and minor peaks for the unmethylated allele (red asterisks) are detected. C. Methylation patterns for the 18 DMRs examined. The
DMRs highlighted in blue and pink are methylated after paternal and maternal transmissions, respectively. The black vertical bars indicate the reference
data (maximumeminimum) in 20 normal control participants, using leukocyte genomic DNA (for the XIST-DMR, 16 female data are shown).
D. Representative microsatellite analysis. Minor peaks (red asterisks) have been identified for D7S1824 and D11S904 but not for DXS986 of the patient.
Since the peaks for D7S1824 and D11S904 are absent in the mother and clearly present in the brother, they are assessed to be of paternal origin.
E. Relative expression level (mean 6 SD) of SNRPN on chromosome 15. The data have been normalised against TBP. SRS, an SRS patient with an
epimutation (hypomethylation) of the H19-DMR; BWS1, a BWS patient with an epimutation (hypermethylation) of the H19-DMR; BWS2, a BWS
patient with upd(11)pat; PWS1, a PWS patient with upd(15)mat; PWS2, a PWS patient with an epimutation (hypermethylation) of the SNRPN-DMR;
AS1, an Angelman syndrome (AS) patient with upd(15)pat; and AS2, an AS patient with an epimutation (hypomethylation) of the SNRPN-DMR.

Figure 2 Schematic representation of the generation of the upid(AC)
mat 46,XX cell lineage and the non-upd 45,X cell lineage. Polar bodies
are not shown. PA, parthenogenetic activation; and E, endoreplication of
one blastomere containing a female pronucleus.
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assumed for the 11p15.5 imprinted regions including the
IGF2eH19 domain on the basis of SRS or BeckwitheWiedemann
syndrome (BWS) phenotype in patients with multilocus hypo-
methylation16 and BWS-like phenotype in patients with a upid
(AC)pat cell lineage,17 a mirror image of a upid(AC)mat cell
lineage), (4) expression levels of imprinted genes in upid(AC)mat
cells (although SNRPN expression of this patient was consistent
with upid(AC)mat cells being predominant in leukocytes,
complicated expression patterns have been identified for several
imprinted genes in androgenetic and parthenogenetic fetal mice,
probably because of perturbed cis- and trans-acting regulatory
mechanisms)18 and (5) unmasking of possible maternally
inherited recessive mutation(s) in upid(AC)mat cells.19 Collec-
tively, it appears that the extent of overall (epi)genetic aberrations
exceeded the threshold level for the development of SRS pheno-
type and horseshoe kidney characteristic of TS4 but remained
below the threshold level for the occurrence of other imprinting
disorders or recessive Mendelian disorders.

In summary, we identified a upid(AC)mat 46,XX cell lineage
in a woman with an SRS-like phenotype and a 45,X cell lineage
accompanied by autosomal haploid sets of biparental origin.
This report will facilitate further identification of patients with
a upid(AC)mat cell lineage and better clarification of the clinical
phenotypes in such patients.
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