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Abstract: Neurological disorders including depression, anxiety, post-traumatic stress disorder (PTSD),
schizophrenia, autism and epilepsy are associated with an increased incidence of cardiovascular
disorders and susceptibility to heart failure. The underlying molecular mechanisms that link neuro-
logical disorders and adverse cardiac function are poorly understood. Further, a lack of progress is
likely due to a paucity of studies that investigate the relationship between neurological disorders
and cardiac electrical activity in health and disease. Therefore, there is an important need to under-
stand the spatiotemporal behavior of neurocardiac mechanisms. This can be advanced through the
identification and validation of neurological and cardiac signaling pathways that may be adversely
regulated. In this review we highlight how dysfunction of the hypothalamic–pituitary–adrenal (HPA)
axis, autonomic nervous system (ANS) activity and inflammation, predispose to psychiatric disorders
and cardiac dysfunction. Moreover, antipsychotic and antidepressant medications increase the risk
for adverse cardiac events, mostly through the block of the human ether-a-go-go-related gene (hERG),
which plays a critical role in cardiac repolarization. Therefore, understanding how neurological
disorders lead to adverse cardiac ion channel remodeling is likely to have significant implications for
the development of effective therapeutic interventions and helps improve the rational development
of targeted therapeutics with significant clinical implications.
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1. Introduction

Psychiatric disorders are widely prevalent globally, affecting about 25–30% of patients
in Europe and the United States, with anxiety disorder and depression being the most
common conditions (7% and 5% respectively) [1]. Cardiovascular disorders (CVDs) are the
leading cause of death in the general population, but also among patients with neurological
diseases [2], suggesting a link between these two populations.

In general, a complex set of behavioral and psychosocial aspects are mediators for
increased CVD risk, including smoking, alcohol and substance abuse, poor diet and
reduced physical activity that can lead to obesity, non-adherence to medications and sleep
disorders, anger and hostility, social isolation and low socioeconomic status [3–5]. These
CVD risk factors are significantly present among subjects with mental illness, resulting
in an additive effect over the disease-related biological risk factors [6] that these patients
have for CVD. Notably, drug therapies for the treatment of mental disorders predispose
to a variety of physical illnesses (obesity, diabetes, thyroid disorders, gastrointestinal,
respiratory and renal diseases, etc.), including CVD and arrhythmias [7,8]. All-cause
mortality in general, and cardiac mortality in particular, is higher in antipsychotic users
compared to nonusers [9].

Therefore, there is an urgent need for management strategies to reduce the CVD risk
in this population group. A holistic understanding of the molecular mechanisms that
underlie biological stressors is important in defining psychological and physical outcomes
that determine vulnerability to disease conditions, and in particular CVD [10]. This is
also valid for CVD patients, in which psychological and psychiatric problems (such as
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depression and anxiety) that may arise following major cardiac events are often under-
reported and undertreated. Therefore, a prompt identification and treatment of potential
psychological conditions could help reduce the risk of further cardiac events and improve
the outcome in cardiac patients.

In this review we discuss existing knowledge of the intimate and delicate interaction
between neurological disorders and CVD, taking into consideration common and distinct
pathological mechanisms. In particular, we discuss the potential involvement of patho-
logical ion channel modulation in the etiology of neurological disorders with significant
implications for CVD and ultimately arrhythmias. Our hope is that this review will be of
great interest to a wide range of the scientific community and more specifically neurology
and cardiology research investigators. In this context our goal is to further highlight unac-
knowledged common and unique molecular mechanisms of neurological channelopathies
and cardiomyopathies that merits significant investigation.

2. Psychiatric Disorders and Cardiovascular Diseases

A bidirectional relationship between mental illness and CVD is known to exist. Among
mental illnesses, depression, post-traumatic stress disorder (PTSD), anxiety, schizophrenia
and autism are the most commonly studied due to their crucial predisposition to adverse
cardiac events [2,11–15]. For example, depression is a mood disorder that varies from mild
to major depressive symptoms and is characterized by sadness, pervasive low mood and
loss of interest (anhedonia) lasting for 2 weeks or more [2,11]. Depression and cardiovascu-
lar disorders are closely related. CVD can cause depressive symptoms, and the prevalence
of depression in patients with CVD is 3 times higher than in the general population [16].
Furthermore, depression has been reported to be an independent risk factor for cardiac
events [17], increasing the incidence of CVD in previously healthy people [18].

Depression and anxiety are interlinked pathologies, but the associated mechanisms
are unknown or poorly understood. Notably, patients with high levels of anxiety have an
increased risk for sudden cardiac death (SCD) [13,19,20]. Indeed, hyperventilation, that may
occur during an acute panic/anxiety attack, can induce coronary artery spasm [21], which in
turn may eventually lead to myocardial ischemia and fatal ventricular arrhythmias [22,23].

Depressive and anxiety disorders have a high comorbidity and share symptoms with
PTSD, a disease state defined by trauma and stressor-related diseases that may develop
after a major traumatic event (including combat, sexual assault, etc.). Further, intrusive
thoughts, negative cognitions and mood, avoidance and hyperarousal are associated with
PTSD and this, in turn, leads to severe distress. For example, clinically relevant studies
in the Veterans population have highlighted the association between PTSD and CVD,
with PTSD patients having double the risk of developing adverse cardiac events [24–28].
Moreover, experiencing a life-threating illness, including a major cardiac event, can elicit
PTSD, and the persistence of PTSD symptoms can increase the likelihood of developing
recurrent CVD [29–31].

Schizophrenia is another psychiatric disorder significantly associated with augmented
risk for CVD [14,32]. Schizophrenia is defined by the presence of two or more characteristic
symptoms, including hallucinations, disorganized speech and delusions. Patients with
schizophrenia are likely to have a 10 years lower life-expectancy compared to the general
population, and this dramatic reduction is underscored by a high incidence of suicide and
an elevated CVD risk [33].

Autism spectrum disorder (ASD) is a neurodevelopmental disorder that is charac-
terized by restricted interests, repetitive behaviors and difficulties in communication and
social interaction. ASD is commonly comorbid with other psychiatric disorders (depres-
sion and anxiety), and also with epilepsy, suggesting the existence of shared biological
mechanisms between these conditions. Congenital heart diseases (CHDs) such as atrial
and ventricular septal defects have been associated with an increased risk of developing
ASD [34] and epilepsy [35]. While the exact cause is unknown, studies have suggested
that there could be common genetic links [36], environmental causes or it could be due to
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surgeries or other clinical outcomes due to CHD. For example, increased seizures for CHD
patients, in general and particularly after surgery, lead to deficits in neural development
that might be due to cerebral hypoperfusion [37,38], and further reinforces an important
physiological interplay between these disease pathologies. Furthermore, ASD patients are
more likely to have hyperlipidemia, which is a known risk factor for diabetes, obesity and
CVD [15]. Others and we have demonstrated that pathological levels of the saturated free
fatty acid, palmitic acid, led to adverse remodeling of major cardiac ion channels in distinct
animal models [39–42]. These findings suggest a higher likelihood of experiencing a fatal
arrhythmia event and ultimately the transition to heart failure and sudden cardiac death
in ASD patients with confounding hypercholesterolemia and/or hypertriglyceridemia.
Future studies of the mechanisms of the neurological–cardiac axis that include patients
with lipid metabolism disorders are likely to provide novel and additional insights that will
improve knowledge of vulnerability of ASD patients to metabolic disorders and ultimately
cardiac dysfunction.

Antipsychotic and antiepileptic medications have been reported to have a range
of cardiac side-effects, including orthostatic hypotension [43], cardiomyopathy [44], QT
prolongation [45] and increased risk for SCD [9]. Moreover, antidepressant drugs have
been associated with adverse cardiac effects: the selective serotonin reuptake inhibitors
(SSRIs) and particularly the tricyclic antidepressants are known to cause prolongation
of the heart rate corrected QT interval (QTc) on an ECG and predispose to ventricular
arrhythmias [46,47]. These cardiotoxic effects of psychiatric disorder therapeutics are of
particular importance in patients with an underlying CVD.

Neurological conditions, including subarachnoid hemorrhage, can also be associated
with cardiac dysfunction. In this context the Krzych lab demonstrated that the neurocar-
diogenic injury that follows a subarachnoid hemorrhage is characterized by ST-segment
elevation and QTc prolongation on the ECG, moderate elevation in Troponin C levels and
myocardial necrosis [48]. These clinical presentations are reminiscent of Takotsubo car-
diomyopathy a cardiac condition that develops in response to severe psychological distress,
or an intense emotional or stressful experience [49]. A catecholamine-induced toxicity in
cardiomyocytes has been identified as a common pathological mechanism between the
two conditions, and further highlights a critical link and/or interplay between cellular
functions of the brain and heart.

3. Common Molecular Mechanisms of Cardiovascular Disorders Acquired in
Mental Disorders

Psychiatric diseases share common biological, behavioral and psychosocial risk factors
that increase the likelihood of developing CVD [50]. Dysfunction of the hypothalamic–
pituitary–adrenal (HPA) axis and autonomic nervous system (ANS) activity, inflammation
and oxidative stress are key cellular mechanisms that play an important role in the devel-
opment of mental conditions [51], as summarized in Figure 1.

The HPA axis is responsible for the release of different neuropeptides and hormones,
including cortisol, crucial for the physiological response to stress and the subsequent
regulation of individual or multiple combinations of homeostatic processes that includes
emotional, metabolic, cardiovascular and immune mechanisms. Prolonged, excessive or
insufficient activity of the HPA axis, particularly in conjunction with repetitive exposure to
stress, may result in the development of psychiatric disorders, such as depression, anxiety
disorders, PTSD, schizophrenia and autism [52,53]. Similarly, HPA axis hyperactivity has
been associated with increased CVD risk and mortality [54,55].
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Figure 1. Functional interaction between brain and heart disorders. Scheme of the behavioral, psychosocial and biological 
risk factors shared among psychiatric disorders that are involved in the increased incidence of cardiovascular diseases. 
HPA axis = Hypothalamic–Pituitary–Adrenal axis, ANS = Autonomic Nervous System, SNS = Sympathetic Nervous 
System, PNS = Parasympathetic Nervous System, HR = Heart Rate, BP = Blood Pressure, NE = Norepinephrine, TNF-α = 
Tumor Necrosis Factor Alpha, PTSD = Post-Traumatic Stress Disorder, IKr = Rapid Delayed Rectifier Potassium Current, 
IKs = Slow Delayed Rectifier Potassium Current, ICa,L = L-Type Calcium Current, INa = Sodium Current,↑increased, 
↓decreased. 

The HPA axis is responsible for the release of different neuropeptides and hor-
mones, including cortisol, crucial for the physiological response to stress and the subse-
quent regulation of individual or multiple combinations of homeostatic processes that 
includes emotional, metabolic, cardiovascular and immune mechanisms. Prolonged, ex-
cessive or insufficient activity of the HPA axis, particularly in conjunction with repetitive 
exposure to stress, may result in the development of psychiatric disorders, such as de-
pression, anxiety disorders, PTSD, schizophrenia and autism [52,53]. Similarly, HPA axis 
hyperactivity has been associated with increased CVD risk and mortality [54,55]. 

The stress response system is defined by both the HPA axis, and the ANS. The ANS 
is composed of two branches: the sympathetic nervous system (SNS) and the parasym-
pathetic nervous system (PNS). In response to stressful situations, the SNS is the domi-
nant mechanism exemplified by the activation of the fight-or-flight response, which leads 
to catecholamine (noradrenaline and norepinephrine) release. Furthermore, ANS activa-
tion leads to physiological changes, which include an increase in heart rate (HR) and 
blood pressure. SNS hyperactivation coupled with blunted PNS activity can play a role in 
different psychiatric disorders [56,57]. The resulting ANS dysfunction is characterized by 
high levels of circulating catecholamines (primarily norepinephrine), higher HR at rest, 
low HR variability (HRV), baroreflex dysfunction and increased QTc variability 
[56,58–60]. The relative functional contributions of the different altered neurological 
signaling mechanisms to cardiac dysfunction are unknown. Therefore, studies that pro-
vide molecular mechanisms of common or unique signaling pathways are likely to pro-
vide mechanistic insights that will improve our understanding of the delicate link be-
tween neurological disorders and vulnerability to arrhythmogenesis and heart failure. 

There is evidence that a dysregulated stress response system that occurs in mental 
disorders, leads to hyperinflammation, which is an independent risk factor for CVD [61]. 
Furthermore “sterile inflammation”, a process that is not due to a pathogen, but can re-

Figure 1. Functional interaction between brain and heart disorders. Scheme of the behavioral, psychosocial and biological
risk factors shared among psychiatric disorders that are involved in the increased incidence of cardiovascular diseases. HPA
axis = Hypothalamic–Pituitary–Adrenal axis, ANS = Autonomic Nervous System, SNS = Sympathetic Nervous System,
PNS = Parasympathetic Nervous System, HR = Heart Rate, BP = Blood Pressure, NE = Norepinephrine, TNF-α = Tumor
Necrosis Factor Alpha, PTSD = Post-Traumatic Stress Disorder, IKr = Rapid Delayed Rectifier Potassium Current, IKs = Slow
Delayed Rectifier Potassium Current, ICa,L = L-Type Calcium Current, INa = Sodium Current, ↑ increased, ↓ decreased.

The stress response system is defined by both the HPA axis, and the ANS. The ANS is
composed of two branches: the sympathetic nervous system (SNS) and the parasympa-
thetic nervous system (PNS). In response to stressful situations, the SNS is the dominant
mechanism exemplified by the activation of the fight-or-flight response, which leads to
catecholamine (noradrenaline and norepinephrine) release. Furthermore, ANS activation
leads to physiological changes, which include an increase in heart rate (HR) and blood
pressure. SNS hyperactivation coupled with blunted PNS activity can play a role in differ-
ent psychiatric disorders [56,57]. The resulting ANS dysfunction is characterized by high
levels of circulating catecholamines (primarily norepinephrine), higher HR at rest, low HR
variability (HRV), baroreflex dysfunction and increased QTc variability [56,58–60]. The rel-
ative functional contributions of the different altered neurological signaling mechanisms to
cardiac dysfunction are unknown. Therefore, studies that provide molecular mechanisms
of common or unique signaling pathways are likely to provide mechanistic insights that
will improve our understanding of the delicate link between neurological disorders and
vulnerability to arrhythmogenesis and heart failure.

There is evidence that a dysregulated stress response system that occurs in mental
disorders, leads to hyperinflammation, which is an independent risk factor for CVD [61].
Furthermore “sterile inflammation”, a process that is not due to a pathogen, but can result
after chronic stress, is evident in different mental disorders. As a consequence of altered
neurohumoral function, the pathological levels of proinflammatory cytokines including in-
terleukin (IL)-6, IL-1β and tumor necrosis factor alpha (TNF-α) can be triggered, especially
in microglia and astrocytes. In fact, an increased proinflammatory setting is reported in
patients with depression, schizophrenia, PTSD, anxiety disorder and ASD [62–66]. Inflam-
mation is a shared mechanism between psychiatric disorders and CVD. Proinflammatory
cytokines like IL-6, IL-1β and TNFα are involved in the progression of chronic heart failure
through remodeling and increased fibrosis [67], and these alterations can further lead to
susceptibility of ventricular tissue to arrhythmias. Additionally, cytokines have been shown
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to modulate different cardiac ion channels and this interaction can have important effects
on action potential (AP) and QT duration [68], having either protective or pathological
consequences, such as promotion of arrhythmias [69]. IL-1β and IL-6 increase the L-type
calcium current (ICaL), while TNF-α decreases both the transient outward (Ito) and the
rapid delayed rectifier (IKr) potassium currents, all leading to an increase of AP duration
(APD) in cardiomyocytes [70–73]. IL-1 and TNF-α have been positively associated with
QTc prolongation [74,75], while IL-6 and IL-8 have been correlated with SCD [76,77]. There
is also a crosstalk between inflammation and ANS: stimulation of the SNS has been shown
to increase the level of proinflammatory cytokines, while PNS activation seems to pro-
mote the reduction of such cytokines; at the same time these pro-inflammatory cytokines
modulate ANS action on the heart, mainly acting on HRV [69].

Comprehensive behavioral animal studies, in response to specific (acute vs. chronic)
stressors have revealed subjective outcomes, defined by distinctive active and/or passive
coping mechanism. For example, an active coping mechanism would result in a fight-or-
flight response, while a passive coping response is characterized by immobility, avoidance
and withdrawal. The prevalence of one approach over the other can then influence the
psychological and metabolic state of the organism. Indeed, stress-susceptible animals
usually display altered HPA axis function, increased sympathetic activity and reduced
parasympathetic tone, with associated pathological elevations of catecholamines, high
blood pressure, increased resting HR, decreased HRV [78] and a higher secretion of proin-
flammatory cytokines. This finding would suggest that stress-resistant animals are likely to
display an opposing phenotype that includes a normal representation of anti-inflammatory
cytokines, including IL-4 and IL-10 [79–81]. Moreover, social defeat and isolation have
been shown to have cardiac consequences (decreased HRV and hypertrophy) in animal
experiments, and aggressive animals were more vulnerable to heart disease [78], suggesting
that coping mechanisms are related with risk for CVD.

4. Evidence for a Potential Role for Ion Channels Linking Neuropsychiatric Disorders
and CVD

Ion channels are widely distributed in the brain and heart. Both neurons and car-
diomyocytes are excitable cells; therefore, the biophysical properties and regulation of
ion channels are important for their functional activity. In some cases, a connection be-
tween cardiac and neuronal ion channel dysfunction can be present, resulting in clinical
conditions with both psychiatric and cardiac phenotypes. This is highlighted in Timothy
syndrome (TS) or long QT syndrome type 8 (LQT8).

TS is a multisystemic syndrome that is caused by congenital or inherited mutations in
the CACNA1C gene, which encodes for the alpha 1C subunit of the L-type calcium channel
(Cav1.2) and contributes prominently to normal cardiac repolarization and neurological
functions including synaptic plasticity and long-term potentiation. TS is characterized by
a combination of QTc prolongation, syndactyly and autism. Typical TS (type 1) results
from a recurrent de novo mutation, G406R in CACNA1C exon 8A, while atypical TS (type
2) characterized by the lack of syndactyly phenotype, is caused by G406R and G402S
mutations in the alternatively spliced exon 8. A de novo CACNA1C mutation, the G402S
substitution in exon 8, is associated exclusively with a cardiac specific phenotype (including
LQTS and cardiac arrest), with no signs of multiorgan disease manifestations of classical
TS [82]. Conversely, the A1473G mutation can induce additional central and peripheral
neurological symptoms (stroke, seizure, cortical blindness and development delay) in
LQT8 patients [83], and of particular note, a novel A1024G mutation has been reported
in patients with extracardiac symptoms but no QT prolongation [84]. The phenotypical
variability of this disease has been attributed to the fact that distinct missense mutations
may differently affect excitable and non-excitable cells [85].

Mutations in the KCNJ2 gene, that encodes for the Kir2.1 channel subunit also led
to channelopathies defined by defects in both cardiac and neuronal mechanisms. Kir2.1
generates the inward-rectifier K current IK1, which is abundant in the brain and human
cardiac and skeletal muscles [86]. KCNJ2 mutations (including T192A and R67W) that lead
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to a loss-of-function phenotype have been associated with Andersen–Tawil syndrome (or
LQT7), a genetic condition characterized by QTc interval prolongation, muscle weakness
and paralysis, mood disorders and seizure [87]. Gain-of-function mutations in the KCNJ2
gene (D172N, M301K, E299V and K346T) are instead, linked to QT shortening and increased
risk for SCD. Of particular note, a novel p.Phe58Ser missense mutation has been shown
to lead to both short QT syndrome type 3 (SQT3) and autism [88,89], with the gain-of-
function effect of this mutation consistent with the altered neuronal excitability found in
ASD. Distinguishing between mutations that lead to cardiac effects or both cardiac and
neuronal effects is likely to provide crucial insights that will inform development of targeted
interventions that will treat neurological disorders and prevent off-target cardiac effects.

This connection is also true for NOS1AP (nitric oxide synthase 1 adaptor protein), an
adaptor protein that plays a crucial role in both cardiac and neuronal calcium handling
mechanisms and ion channel regulation [90]. NOS1AP is important for the activity of
the neuronal isoform of NOS (nNOS or NOS1), which in turn modulates different pro-
cesses but mainly the S-nitrosylation of Cav1.2 channels. Single-nucleotide polymorphisms
(SNPs), such as the minor NOS1AP rs16847548, have been associated with decreased
expression of NOS1AP resulting in upregulation of ICaL, with increased risk for arrhyth-
mias [91]. NOS1AP has been identified as a modifier gene for LQTS, with SNPs (rs4657139
and rs16847548) associated with QT prolongation in the general population and with
an increased risk for SCD in LQT1 patients [92], but it is also a susceptibility locus for
schizophrenia (SNPs rs1415263, rs4145621 and rs2661818) [93]. This evidence further rein-
forces a role for NOS1AP as a key candidate for the crucial mechanistic link that underlies
arrhythmogenesis in neuronal disorders.

The most prevalent types of LQTS are caused by mutations in three cardiac channels:
KCNQ1, KCNH2 and SCN5A, which have been also associated with epilepsy and sudden
unexpected death in epilepsy (SUDEP) [94]. SUDEP is characterized by the absence of any
cause of death at post-mortem evaluation, and therefore an arrhythmogenic mechanism is
generally suggested. The association between LQTS genes and epilepsy has been compli-
cated by the fact that epileptic seizures can be misinterpreted as syncope due to cardiac
arrhythmias in LQTS patients. About one out of five LQT1 patients experiences a seizure
phenotype, supporting the idea that KCNQ1 mutations can increase the susceptibility
for epileptic seizure [95]. Indeed, a non-synonymous heterozygous missense pathogenic
mutation (p.L273F) in exon 6 of the KCNQ1 gene (encoding for the Kv7.1 channel) has
been identified in a LQT1 family with recurrent epilepsy [96], further suggesting the
neurocardiac effect of this gene.

Mutations and SNPs in KCNH2 have also been linked with epilepsy and SUDEP,
and retrospective studies have found that a history of seizures was more common among
LQT2 patients compared to the other LQT subtypes [97], and further reinforces an im-
portant contribution of KCNH2 defects to epilepsy predisposition. Similarly, a p.W1095X
(or p.Trp1095STOP) missense mutation in the SCN5A gene has been identified in sub-
jects showing both Brugada symptoms and epilepsy [98]; and another SCN5A mutation
(Pro1090Leu) previously associated with SCD and LQTS, has been found in a SUDEP
victim [94].

Growing evidence supports the involvement of ion channels that play a significant
role in cardiac function to also play a role in the susceptibility or pathogenesis of psychiatric
disorders, but the extension of their contribution may be largely variable. Ion channel
mutations can either be the only cause, as occurs in TS, or most commonly, their association
with psychiatric disorders is more complex, and can be the result of haplotype effects. SNPs
in Ca channel (CACNA1C and CACNB2) genes have been identified as a susceptibility
factor for bipolar disorder, schizophrenia and major depression [99,100], suggesting that
altered functional expression of voltage-gated Ca channels is an important shared factor in
psychiatric disorders. This association is further supported by functional magnetic reso-
nance imaging studies that have correlated the presence of the risk-associated CACNA1C
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SNP (rs1006737) and activation of brain circuitries that are characteristic of patients with
mental illness [101].

Mutations in Na channel genes have been extensively linked to epilepsy [102]; how-
ever, Okamura’s group have reported a link between a novel SCN1A mutation (V1366I) in
a Japanese family with different mental illness phenotypes including Asperger syndrome,
ASD and panic disorder [103]. Deletion in neuronal specific SCN2A and SCN3A genes
have been associated with autism [104] and different forms of epilepsy [105], while loss-of-
function mutations in the SCN1A gene are responsible for the comorbidity of psychiatric
disorders with epilepsy [106], suggesting that Na channels may be functionally important
for emotional and cognitive responses.

K channels including the KCNQ family play a role in the etiology of psychiatric
diseases [107]. For example, KCNQ2 and KCNQ3 genes have been identified as putative
risk factors for bipolar disorders [108,109], and in particular, specific KCNQ2 variants
(with a shorter C-terminal) are associated with suppressed channel activity, concordant
with an effect on neuronal hyperexcitability, characteristic of a manic state [110]. The
human ether-à-go-go related (hERG) gene, encoding for the Kv11.1 channel, has also been
linked with schizophrenia [111]. Due to the pivotal role for the hERG channel in cardiac
repolarization [112], we will discuss its significance in the pathological outcome of brain
disorders in subsequent sections below.

Distinct and targeted pharmacological interventions for treatment of psychiatric dis-
orders are known to interact with ion channels, suggesting a potential involvement of
off-target cardiac effects of pharmacological treatments designed to treat neurological dis-
orders. Typical antidepressant drugs such as SSRIs have been shown to have an inhibitory
effect on Na channel function [113], and more importantly, an elevation in whole-body
residual Na concentration has been observed in patients with depression and particu-
larly those in a manic state, which is an important signature of bipolar disorder and
schizophrenia [114]. Similarly, lithium, a well-known pharmacologic, which is used for the
treatment of bipolar disorders, has been shown to block cardiac Na channels [115], leading
to the unmasking of adverse ECG abnormalities that are characteristic of the Brugada
syndrome [116]. Furthermore, Ca channel blockers, such as verapamil and nicardipine,
generally used in the treatment of angina, hypertension and supraventricular arrhythmias,
have also been shown to display antipsychotic effects [117].

Moreover, antiepileptic drugs that target ion channels are generally prescribed as an
effective treatment option for psychiatric disorders (schizophrenia, bipolar and anxiety
disorders). For example, a variety of non-selective Na channel blockers initially designed
as antiepileptics have also been used as effective therapeutics as mood stabilizers and
antidepressants [118], while K channel enhancers or activators act as antipsychotics and/or
anticonvulsants [119,120]. This broad therapeutic effect of antiepileptic drugs further
reinforces the shared pathophysiology that exist between epilepsy and psychiatric dis-
orders and suggests adverse ion channel modulation as a key mechanism linking these
pathologies [121].

5. hERG and IKr Channel Modulation as an Important Pathological Link between
Neuronal Disorders and Vulnerability to Arrhythmias

In human heart, hERG1a/1b subunits coassemble to generate IKr [112], which is
important for normal repolarization [122]. Pathological depression of cardiac IKr, either
due to inherited mutations in hERG or drug-induced, results in a delayed repolarization
leading to the prolongation of the QTc interval, a disease state that predisposes to fatal
arrhythmias such as Torsades des Pointes [123,124], which affects the young and also the
old and ultimately the transition to heart failure and sudden cardiac death. hERG channel
subunits have an important function in other cell types including neuronal and muscle cells
(neuroblastoma cells, neuroendocrine cells and smooth muscle fibers of gastrointestinal
tract) [122]. hERG1 is predominantly expressed in the heart, although in the brain, currents
through hERG1 channel subunits play an important role in neuronal excitability and firing,
while hERG2 and hERG3 are exclusively expressed in the brain [125–127].
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Similarly, hERG channels expressed in dopamine neurons have been shown to reg-
ulate neuronal excitability [126], suggesting that similar, if not identical, hERG channel
biophysical properties may exist in both cardiomyocytes and neuronal cells. This notion is
reinforced by the demonstration that antipsychotic drugs that display antidopaminergic
properties have been shown to interact with hERG channels [128] and this non-selective
effect has been suggested to contribute to the therapeutic activity [126] and possible cardiac
off-target effects. In most cases of targeted modification of cardiac hERG channel function,
major underlying molecular mechanisms include defects in channel gating and traffick-
ing [112,129,130]. Therefore, it would be interesting to know whether similar mechanisms
underlie neuronal hERG channel functional properties.

Huffacker and others [131] have previously reported the expression of a primate- and
brain-specific hERG channel isoform KCNH2-3.1, whose encoding gene is localized in
close proximity to the risk-associated SNPs for schizophrenia. This novel isoform has been
identified in specific brain regions of individuals affected with schizophrenia and found to
harbor schizophrenia susceptibility alleles [131]. In patients with schizophrenia, these risk
alleles have not been associated with changes in the functional expression of KCNH2-1a
and KCNH2-1b, but the ratio between KCNH2-3.1 and KCNH2-1a isoform was 2.5-fold
higher compared to healthy subjects, suggesting that overexpression of the KCNH2-3.1
isoform could have a prominent role in the pathogenesis of this psychiatric disease [131].
Electrophysiological assays in both HEK cells and rat primary cortical transfected neurons
have revealed that currents generated by KCNH2-3.1 subunits display rapid deactivation
kinetics, possibly due to the lack of the N-terminal domain crucial for slow deactivation.
This biophysical property may underlie increases in spike frequency and the switch from
adapting to non-adapting firing patterns in cortical neurons [131]. Therefore, its enhanced
expression is associated with increased neuronal excitability, matching the results observed
in brain areas of psychiatric subjects [111,131].

Subjects with the risk genotype associated with higher expression of the KCNH2-3.1
isoform seem to have an increased response to antipsychotic drugs, emphasizing this
variant as a possible therapeutic target [132]. The brain specific expression of KCNH2-3.1
could be a highly beneficial target for future treatment options for neurological disorders
but without the off-target cardiac effects that are likely to predispose to arrhythmias
possibly through adverse modulation of hERG channel function.

6. Conclusions and Future Directions

It is becoming increasingly clear that distinct biological, behavioral and psychosocial
factors mediate the physiological link between mental illnesses and the increased risk
of CVD. Therapeutic strategies are also known to increase the risk for CVD. In fact, an-
tidepressants that target serotonin or norepinephrine reuptake, or antipsychotic drugs
blocking dopamine receptors, are the most commonly used therapeutics in clinical inter-
ventions [133], and several of these drugs are known to be proarrhythmic, mainly due to
their effect of cardiac hERG channels blockade.

Anti-inflammatory treatment strategies in neurological diseases have shown promis-
ing results mostly by limiting depressive symptoms [134]. Therefore, a combination of
therapeutics including those that target hyperinflammatory cellular signaling pathways,
could help to improve outcomes in patients. Moreover, considering the elevated proin-
flammatory profile found in different psychiatric disorders and the proarrhythmic effect
of specific cytokines, therapies that aim at lowering inflammation could both improve
psychiatric symptoms and reduce the risk for CVD and arrhythmias.

The majority of studies on the association between arrhythmias and psychiatric disor-
ders describe evidence for ventricular arrhythmias (LQT) but less is known for other forms
of arrhythmias. Few trials have attempted to investigate the prevalence of atrial fibrillation
in mental disorders, but found that panic disorder and likely anxiety, are associated with
increased incidence of atrial fibrillation [135,136]. Additional studies assessing the occur-
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rence of other types of arrhythmias in psychiatric disorders could provide further insight
into the pathological mechanisms of such diseases.

Further it is known that mental diseases are generally associated with behavioral
and/or lifestyle changes including smoking, poor diet, reduced physical activity, alcohol
and substance abuse and non-adherence to medications. Therefore, coupling therapeutics
with clinical interventions that limit significant changes in individual or multiple com-
binations of life-style behaviors is likely to reduce the risk of developing cardiovascular
diseases that predispose to heart failure.

Finally, the involvement of ion channels in the etiopathology of psychiatric disorders
may support the evaluation of alternative targets for the development of pharmacological
strategies. The evidence that subjects with a particular neuronal specific hERG isoform
(KCNH2-3.1) associated with schizophrenia show a higher responsiveness to antipsychotic
drugs and is a relevant example of ion channels as a therapeutic target. Therefore, a
comprehensive investigation of the functional interplay between cardiac and neuronal
ion channels in the pathogenesis of mental illness and CVD is likely to be rewarded by
mechanism-based insights that will help to improve the clinical limitations of existing
therapeutic and behavioral interventions in patients.
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