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Abstract

Ezrin has been reported to be upregulated in many tumors and to participate in metastatic progression. No study has
addressed epigenetic modification in the regulation of Ezrin gene expression, the importance of which is unknown. Here,
we report that highly metastatic rhabdomyosarcoma (RMS) cells with high levels of Ezrin have elevated acetyl-H3-K9 and tri-
methyl-H3-K4 as well as reduced DNA methylation at the Ezrin gene promoter. Conversely, poorly metastatic RMS cells with
low levels of Ezrin have reduced acetyl-H3-K9 and elevated methylation. Thus epigenetic covalent modifications to histones
within nucleosomes of the Ezrin gene promoter are linked to Ezrin expression, which in fact can be regulated by epigenetic
mechanisms. Notably, treatment with histone deacetylase (HDAC) inhibitors or DNA demethylating agents could restore
Ezrin expression and stimulate the metastatic potential of poorly metastatic RMS cells characterized by low Ezrin levels.
However, the ability of epigenetic drugs to stimulate metastasis in RMS cells was inhibited by expression of an Ezrin-specific
shRNA. Our data demonstrate the potential risk associated with clinical application of broadly acting covalent epigenetic
modifiers, and highlight the value of combination therapies that include agents specifically targeting potent pro-metastatic
genes.
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Introduction

Tumor genesis and progression to metastasis are fueled through

dysregulation of genes and/or signaling pathways resulting in

abnormal cell functions and behaviors [1–3]. Ezrin has been

reported to be upregulated in many tumors, where it can promote

the metastatic phenotype [4–6]. In particular, Ezrin was

determined to be a critical regulator of metastasis in pediatric

sarcomas such as rhabdomyosarcoma (RMS) and osteosarcoma

[7–9]. Ectopic expression of Ezrin in poorly metastatic cells

enhanced metastasis, whereas downregulation of endogenous

Ezrin in highly metastatic cells inhibited metastasis [7]. Ezrin

has also been implicated in the metastasis of breast cancer [10,11],

pancreatic adenocarcinoma [12], osterosarcoma [8,9], melanoma

[13,14] and prostate cancer [15].

Ezrin, encoded by Vil2, was identified 20 years ago as the first

member of the ERM family (Ezrin-Radixin-Moesin) within the

band 4.1 super family [16,17]. Ezrin is a physical and functional

linker between the plasma membrane and the actin cytoskeleton

and an organizer of membrane-cytoskeleton–associated complex-

es. As such, Ezrin is known to mediate multiple cellular activities

including survival, adhesion and migration/invasion [16–18],

thereby regulating tumor development and progression through

signal transduction pathways involving protein kinase A, Rho,

phosphatidylinositol 3-kinase/Akt, mitogen-activated protein ki-

nase (MAPK) and Src [16–20]. Although the function of Ezrin is

well studied, the transcriptional regulation of Ezrin is poorly

understood.

The process of gene transcription is controlled through

orchestration of myriad transcription factors and epigenetic

modifications. Our previous study showed that the homeoprotein

transcription factor Six1 could bind to the mouse Ezrin gene (vil2)

promoter and regulate its transcription [21]. A recent study

proposed that transcriptional factors Sp1 and AP-1 might regulate

expression of the human Vil2 gene in esophageal carcinoma cells

[22]. However, no study has addressed the importance of

epigenetic modification in the regulation of Ezrin gene expression.

Unlike transcription factors, which physically and transiently

bind to gene promoter regions and function in the process of

transcription [23], epigenetic modulations of the genome involving

histone modifications and DNA methylation at gene promoter

regions, altering the gene chromatin configuration. A decondensed

(‘open’) configuration allows DNA binding proteins such as

transcription factors access to binding sites, whereas a condensed

(‘closed’) configuration blocks transcription binding sites, thereby

regulating gene transcription [24]. Ample evidence suggests that

epigenetic mechanisms play a significant role in the development

and progression of tumorigenesis. Epigenetic changes such as

acetylation, deacetylation and methylation of chromatin histone

protein and DNA methylation result in the alteration of gene

expression [25,26]. Chromatin histone acetylation by histone

acetytransferase (HAT), deacetylation by histone deacetylase
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(HDAC) and methylation by histone lysine methytransferases

(HMT) can alter chromatin structure and dynamically affect

transcriptional regulation [24]. In general, acetylation of core

histone lysine by HAT has been associated with increased gene

transcription, whereas deacetylation of core histone lysine by

HDAC has been related to decreased gene transcription; for

example, acetylated histone H3 lysine 9 (acetyl-H3-K9) is

frequently associated with gene activity [25]. In contrast, histone

lysine methylation can result in either activation or repression,

depending on the residue on which it resides. Histone H3 lysine 4

(H3-K4) methylation is a well-known ‘active’ marker, but

methylation of histone H3 lysine 9 (H3-K9) is a marker of gene

inactivity [25,26]. Associated with histone modification, DNA

methylation regulated by DNA methytransferase (DNMTs) at the

cis-regulatory region (CpG islands) of genes also acts as an

epigenetic switch to turn gene expression on or off. When DNA is

methylated in the promoter region of genes, where transcription is

initiated, they are typically inactivated and silenced [27–29].

In the current study, we examined the status of histone

modification and DNA methylation at the Ezrin gene locus in

highly and poorly metastatic RMS cell lines. We found that RMS

cells with elevated Ezrin expression and high metastatic potential

had greater acetylation of histone H3 lysine 9 (acetyl-H3-K9) and

tri-methylation of histone H3 lysine 4 (tri-methyl-H3-K4). In

contrast, RMS cells with low Ezrin expression and poor metastatic

potential had diminished levels of acetyl-H3-K9 and tri-methyl-

H3-K4 instead of high levels of di-methylation of histone H3 lysine

9 (di-methyl-H3-K9). The status of DNA methylation at the Ezrin

gene promoter region correlated with histone modification and

Ezrin expression. Treatment with inhibitors of histone deacetylase

(HDACis) and DNA methylation restored (or upregulated)

expression of Ezrin and enhanced metastatic behavior. Our data

demonstrate for the first time that epigenetic covalent modifica-

tions to histones within nucleosomes of the Ezrin gene promoter

are linked to Ezrin expression, and hence to metastastic behavior.

Results

Epigenetic modifications at the Ezrin gene locus are
linked to its expression

We previously reported that Ezrin expression was significantly

increased in highly metastatic mouse RMS cell lines compared to

poorly metastatic cell lines [7,21], but the mechanism by which the

Ezrin gene is regulated, and the role of epigenetic modification,

remain mostly unknown. To explore these mechanisms, we

evaluated the covalent modifications within the histone H3 tails

of the Ezrin gene by western blotting. Two mouse RMS cell lines,

RMS772 and RMS14, were used for comparative analysis.

RMS772 cells have very low or undetectable expression of Ezrin

and poor metastatic potential in vivo; RMS14 cells have a high

level of Ezrin protein and high metastatic potential [7,21]. As

shown in Figure 1A, high-Ezrin RMS14 cells have an elevated

level of acetylation of histone H3 lysine 9 (acetyl-H3-K9) and tri-

methylation of histone H3 lysine 4 (tri-methyl-H3-K4), but a lower

level of di-methylation of histone lysine 9 (di-methyl-H3-K9). In

contrast, low-Ezrin RMS772 cells have reduced actyl-H3-K9 and

tri-methyl-H3-K4, but a notably higher level of di-methyl-H3-K9.

This finding led us to hypothesize that chromatin/histone

modifications help regulate Ezrin gene transcription. To confirm

this, we performed ChIP assays to analyze histone modifications

across an 8 kb region of the Ezrin gene promoter in RMS14 and

RMS772 cells using 6 paired primers (Figure 1B-a). The results

show that acetylated and/or methylated histone H3 had different

patterns of enrichment within the Ezrin gene promoter in the two

RMS cell lines. Di-methyl-H3-K9 was enriched along the Ezrin

gene promoter (across 8 kb) in RMS772 cells (Figure 1B-b). In

contrast, acetylated-H3-K9 was relatively enriched along the

entire hyperacetylated region in RMS14 cells (Figure 1B-c). Tri-

methyl-H3-K4 appeared to be enriched around the transcription

start site in RMS14 cells relative to RMS772 cells, although no

difference was observed in the other regions (Figure 1B-d).

Historically, di-methyl-H3-K9 enrichment has been associated

with gene silencing, and acetyl-H3-K9 and tri-methyl-H3-K4 with

gene activation [24,25]. These data are consistent with our

previous results, which showed that Ezrin expression levels are

higher in RMS14 than in RMS772 (Figure 1A), suggesting that

Ezrin expression correlates with histone H3 tail modification.

Beside histone modification, another epigenetic mechanism by

which gene transcription can be regulated is through promoter

DNA methylation. Promoter hypermethylation is known to silence

gene expression, whereas hypomethylated promoters are generally

transcriptionally active [29]. Therefore, we next used methylation-

specific PCR to compare methylated DNA and unmethylated

DNA in the Ezrin gene promoter in RMS14 cells and RMS772

cells. We found that the Ezrin gene promoter in RMS14 cells was

unmethylated, whereas in RMS772 cells the Ezrin promoter was

overtly methylated (Figure 1C). These results indicate that histone

and DNA modifications at the Ezrin gene promoter locus correlate

with the expression level of Ezrin, and suggest that these

modifications regulate Ezrin gene expression.

HDAC inhibitors and demethylating agents reactivate
Ezrin gene expression

Epigenetic changes are known to be reversible. HDACis such as

trichostatin A (TSA) can increase expression of genes by inhibiting

histone deactylase activity. Inhibitors of DNA methylation such as

5-aza-29-deoxcytidine (5-Aza) can demethylate promoter regions

and reactivate silenced genes, restoring their function [30]. To

determine if the epigenetic changes we detected could be further

linked to Ezrin expression, we examined Ezrin expression by qRT-

PCR following treatment with either TSA or 5-Aza. After a 24-

hour treatment with 300 nM TSA, the level of Ezrin expression

was increased in RMS772 cells (Figure 2A); a similar result was

found after a 48-hour treatment with 1 mM 5-Aza in RMS772

cells (Figure 2B). Notably, these drugs did not affect Ezrin

expression in RMS14 cells, where the Ezrin gene is already highly

expressed (Figure 2A and B) and its chromatin characterized by

high histone acetylation and low DNA methylation (Figure 1).

These results show that both the HDACi TSA and the DNA

demethylating agent 5-Aza can reactivate Ezrin expression, and

link modifications at the Ezrin gene locus with its expression.

Epigenetic agents can regulate metastatic potential
through modulation of Ezrin gene expression

We and others have reported that Ezrin is a critical regulator of

metastasis in RMS and osteosarcoma [7–9], and our data now

show that HDACis and DNA demethylating agents can restore

Ezrin expression. Many HDACis as well as DNA demethylating

agents are currently in clinical trials as anticancer drugs [31,32].

This raises the disturbing possibility that epigenetic drugs may be

capable of enhancing metastasis. To address this question, we first

pretreated cultured RMS772 cells with either TSA or 5-Aza, then

introduced those cells into athymic nude mice by tail vein

injection. The metastatic ability of RMS772 cells pretreated with

either drug was elevated significantly compared with untreated

cells (Figure 3A). To determine if epigenetic drug-stimulated

metastasis is associated with Ezrin expression, a vector expressing
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Ezrin shRNA and GFP was introduced into poorly metastatic,

low-Ezrin RMS772 cells. Pools of shRNA-GFP positive cells,

purified by three rounds of GFP-based FACS, were used for

experimental metastasis. Ezrin shRNA successfully down-regulat-

ed endogenous Ezrin, and also abrogated the TSA- and 5-Aza-

enhanced Ezrin expression (Figure 3B). After pretreatment with

TSA or 5-Aza for 48 hours in culture, the transfected RMS772

cells were injected into athymic nude mice and their metastatic

potential determined. Both drugs again significantly stimulated the

pulmonary metastasis of control RMS772 cells; however, their

ability to stimulate metastasis was now inhibited by expression of

Ezrin shRNA (Figure 3C, D).

To evaluate the effects of epigenetic drugs on metastasis in a

more relevant preclinical mice model, we designed and performed

animal studies focusing on the two HDACis TSA and valproic

acid (VPA). Immediately following injection of parental RMS772

cells into athymic nude mice, two different doses of each drug were

administered to mice over the next four days either by

intraperitoneal injection for TSA (administered once per day), or

in the drinking water for VPA. Mice injected with parental

RMS772 cells and treated with either of the HDACis bore a

significantly higher number of pulmonary metastases (Figure 4A,

B, C, D left panels). However, mice injected with RMS772 cells

that had been transfected with shRNA Ezrin developed signifi-

cantly fewer metastases despite the presence of either HDACi,

essentially the same number as the untreated control group

(Figure 4A, B, C, D right panels). Immunohistochemical staining

showed that Ezrin expression in the metastases derived from mice

treated with HDACis was more intense (Figure 4E) and had an

increased percentage of strong positive cells (mock 1.96%, TSA

20.18% and VPA 30.33%) and positive cells (mock 46.62%, TSA

71.76%, and VPA 62.62%) (Figure 4F), indicating that the

HDACis had increased Ezrin expression in this preclinical mouse

model. Taken together, our data indicate that HDACi treatment

Figure 1. Epigenetic modifications at the Ezrin gene locus are linked to its expression. (A) Comparative expression and activity of histone
H3 tail proteins were analyzed by Western blotting in RMS772 and RMS14 cells. RMS772 cells with low level Ezrin have a higher level of di-methyl-
H3K9, but lower levels of actyl-H3K9 and tri-methyl-H3K4; in contrast, RMS14 cells with higher level Ezrin have higher levels of acetyl-H3K9 and tri-
methyl-H3K4, but a lower level di-methyl-H3K9. (B) Comparative analysis of histone modifications at the Ezrin gene promoter was performed by
chromatin immunoprecipitation (ChIP) in RMS772 cells (purple line) and RMS14 cells (blue line). Six pairs of primers were designed for covering an
8 kb region of the Ezrin gene promoter (a). Enriched chromatin DNA immunoprecipitated with anti-di-methyl-H3K9 (b), anti-acetyl-H3K9 (c) or anti-tri-
methyl-H3K4 (d) were amplified by PCR using six pairs of primers. The data were analyzed using Image J software and normalized with input. Purple
line represents data from RMS772 cells; blue line represents data from RMS14 cells. (C) The status of DNA methylation within the Ezrin gene promoter
was analyzed by methylation-specific PCR using specific methylated Ezrin promoter primers and specific unmethylated Ezrin promoter primers. M,
methylated promoter; U, unmethylated promoter.
doi:10.1371/journal.pone.0012710.g001
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can actually enhance the metastatic potential of RMS in vivo, and

that this increase is mediated by epigenetic deregulation of Ezrin

gene expression.

Studies have shown that epigenetic drugs can affect a number of

tumor cell phenotypes, including proliferation [31]. Interestingly,

despite their ability to enhance metastasis, we discovered that the

number of cultured RMS772 cells was significantly reduced when

exposed to either TSA or 5-Aza (Figure 3E). These epigenetic

agents also reduced the number of cultured metastatic RMS14

cells (Figure 5C). Expression of Ezrin shRNA did not alter the

ability of TSA or 5-Aza to influence cell growth (Figure 3E and

Figure 5C), indicating that this ability of these epigenetic drugs is

independent of Ezrin.

We have demonstrated the risk of epigenetic drug treatment on

otherwise poorly metastatic tumor cells in which potent pro-

metastatic genes such as Ezrin can be epigenetically upregulated.

What then are the consequences in cells that are already highly

metastatic, such as high-Ezrin RMS14? Neither TSA nor 5-Aza

overtly affected Ezrin expression in metastatic high-Ezrin RMS14

cells (Figure 2A, B). Pretreatment of cultured RMS14 cells with

either TSA or 5-Aza did not affect metastasis significantly

(Figure 5A and B), although the number of metastases was

reduced. Similarly, no significant difference in metastasis of

parental RMS14 cells was found in mice treated by either TSA

or VPA (Figure 5D, E). Consistent with in vitro results in which

TSA and 5-Aza failed to affect Ezrin expression in high-Ezrin

RMS14 cells (Figure 2A and B), immunostaining showed that

these drugs did not overtly affect Ezrin expression in RMS14 cells

in vivo (Figure 5F and G). However, the HDACis had a more

significant effect on RMS14 cell metastasis when Ezrin gene

expression was simultaneously reduced by the Ezrin-specific

shRNA (Figure 5A and D). As in RMS772 cells, TSA and 5-

Aza were able to significantly inhibit RMS14 cell growth in vitro

(Figure 5C). Taken together, data from our model reveal that the

potential for epigenetic drugs to stimulate metastasis correlates

with its ability to induce expression of potent pro-metastasis genes,

and suggests that the inhibition of pro-metastasis genes such as

Ezrin can enhance, or even be required for, the efficacy of

epigenetic drugs in treating RMS patients.

Discussion

Epigenetics is a rapidly evolving field that attempts to explain

how heritable changes in gene expression occur without altering

nucleotide sequence [33]. Increasing evidence now indicates that

epigenetic regulation plays a crucial role in the regulation of gene

expression [34,35]. Here, we report for the first time that Ezrin,

which links the plasma membrane to the cytoskeleton [16,17], is

regulated by epigenetic modifications including histone modifica-

tions and DNA methylation to the promoter region. Upregulation

of Ezrin gene expression is associated with the histone ‘active code’

(acetyl-H3-K9 and tri-methyl-H3-K4) and with unmethylated

CpG islands within the Ezrin promoter; in contrast, downregu-

lation of Ezrin is linked to the histone ‘repressive code’ (di-methyl-

H3-K9) and with methylated CpG islands. HDACis such as TSA

and DNMT inhibitors such as 5-Aza are well known epigenetic

drugs [30–32]. We show that treatment with either TSA or 5-Aza

enhances Ezrin levels in cells characterized by low Ezrin

expression such as RMS772 cells, further corroborating the

epigenetic regulation of Ezrin.

Ezrin, whose expression correlates with progression in many

tumor types, is involved in multiple metastatic pathways [16–18].

For example, Ezrin interacts with the cell surface receptor CD44

to promote invasiveness [36–38], and incites metastasis via Rho

activation [7,39]. Ezrin plays a role in metastasis-associated cell-

adhesion functions through interactions with E-cadherin [40].

Ezrin also influences cell adhesion and migration as a downstream

target of Src [20,41], and as a direct target of MET, a receptor

tyrosine kinase frequently implicated in metastatic behavior

[42,43]. We previously reported that Ezrin is a direct transcrip-

tional target of the homeoprotein Six1, and the predominant

mediator of Six1-stimulated metastasis [21]. Our findings in this

study that epigenetic modifiers can upregulate Ezrin expression

prompted us to explore the functional consequences of exposure to

HDACi and demethylation agents on metastasis.

Based on their ability to reactivate tumor suppressor genes

silenced by DNA methylation and chromatin modification, DNA

methylation inhibitors and HDACis are emerging as a new class of

anticancer agents and are in many ongoing patient treatment

regimens [30–32,44–46]. Tumor suppressor genes reactivated by

epigenetic agents include p53, p16, p21 and PTEN, thereby

inhibiting cell proliferation, survival, angiogenesis, cell migration

and metastasis [46–49]. Consistent with these reports, our data

suggest that TSA and 5-Aza can both inhibit cell proliferation.

However, their effect on Ezrin gene expression in tumor cells

raised the possibility that metastatic potential could none-the-less

be enhanced, a possibility that we confirm in this report; the ability

of epigenetic drugs to stimulate metastasis in our RMS cell lines

was found to be associated with Ezrin expression.

It is worth noting that this is likely not a RMS-specific

phenomenon. These same drugs were also able to increase Ezrin

expression and enhance the metastatic potential of human

melanoma A375 cells, while inhibiting cell growth (Supplementary

Figure S1).

However, neither epigenetic drug significantly affected Ezrin

expression in metastatic high-Ezrin RMS14 cells; moreover, their

influence on RMS14 metastasis was minimal. This is likely due in

large part to the fact that the Ezrin gene locus in RMS14 cells is

Figure 2. HDAC inhibitor (TSA) and DNA demethylating agent
(5-Aza) reactivate Ezrin gene expression. The expression of Ezrin
was analyzed by RT-PCR after treatment with 300 nM TSA or 1 mM 5-
Aza in RMS772 and RMS14 cells. (A) and (B) Ezrin expression in different
time courses after treatment with TSA (A) or 5-Aza (B) in RMS772 and
RMS14 cells. M, DNA molecular marker; 18s rRNA, internal controls.
doi:10.1371/journal.pone.0012710.g002
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already epigenetically configured for high Ezrin expression.

Regardless, both TSA and 5-Aza ‘‘worked’’ in RMS14 cells,

dramatically inhibiting cell growth in an Ezrin-independent

fashion. Interestingly, when Ezrin gene expression was reduced

(i.e., using forced expression of Ezrin-specific shRNA; 7, 21), the

combination of HDACi then had an inhibitory effect on

metastasis. Our findings suggested that the ability of TSA or 5-

aza to stimulate metastasis correlates with its ability to induce

Ezrin expression.

Our data support the notion that anticancer agents can drive

tumor promotion and metastasis [50,51], and that an epigenetic

drug can be a double-edged sword. Epigenetic drugs can affect

many genes and multiple pathways, including some capable of

inducing cancer cell migration and invasion, such as CCR7,

CXCR4, uPA and ROS [52–55]. Clearly, the well-known ability

of epigenetic drugs to block proliferation is not sufficient to inhibit

metastatic behavior, at least in the RMS cells we tested. This

finding may help to explain the not infrequent failure of these

promising agents in the clinic.

In summary, three key points of our work are of clinical

relevance with respect to metastasis. First, expression of pro-

metastatic Ezrin can be regulated by epigenetic modification, thus

representing a model for assessing the relationship between

epigenetic modification and metastasis. Second, commonly

employed epigenetic modifiers can restore Ezrin expression, and

with it metastatic potential, highlighting the potentially adverse

effects on specific patient populations. Third, treatment using such

epigenetic drugs can still be effective if expression of pro-metastatic

genes such as Ezrin gene is controlled. Our data suggest that the

potential for epigenetic drugs to stimulate metastasis in the clinic

correlates with its ability to induce expression of potent pro-

metastasis genes, and that simultaneous inhibition of these genes,

such as Ezrin, can enhance or even be required for the clinical

efficacy of epigenetic drugs. We suggest that Ezrin might represent

a new class of prognostic markers for assessing the metastatic risk

of epigenetic drugs, and a novel therapeutic target for developing

more efficacious combination treatment strategies.

Methods

shRNA plasmids and antibodies
Three shRNA expressing plasmids were used in this study: one

was constructed in the pSUPER vector employing synthesized

double stranded DNA fragments directed against nucleotides 174

to 194 of the mouse ezrin (XM-123004) coding region [7,21],

using pSUPER as control; the other two were based on pGIPZ

(NM_009510), purchased from Open biosystems (Huntsville, AL).

Antibodies used included: anti-Ezrin (Sigma, St. Louis, MO); anti-

histone H3, anti-tri-methtl-histone H3 (Lys4), anti-di-methyl-

histone H3 (Lys9), anti-acetylaed histone H3 (Lys9) (Upstate,

Figure 3. Epigenetic agents regulate metastatic potential in pretreated cultured RMS772 cells. (A) Gross pulmonary metastases from
pretreated cultured RMS772 cell with either 300 nM TSA (24 or 48 hours) or 1 mM 5-Aza (48 hours) in cell culture. After pretreated with epigenetic
agents, 26105 cells were injected into athymic nude mice by tail vein. (B) Ezrin expression after treatment with TSA and 5-Aza for 48 hours in RMS772
cells with stably transfected shRNA Ezrin expression vector (RMS772 shEz) or empty vector (RMS772C). M, DNA molecular marker; 18s rRNA, internal
controls. (C) and (D) Gross pulmonary metastases from cells with stably transfected shRNA Ezrin expression vector (+) or empty vector (2) pretreated
with either 300 nM TSA (C) or 1 mM 5-Aza (D) for 48 hours in cell culture. After pretreated with epigenetic agents, 56105 cells were injected into
athymic nude mice by tail vein. (E) Cell growth was represented by the number of cells. RMS772 cells with stably transfected shRNA Ezrin expression
vector (shEzrin) or empty vector (vector) were treated with 300 nM TSA (red rectangle), 1 mM 5-Aza (green rectangle) or mock DMSO (Blue rectangle)
for 48 hours.
doi:10.1371/journal.pone.0012710.g003
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Figure 4. Epigenetic agents regulate metastatic potential in preclinical mice model. (A) and (B) Gross pulmonary metastases from mice
treated with TSA (A) or VPA (B). Mice harboring 56105 RMS772 cells stably transfected with the shRNA Ezrin expression vector (shEzrin) or empty
vector (vector) were treated with two different doses of TSA or VPA for four days. (C) and (D) Representative histopathology (H&E staining) of lung
sections with metastases from mice treated with TSA (C) or 5-Aza (D). Vector, lung section from mouse inoculated with RMS772 cells with empty
vector control; shEzrin, lung section from mouse inoculated with RMS772 transfected with the shRNA Ezrin expressing vector. (E) Ezrin expression as
determined by immunohistochemical staining in metastases derived from mice bearing RMS772 cells treated with 2 mg/kg TSA (TSA) or 0.8% VPA
(VPA). H&E, hematoxylin and eosin staining; Ezrin, immunohistochemical staining with anti-Ezrin antibody; 20X. (F) Immunoreactivity score of Ezrin
expression in metastases from mice treated with 2 mg/kg TSA (TSA) or 0.8% VPA (VPA). Quantitative scores, which were analyzed using ImageScope
V10.0 software from Aperio Technololgies, presenting the percentage of cells in strongly positive, positive, weakly positive and negative for
immunohistochemical staining with an anti-Ezrin antibody.
doi:10.1371/journal.pone.0012710.g004
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Figure 5. Phenotypic effects of epigenetic drugs on RMS14 cells. RMS14 cells with high-level endogenous Ezrin have high metastatic
potential. (A) and (B) Gross pulmonary metastases from RMS14 cells stably transfected with an shRNA Ezrin expression vector (+) or empty vector (2),
pretreated with 300 nM TSA (A) or 1 mM 5-Aza (B) for 48 hours in cell culture. (C) Growth rate of RMS14 cells treated with TSA or 5-Aza stably
transfected with either shRNA Ezrin expression vector (RMS14 shEz) or empty vector (RMS14C). There was no statistic difference in cell number
between RMS14C and RMS14 shEz in the DMSO group, but treatment with either TSA or 5-Aza significantly inhibited cell growth in both RMS14C and
RMS14 shEz cells (*p,0.0001). (D) Gross pulmonary metastases from mice treated with TSA or VPA. Mice harboring RMS14 cells stably transfected
with either the shRNA Ezrin expression vector (RMS14 shEz) or empty vector (RMS14C) were treated with TSA or VPA for four days. (E) Representative
histopathology (H&E staining) of lung sections with metastases from mice bearing RMS14C and RMS14 shEz cells treated with TSA or VPA. (F) Ezrin
expression assessed by immunohistochemical staining in metastases derived from mice treated with 2 mg/kg TSA or 0.8% VPA; H&E, hematoxylin
and eosin staining; Ezrin, immunohistochemistry staining with anti-Ezrin antibody; IgG, negative control. 20X. (G) Immunoreactivity score of Ezrin
expression in metastases from mice treated with 2 mg/kg TSA or 0.8% VPA. Ezrin expression in tissue sections was visualized using an anti-Ezrin
antibody, and quantified using ImageScope V10.0 software from Aperio Technololgies; the percentage of cells that were strongly positive, positive,
weakly positive or negative for Ezrin is presented.
doi:10.1371/journal.pone.0012710.g005
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NY); anti-b-actin (Santa Cruz Biotechnology Inc, Santa Cruz,

CA).

Cell lines and cell culture
RMS772 and RMS14 cell lines were derived from RMS tumors

arising in HGF/SF-transgenic, Ink4a/Arf-deficient mice [7].

RMS14 shEz cell line and RMS14C cell line were establised in

our previous study by stably transfected with either pSUPER

shRNA Ezrin or pSUPER empty vector [7]. RMS772 was

characterized by low Ezrin levels [7]. The stable shRNA-

expressing RMS772 cells were established through transfection

of pGIPZ shEzrin or pGIPZ empty vector and sorting by

Fluorescence Activated Cell Sorting (FACS). All RMS cell lines

were maintained in RPMI1640 medium supplemented with 10%

Fetal Bovine Serum (FBS) (Invitrogen, Carlsbad, CA); A375 was a

gift from Dr. Isaiah Fidler at M.D. Medical Center (Houston,

Texas) and maintained in EME (Earle’s) with 10% FBS, 2 mM L-

glutamine, 2 x Vitamins, non-essential amino acids, 1 mM sodium

pyruvate.

Western blot
For detection of histone proteins, the acid extraction of protein

from cells (acid-extracted total protein from log phase cells) was

performed according to the following protocol. Briefly, cells were

grown to 70–85% confluency, collected and lysated in 5–10

volumes of lysis buffer (10 mM HEPES, pH 7.9; 1.5 mM MgCl2;

10 mM KCl; 0.5 mMDTT and 1.5 mM PMSF). HCl was added

to the cell lysate to a final concentration of 0.2 M. After 30

minutes of incubation on ice, the supernatant fraction containing

the acid soluble proteins was collected by centrifugation at

11,000 g for 10 minutes at 4uC. The supernatant was dialyzed

against 200 ml 0.1 M acetic acid twice for 2 hours each, and three

times against 200 ml water for 1 hour, 3 hours and overnight,

respectively. The dialyzed supernatant was collected for western

blot analysis. For detection of Ezrin and actin expression, see

reference [21,56].

Epigenetic drugs treatments
Cells were treated with mock (DMSO), 300 nM Trichostatin A

(TSA, Sigma, St. Louis, MO) or 1 mM 5-Aza-29 deoxycytidine (5-

Aza, Sigma, St. Louis, MO) for 12, 24, 48, 72, 96 hrs. Animals

used were male athymic nude mice between 4 and 6 weeks of age.

After being subjected to intraveneous injection via the tail vein

with cultured cells, all mice were treated for 4 days with either

TSA (1 mg/kg or 2 mg/kg) by injecting i.p. daily, or Valproic acid

(VPA, Sigma, St. Louis, MO) (0.4% or 0.8%) in drinking water,

and then put on regular water for the duration of the experiment.

All animals had to be held for between 3 weeks post injection to

achieve valid metastasis analyses. All mouse procedures were

performed according to NIH guidelines [the animal proposal:

LMB-052, approval by NCI-Bethesda Animal Care and Use

Committee (ACUC)].

Chromatin immunoprecipitation (ChIP) assays
ChIP assays were performed as previous described [21]. Briefly,

cells were formaldehyde cross-linked for 15 min at room

temperature (RT) by adding 0.1 volumes of cross-linking solution

directly to the culture medium in the plates. Cross-linking was

stopped by the addition of glycine to a final concentration of

125 mmol/L. Cells were washed twice with ice-cold PBS,

harvested in PBS by scraping, and subjected to ChIP analysis

following the Chromatin Immunoprecipitation Assay Kit manu-

facturer’s instructions (Upstate, NY). Immunoprecipitated DNAs

were analyzed by PCR using the different Ezrin promoter primers:

1, ctg cga aca ccc taa act ac and ctg act gaa gca aga acc ac; 2, tct

cca gcc cca act ttt atc and aca tcc cac cca tct gtc tc; 3, tgc cac atc

ctt gtc tgt c and ctc att aac cct gta gct gtc; 4, cct aga aaa cct cga aac

aca c and act cgc tcc tat ttg ctc c; 5, tgc ctc atc tcc tta tcc cc and tcc

tct agt cta tca acc ccc; 6, tcc agg cat ctg agg aat ac and gat cca agg

agc aac atc tac. The data were analyzed using Image J software

(NIH) and normilized with input.

Relative quantitative reverse transcriptase polymerase
chain reaction

Total RNA was extracted from cells using TRIzol Reagent

(Invitrogen, Carlsbad, CA). RNA concentration, purity, and

integrity were determined by UV spectrophotometry. Two mg of

total RNA were incubated with 30 ng random primer at 42uC for

30 min in a final volume of 20 ml reaction mixture containing 1 x

reaction buffer, 5 mmol/L dNTP, 10 mmol/L DTT, 0.5 U/ml

RNasin (Promega, Madison WI), and 200 U superscript RNase H-

M-MLV reverse transcriptase (Invitrogen, Carlsbad, CA), and the

reaction mixtures incubated at 95uC for 10 min. One-ml reaction

mixtures were amplified in 25 ml PCR reaction mixtures

containing 1 x PCR reaction buffer, 1.5 mmol/L MgCl2,

100 mmol/L dNTP, 5 pmol primers, 1 ml 18S rRNA primer set

(Ambion, Austin, TX) as internal standards and 1 U Taq DNA

polymerase (Invitrogen, Carlsbad, CA) for 30 cycles at 94uC, 30

seconds; 55uC, 30 seconds; and 72uC, 30 seconds. Following PCR,

10 ml of the reaction were run in a 2% agarose gel, the PCR bands

imaged using EAGLE EYE II (Stratagene, La Jolla, CA), and the

data analyzed using Image J software (NIH). The sense and

antisense primers used for mouse Ezrin were aca gag gca gag aag

aat gag and aca gag gca gag aag aat gag; for human Ezrin were tga

ggc aga gaa gaa cga g and caa gta tgg cac aga tgg aag [7].

Methylation-specific PCR (MSP)
DNA was first denatured to create single-stranded DNA and

then modified with sodium bisulfite followed by PCR amplification

using two pairs of primers, one pair specific for methylated DNA,

the other for unmethylated DNA. The specific methylated Ezrin

promoter primers: agaggttgtttaggttacgtgtacg and aactcaaaactcct-

taaaatccgat; the unmethylated Ezrin promoter primers: gaggttgtt-

taggttatgtgtatgg and aactcaaaactccttaaaatccaat. Specific primers

were designed using MethPrimer [57].

Experimental and spontaneous metastasis assays
For tail vein injection assays, cells were intravenously injected

via the tail vein into 5 – 6 week-old male athymic nude mice.

There were two different parent cell lines: RMS772 cells were

injected at 26105 or 56105, while RMS14 cells were injected at

16105. Human melanoma A375cells were injected at 16106.

Tumor numbers were obtained by visual inspection of tissues in

mice euthanized 21 days post-transplantation, and micrometasta-

ses were counted by pathologist’s evaluation after dissection of the

lung [7,21,56]. All mouse procedures were performed according to

NIH guidelines [the animal proposal: LMB-052, approval by

NCI-Bethesda Animal Care and Use Committee (ACUC)].

Immunohistochemistry
Lung tissues were fixed in 10% buffered formalin solution

(pH 7.2) for 16 h, and/or frozen in OCT compound and serially

sectioned to 15 mm at –20uC. Immunohistochemistry was

performed as described [56]. Immunoreactivity scores were

analyzed using ImageScope V 10.0 software from Aperio

Technologies (Vista, CA).
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Supporting Information

Figure S1 Epigenetic drugs TSA and 5-Aza inhibit cell growth

and enhance metastasis in human melanoma cells. (A) Expression

of Ezrin in human melanoma A375 cells after treatment with TSA

or 5- Aza for 48 hours. (B) Gross pulmonary metastases from cells

pretreated with 300 nM TSA and 1 mM 5-Aza for 48 hours in cell

culture. After pretreated with epigenetic agents, 16106 cells were

injected into 5 - 6 weeks-old male SCID (Severe combined

immunodeficiency) mice by tail vein. Tumor numbers were

obtained by visual inspection of tissues in mice euthanized 40 days

post-transplantation. Both TSA and 5-Aza significantly stimulated

pulmonary metastasis. (C) Cell growth was significantly inhibited

by pretreatment with 300 nM TSA or 1 mM 5-Aza-dc for

48 hours.

Found at: doi:10.1371/journal.pone.0012710.s001 (3.37 MB TIF)
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