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Abstract
Background: Time series gene expression data analysis is used widely to study the dynamics of
various cell processes. Most of the time series data available today consist of few time points only,
thus making the application of standard clustering techniques difficult.

Results: We developed two new algorithms that are capable of extracting biological patterns from
short time point series gene expression data. The two algorithms, ASTRO and MiMeSR, are inspired
by the rank order preserving framework and the minimum mean squared residue approach,
respectively. However, ASTRO and MiMeSR differ from previous approaches in that they take
advantage of the relatively few number of time points in order to reduce the problem from NP-
hard to linear. Tested on well-defined short time expression data, we found that our approaches
are robust to noise, as well as to random patterns, and that they can correctly detect the temporal
expression profile of relevant functional categories. Evaluation of our methods was performed
using Gene Ontology (GO) annotations and chromatin immunoprecipitation (ChIP-chip) data.

Conclusion: Our approaches generally outperform both standard clustering algorithms and
algorithms designed specifically for clustering of short time series gene expression data. Both
algorithms are available at http://www.benoslab.pitt.edu/astro/.

Background
Time series experiments have been widely used to study
the dynamic behavior of the cells in a variety of biological
processes, including cell proliferation [1], development
[2], and response to extracellular stimuli [3,4]. Time series
data can be broadly divided into two classes: the short-time
series with few sampled time points (typically 3–8) and
long-time series with more than 10 time points sampled.
Most algorithms used to analyze time series datasets ini-

tially were based on general clustering methods like hier-
archical clustering [5], k-means [6], Bayesian networks
[7], and self-organizing maps [8]. Although these meth-
ods are capable of revealing some biological features, they
are not taking into consideration the sequential nature of
the time series data. More recently, some groups suggested
methodologies specifically designed for clustering time
series expression data, including the use of continuous
representation of expression profiles [9], hidden Markov
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models [10], and others [11-14]. However, algorithms
such as those developed by Bar-Joseph et al. [9], De Hoon
et al. [12] and Peddada et al. [13] perform better on long
time series datasets where the statistical power is higher.
For short time series data, which represent about 80% of
the time series gene expression datasets [15], they are
expected to perform less optimal due to data overfitting
caused by the small number of sampled time points.

In order to avoid that, some researchers have suggested
the use of predefined patterns of expression profiles
(either taken directly from the data or from prior biologi-
cal observations) and matching the observed data to these
profiles using some cost function [15-18]. Such
approaches usually identify a large number of patterns,
but many of them may arise randomly from noise due to
the small number of sampled time points. The algorithm
proposed by Ernst et al. [15] is capable of partially correct-
ing for this problem with the implementation of heuris-
tics: the user is required to select a set of potential profiles
that are expected to represent better the real biological
nature of such data. Last but not least, almost all of the
approaches mentioned above use a cost function followed
by a greedy algorithm to find clusters. As we will show
later, such approaches may miss some biologically signif-
icant characteristics of the data.

In this paper, we present two new algorithms, ASTRO and
MiMeSR, respectively, which are specifically designed to
identify biologically relevant clusters of genes from short
time series data. ASTRO and MiMeSR are inspired by the
order preserving framework and the minimum mean squared
residue approach, respectively. Other algorithms have
used the same principles in the past, but in the bicluster-
ing context [19-21], which makes such algorithms NP
hard [21]. We demonstrate the utility of ASTRO and
MiMeSR using several well-defined short time datasets.
We show that our approaches are robust to noise and ran-
dom patterns and they can correctly detect the temporal
expression profile of relevant functional categories in lin-
ear time. Comparative analysis also showed that our
approaches outperform both general clustering algo-
rithms and algorithms designed specifically for short time
series gene expression data.

Results and Discussion
Robustness to noise
To test the robustness of ASTRO and MiMeSR to noise, we
generated three sets of data, 1000 rows and 3, 5, and 7
time points respectively, with five order preserving sub-
matrix which at the same time verify the minimum mean
squared residue property embedded in it (domain knowl-
edge). Then, we added 0%, 1%, 3%, and 5% level of noise
into the simulated data. We ran each algorithm several
times on each set of data and plot the average of the

Adjusted Rand index (Figure 1). The Adjusted Rand index
values lies between 0 and 1. Larger value means higher
similarity between the clustering results. If the simulated
result is perfectly consistent to the domain knowledge, the
index value will be 1. If a clustering is no more than a ran-
dom choice, the index will be zero [22]. The results in Fig-
ure 1 show that both algorithms perform equally well on
the 5 time points dataset, while ASTRO is more robust on
the 3 time points datasets and MiMeSR on the 7 time
points dataset.

Application on Saccharomyces cerevisiae amino acid 
starvation dataset
We tested the ability of ASTRO and MiMeSR to identify
biologically relevant clusters from short time series data
using the yeast amino acid (AA) starvation dataset [3].
Saccharomyces cerevisiae response to stress by AA starvation
is measured at time points 0.5 h, 1 h, 2 h, 4 h, and 6 h and
at the control (unstimulated) cells (time point 0 h). The
data was filtered to remove genes with missing values and
genes whose expression level did not change substantially
between time points, filtering threshold ε < 2.0 for ASTRO
and MiMeSR. The results show that both our approaches
can correctly identify the temporal profiles of relevant
functional groups. Statistical evaluation of our clusters
was performed using external datasets, like the GO catego-
ries [23] and AA starvation ChIP-chip data [3,24]. Com-
pared to general clustering algorithms (e.g., k-means) and
algorithms designed specifically for clustering short time
series gene expression data [17,25], our techniques were
able to detect more significant patterns.

Evaluation using GO annotations
Figure 2A and 2B present the plot of the most significant
clusters identified in this dataset by ASTRO (Z = 10-7 to 10-

68) and MiMeSR (H < 2), respectively. The minimum
number of genes per cluster in both cases was set to Kmin
= 25. In principle, one might expect that the genes in bio-
logically relevant clusters will also participate in the same
biological processes. We used the on-line yeast GO Term
Finder tool http://www.yeastgenome.org to assess GO
membership of the genes in the identified clusters. We
found that with the exception of the clusters with many
genes of unknown function, the majority of the genes in
the identified clusters belong to the same GO categories.
The p-values for these clusters were ranging from 10-10 to
10-34 for ASTRO (Table 1) and from 10-34 to 10-68 for
MiMeSR (Table 2.) The results also show that in general
MiMeSR clusters are more homogenous than the ASTRO
clusters regarding the GO pathways. For example, the per-
centage of the genes in the ASTRO clusters C1 and D1 that
belong to the "ribosome biogenesis" category (Table 1) is
smaller than MiMeSR clusters E2 and F2 (Table 2); conse-
quently, their p-values are higher. The same is true for
ASTRO cluster B1 and MiMeSR clusters D2 and G2.
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Evaluation using ChIP-chip data
Another reasonable assumption is that genes that belong
to the same cluster (co-expressed genes) are more likely to
be regulated by the same transcription factors (co-regu-
lated genes). We evaluated the ASTRO and MiMeSR clus-
ters using the published AA starvation ChIP-chip dataset
on 34 transcription factors [24]. Each of the 34 transcrip-
tion factors in the ChIP-chip dataset was tested for target
over-representation in each of the clusters using the
Fisher's exact test. The results are presented on Tables 3
(ASTRO) and 4 (MiMeSR). FHL1, and SFP1 appear to

have overrepresented number of target genes in clusters
A1, B1, D1 (Table 3), A2, C2, D2, and G2 (Table 4), which
are also the most similar in their overall expression pat-
tern (Figure 2A, 2B), especially in 0.5 hr and 1 hr time
points. It is possible that these transcription factors act
early on in the AA starvation response as it was previously
suggested [26]. Consistent with our results, Jorgensen et
al. [27] have found that FHL1 and SFP1 regulate many
ribosome biosynthesis genes, which is the most signifi-
cant GO process in cluster C1, D1, A2, C2, D2, E2, and F2
genes. Furthermore, MET31, MET32 and MET4 have been
associated with regulation of sulfur metabolism genes
[28], which is the most significant category for our cluster
E1 genes.

Comparison of the results in Tables 3 and 4 also shows
that in general ASTRO finds more clusters that are statisti-
cally significantly enriched in genes bound by transcrip-
tion factors. In other words, ASTRO performs better than
MiMeSR in identifying co-regulated genes.

Comparison with other methods
We compared ASTRO and MiMeSR with the popular k-
means general clustering algorithm and the recently pub-
lished STEM [25] and FCV [17], both of which are
designed specifically for short time series gene expression
data. We used the Matlab 7.0.0 implementation of k-
means with correlation distance. We ran the k-means
algorithm for 10 clusters because most of our algorithm
picked the same number. FCV was implemented accord-
ing to the description provided in [17]. STEM ran over the
web http://www.cs.cmu.edu/~jernst/stem/ with the fol-
lowing parameters: maximum unit of change in model
profiles between time points = 4; number of model pro-
files = 50. For unbiased comparison, we ran these algo-
rithms on the same dataset of 698 genes (filtering
threshold ε < 2). We selected clusters with less than 50%
genes of unknown function as depicted by the GO data-
base. Figure 3A and 3B presents the comparative evalua-
tion of these approaches using GO and ChIP data,
respectively. A particular cluster was considered to be "sig-
nificant" if the p-value of the top GO category or transcrip-
tion factor-gene association was smaller than the
threshold. A good clustering algorithm is expected to
identify sets of genes that will participate in the same bio-
logical processes (GO annotation) and/or regulated by
the same transcription factors. The more homogeneous
these clusters are the more significant the annotation cat-
egories will become. ASTRO identified a higher number of
significant clusters than the k-means and the FCV algo-
rithms in all p-value thresholds (Figure 3A and 3B). Also,
it performed equally well or better when compared to
STEM. MiMeSR also performed equally well or better than
all other algorithms with respect to the TF-gene associa-
tion data; and it gave comparable results to the other algo-

ASTRO and MiMeSR performance on simulated dataFigure 1
ASTRO and MiMeSR performance on simulated data. 
Comparison of the two algorithms on simulated data with 
different noise levels.
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rithms in the GO category analysis. In particular, we
found it to be more accurate than the other algorithms in
predicting the more tight clusters (low p-values), whereas
the other algorithms performed better in higher p-values.
This shows the potential of our algorithms in identifying
more tight, biologically relevant clusters. We note, how-
ever, that a thorough comparison of different methods is
impossible when dealing with noisy datasets and algo-
rithms with different reporting thresholds.

Conclusion
In this study, we presented two new algorithms for analyz-
ing short time series gene expression data: ASTRO that
uses the order preserving matrix concept and MiMeSR that
uses the minimum mean squared residue concept. Both these
algorithms use linear algebra techniques to identify coher-
ent gene clusters over all time points in linear time. This
offers a significant advantage over existing methods that
employ greedy approaches or heuristics, since ASTRO and

Clustering yeast time series dataFigure 2
Clustering yeast time series data. The most statistically significant clusters as they were identified by (A) ASTRO and (B) 
MiMeSR.

Table 1: Evaluation of the clusters identified by ASTRO using Gene Ontology data

ASTRO (OPSM)

Clusters No. of genes Top GO term # of genes in category p-value

A1 70 Cellular biosynthetic process 41 (58.6%) 7.0e-16
Biosynthetic process 42 (60.0%) 2.5e-13

B1 86 Translation 55 (64.0%) 1.5e-33
Macromolecule biosynthetic process 55 (64.0%) 1.5e-27

C1 25 Ribosome biogenesis and assembly 14 (56.0%) 9.8e-15
Ribonucleoprotein complex biogenesis and assembly 14 (56.0%) 9.6e-10

D1 74 Ribosome biogenesis and assembly 44 (59.5%) 2.6e-34
Ribonucleoprotein complex biogenesis and assembly 44 (59.9%) 4.6e-31

E1* 33 Sulfur metabolic process 06 (18.2%) 9.0e-05
Sulfur amino acid metabolic process 04 (12.1%) 2.4e-03

F1* 26 Amino acid transport 04 (15.4%) 1.4e-03
Amine transport 04 (15.4%) 3.6e-03

* More than 20% genes of unknown function
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MiMeSR avoid problems related to cost functions or the
choice of predefined sets of expression profiles
[19,21,25]. Also, the complexity of our methods is smaller
than that of existing algorithms, even when it is compared
to those that use a greedy approach to speed up their run-
ning time [9-15]. ASTRO identifies all gene clusters with
coherent expression patterns, irrespectively of the magni-
tude of expression change. Genes belonging in such clus-
ters are generally expected to participate in the same
biological processes (see, also, Table 1). MiMeSR identi-
fies all gene clusters with coherent expression change both
in direction as well as in magnitude. Genes belonging in
such clusters are expected to be regulated by the same set
of transcription factors (although different transcription
factors may act at different time points). In general,
MiMeSR identifies clusters that are enriched for genes belong-
ing to the same pathways, while ASTRO identifies clusters with
genes that are regulated by the same transcription factors
(Tables 1, 2, 3 and Figure 3). In terms of overall statistical
significance of the identified clusters, MiMeSR outper-
forms ASTRO in most cases (Figure 3). In a direct compar-
ison of the two algorithms in simulated data (Figure 1) we
found that ASTRO outperforms MiMeSR when fewer data
points are available, whereas MiMeSR performs better
when more data points are available.

Testing ASTRO &MiMeSR in well-characterized short time
series gene expression datasets showed that it is robust to
noise and to random patterns, and that it can correctly

predict the temporal expression profile of relevant func-
tional categories as confirmed by statistical analysis of GO
category membership over-representation and analysis of
transcription factor occupancy in the promoters of the
gene members of the various clusters. Our approaches are
shown to outperform existing clustering algorithms,
including the popular k-means, as well as FCV and STEM
and they were able to distinguish between closely related
but biologically distinct patterns. As expected, ASTRO
finds more homogeneous clusters than MiMeSR, with
respect to the percentage of genes associated with a given
transcription factor. This is because it takes into consider-
ation the magnitude of the change in gene expression,
which is more closely related to the transcription factors
involved.

In principle, ASTRO and MiMeSR can also be applied to
long time series gene expression data (more than 10 time
points) or gene expression data sampled over different
conditions, but in this case the number of genes in each
cluster is expected to be low. However, they can be
adapted to identify local patterns, thus overcoming this
problem.

Methods
General description of the algorithms
A time series gene expression dataset can be represented
by an N × M matrix, A = [anm], with rows corresponding
to the genes from G = {g1,..., gn,..., gN}, and columns cor-

Table 2: Evaluation of the clusters identified by MiMeSR using Gene Ontology data

MiMeSR (MMSR)

Clusters No. of genes Top GO term # of genes in category p-value

A2 246 Ribosome biogenesis and assembly 103 (42.0%) 2.0e-64
Gene expression 167 (68.0%) 1.0e-49

B2* 66 Sulfur metabolic process 13 (20.0%) 1.2e-12
Sulfur amino acid metabolic process 8 (12.1%) 4.4e-08

C2 133 Ribosome biogenesis and assembly 82 (62.0%) 1.7e-68
Ribonucleoprotein complex biogenesis and assembly 84 (63.2%) 5.6e-65

D2 80 Translation 62 (77.5%) 1.5e-46
Macromolecule biosynthetic process 66 (82.5%) 1.9e-45

E2 109 Ribosome biogenesis and assembly 73 (67.0%) 1.7e-64
Ribonucleoprotein complex biogenesis and assembly 73 (67.0%) 8.1e-59

F2 60 Ribosome biogenesis and assembly 42 (70.0%) 1.6e-37
Ribonucleoprotein complex biogenesis and assembly 42 (70.0%) 2.2e-34

G2 94 Translation 76 (81.0%) 3.1e-60
Macromolecule biosynthetic process 77 (82.0%) 5.2e-53

* More than 20% genes of unknown function
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responding to the time point measurements from T =
{t1,..., tm,..., tM}. The entry anm is the expression level of
gene n at time point tm or -simply- m. Given a short time-
series gene expression dataset, our goal is to identify the
sets of genes with coherent behavior, i.e., genes whose
expression levels increase and/or decrease coherently
across the time point experiments, by minimizing the
effect of noise and random patterns. The input data are
pre-processed to identify and remove from the matrix all
genes whose expression level remains constant across
time points. We consider the expression of a gene to be
constant when the difference between the minimum and
the maximum value (in log-scale) is less than a positive
real number, ε. ε is a user-defined parameter and it can be
based on prior knowledge on the expected level of noise
on a given experiment.

ASTRO (Rank Order Preserving Matrix framework)
ASTRO seeks to identify sets of genes with similar expres-
sion profiles irrespectively of their expression fold-
change. Therefore, only the direction of expression change
is considered and not its magnitude. This reflects the bio-
logical fact that different gene products may be required at
different quantities for a given cellular response or func-
tion. Under this assumption, the problem of finding a cluster
of similarly expressed genes can be caste into a problem of find-
ing an order preserving submatrix (OPSM) of the gene expres-
sion matrix A. A submatrix C of A is order preserving (OP) if
there is a permutation of its columns under which the
sequence of values in every row is strictly increasing or
decreasing. In other words an OPSM is a set: C = {2-tuples
(I,J), I ∈ G and J ∈ T}, such that each row induces the same
rank order permutation on the columns. The problem of

Table 3: Evaluation of the clusters identified by ASTRO using ChIP-chip data.

ASTRO (OPSM)

TFs A1 B1 C1 D1 E1 F1

ARO80 2/3%
(5e-02)

3/3%
(7e-02)

1/4%
(4e-02)

BAS1 1/3%
(8e-02)

CBF1 5/15%
(1e-02)

CHA4 4/4%
(9e-03)

DAL81 1/4%
(4e-03)

FHL1 25/36%
(3e-20)

43/50%
(3e-42)

3/10%
(1e-02)

19/25%
(1e-11)

GCR2 3/4%
(2e-02)

GCN4 3/9%
(7e-02)

MET31 1/3%
(7e-02)

MET32 4/12%
(6e-12)

MET4 1/3%
(7e-02)

SFP1 6/9%
(1e-05)

13/15%
(2e-14)

3/10%
(1e-02)

8/11%
(5e-08)

Bold letter boxes correspond to statistically overrepresented transcription factors in that cluster. Each box contains: (a) the number of genes, (b) 
the percent of genes in the cluster associated with this transcription factor, and (c) the p-value (Fisher's exact test).
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searching over all possible subsets of columns for identi-
fying the most significant OPSM is NP hard [19]. How-
ever, taking advantage of the small number of sampled
points in a short time series dataset, one may seek patterns
of consistent gene expression over all time points. In such
case the order will be required to be preserved in all col-
umns (time-points) for the genes in a cluster (i.e. J = T). In
fact, this assumption is now commonly used in analyzing
short-time series experiments [9-15]. As we show below,
this reduces the complexity of finding OPSMs, which
offers an advantage over methods that use probabilistic
models and greedy algorithms. ASTRO is guaranteed to
find all OPSMs across all time points in O(NM) using lin-
ear algebra techniques.

Overview
In this part, we focus on genes with coherent behavior,
i.e., genes whose expression levels increase and/or
decrease coherently across all time points. ASTRO starts
by filtering those genes with constant gene expression

across all time points (using a threshold ε). It then pro-
ceeds by constructing the rank matrix of the time series
gene expression data. Next, it identifies all distinct coher-
ent patterns in the ranked matrix. Finally, it assigns each
gene to its corresponding cluster by performing a row
comparison between the set of distinct rows of the ranked
matrix and the ranked matrix itself. See Additional file 1
for ASTRO pseudo codes.

Rank Matrix Construction
A rank matrix is an N × M matrix, R = [rnm], in which every
row (gene) is a vector of the ranks of the corresponding
expression values in A in increasing order. For example, if
the expression levels of gene gi are Ai* = (5, 10, 15, 8) then
the corresponding row in the rank matrix would be Ri* =
(1, 3, 4, 2). The ranking is performed in increasing order.
If more than two entries have the same value, the user can
decide to give them the same ranking or rank them in the
order they appear. In this study, we choose the former. By
replacing each entry of the gene expression matrix with

Table 4: Evaluation of the clusters identified by MiMeSR using ChIP-chip data.

MiMeSR (MMSR)

TFs A2 B2 C2 D2 E2 F2 G2

ARO80 4/3%
(3e-02)

BAS1

CBF1 10/4%
(1e-02)

9/14%
(3e-03)

3/3%
(1e-02)

CHA4

DAL81

FHL1 86/35%
(3e-20)

27/20%
(7e-14)

48/60%
(1e-52)

5/5%
(1e-02)

3/5%
(7e-02)

62/65%
(2e-70)

GCR2 4/5%
(5e-03)

GCN4

MET31

MET32 4/5%
(9e-03)

3/3%
(9e-02)

MET4

SFP1 30/12%
(1e-08)

4/3%
(1e-02)

17/21%
(1e-21)

19/20%
(1e-20)

Bold letter boxes correspond to statistically overrepresented transcription factors in that cluster. Each box contains: (a) the number of genes, (b) 
the percent of genes in the cluster associated with this transcription factor, and (c) the p-value (Fisher's exact test).
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their rank along the rows, we are no longer considering
the expression level of a given gene per se, but its dynamics
over all time points. The advantage of this method is its
speed and that it avoids the use of probabilistic models,
greedy algorithms, or costly column permutations. Also,
one will notice that for any k > 1 rows of the ranked matrix
that are similar under any permutation of the columns of
the gene expression matrix; they will always belong to the
same cluster. Finally, the fact that the rank is conserved
under any permutation of the columns of the gene expres-
sion matrix further reduces the chance that a random pat-
tern might be picked up in a cluster (see, also, the
Statistical Significance and Complexity Analysis section).

Pattern Identification
Given a gene expression data matrix, A, the exact number
of distinct OP expression profiles that can be found in the
dataset (time points t = 1,..., M) is the number of distinct
rows, NU, of its corresponding ranked matrix R. The set of
distinct OP patterns, U, can thus be identified by consid-
ering the rank matrix R as a set of rows and identify all
subsets of identical rows in it. ASTRO is guaranteed to
identify the exact number of distinct OP patterns in a
given matrix in O(NM).

Identification of Order Preserving Clusters
Once the exact number of distinct OP patterns has been
identified, ASTRO assigns each gene to one of the NU
groups by comparing each distinct row Uk* of the ranked
matrix to the rows Rn* of the ranked matrix itself, and
assign gene n to cluster G{k} each time Uk* = Rn*. This
approach is guaranteed to identify all OP clusters of size K
× M, with Kmin ≤ K ≤ N, and Kmin is the minimum number
of genes in a cluster.

Statistical Significance and Complexity Analysis of ASTRO
The statistical significance of each identified cluster with K
genes is assessed by computing the tail probability that a
random dataset of size N × M will contain a cluster with K
or more genes in it [19]. In principle, the probabilistic
description of the reference random matrix would be that
of the observed noise in the microarray experiment
[29,30]. Since this distribution is difficult to calculate in
closed form, we calculate the upper bound of this tail
probability following the approach described below. Let's
assume we have a dataset with M time points that are
independent, identically distributed according to the uni-
form distribution. Then the probability that a random
row (gene) supports a given cluster is equal to the number
of possible column permutations or 1/M!. Since the rows
are assumed to be independent, the probability of having
at least K rows in the cluster is the k-tail of the (N,(1/M!))
binomial distribution, i.e.:

As there are Ms = M! ways to choose an OP cluster of size
M, the following expression Z(M,K) is an upper bound on
the probability of having a cluster of size M with K or
more genes:

We use this bound to estimate the significance of any
given cluster of size M with K members. The best cluster is
the one with the largest statistical significance, i.e., the one
with the smallest Z(M,K). Therefore, as long as that upper
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Comparison of clustering approachesFigure 3
Comparison of clustering approaches. Comparative analysis of clustering approaches using (A) GO data and (B) amino 
acid starvation ChIP-chip data. The y-axis represents the percent of clusters for which the p-value of their most significant cat-
egory (GO or ChIP-chip) was lower than the given threshold.
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bound probability is smaller than any desired significance
level, the identified cluster in the real gene expression
matrix will be statistically significant.

The overall complexity of ASTRO is ~O(NM). Recall that
the time series gene expression A is an N × M matrix. The
rank matrix can be identified with an O(NM) complexity.
The number of distinct OP patterns and the set of distinct
OP patterns can be identified with a complexity less than
O(N). Finally, clusters can be identified with a complexity
less than O(N). In all, the complexity of ASTRO is O(NM)
+ O(N) + O(N), which is ~O(NM), less that the complex-
ity of existing approaches.

MiMeSR (Minimum Mean Squared Residue)
MiMeSR seeks to solve the same problem, but unlike
ASTRO, it takes into consideration the magnitude of the
expression change in the analysis. This is based on the
(biological) assumption that if a set of genes is regulated
by the same transcription factors across all time points
(even if different transcription factors are active at differ-
ent time points,) then the expression pattern of these
genes will not only be the same in terms of direction, but
also in magnitude. In other words, MiMeSR aims to iden-
tify more coherent clusters of co-regulated genes rather
than simply genes with similar expression patterns under
a given set of conditions. Under this hypothesis, the prob-
lem of finding a cluster of similarly expressed genes is a problem
of finding submatrices of the gene expression matrix, A, with
minimum mean squared residue or coherent values [20,21].
A cluster here is defined as a submatrix C = [cij] of A (with
i and j correspond to the gene and time point, respec-
tively), such that its mean squared residue H(C) < δ. The
mean squared residue H(C) of C is computed using the
following formula:

where ciT is the mean of the ith row (expression of gene i
over all time points), cGj is the mean of the jth column
(expression of all genes at the j time point) and cGT is the
mean of all the elements of C. When C = [c(i,j)] = [ai + bj]
= [ai] + [bj], where [ai] a matrix with constant values on
rows, and [bj] a matrix with constant values on columns,
then it can be shown that the mean squared residue,
H(C), of C is zero.

Proof.

The MiMeSR algorithm that we develop in this study uses
this concept to search for submatrices with mean squared
residue smaller that a given threshold, δ → 0.

Cheng and Church have shown that when the search
extends over all possible subsets of columns, then the
solution is NP hard [20]. As we will show below, looking
for patterns consistent over all time points (i.e. J = T)
reduces the algorithmic complexity to O(NMK), and pro-
duces biologically relevant results. MiMeSR uses linear
algebra and arithmetic tools to solve the problem, which
is advantageous over greedy algorithms or the use of heu-
ristics that were used in the past.

Overview
MiMeSR starts by filtering those genes whose expression
levels do not change significantly during the time course
(threshold ε). Then, it writes the gene expression matrix A
as the sum of matrix Z1, with constant values on columns,
and Z2 = A - Z1. Finally, it identifies submatrices with con-
stant values on rows in Z2, which correspond to the mini-
mum mean squared residue clusters in the gene expression
matrix A. See Additional file 1 for MiMeSR pseudo codes.

Identification of minimum mean squared residue clusters
MiMeSR extracts minimum mean squared residue submatrices
from the gene expression matrix using the following
approach. For a given row i of matrix A, a new matrix Z1 is
constructed with constant values in the columns. All rows
in Z1 are identical to row A[i]. Then Z2 is calculated as Z2
= A - Z1. Then, MiMeSR identifies the submatrix with con-
stant values on rows across the whole time points in Z2.
This step is easily performed by identifying the set of rows
of Z2 such that max(Z2(n,:) - min(Z2(n,:)) <ε, with ε → 0.
The submatrices with constant values on rows in Z2 corre-
spond to submatrices with minimum mean squared residue
(coherent values) in A. For simplicity and without loss of
generality, let us consider an example of the synthetic
gene expression matrix A, with coherent values cluster in
it, corresponding to rows r1, r3 and r4 (Figure 4.) By sub-
tracting from A matrix Z1 (constructed using the first row
of A, (2 4 6 3)), a new matrix Z2 is generated whose rows
r1, r3, and r4 correspond to the submatrix with constant
values on rows. Note that, the same cluster will be con-
structed by using any of the rows r1, r3, or r4. Therefore,

H
G T

c c c cij iT Gj GT

i G j T

= − − +
∈ ∈
∑1 2

| || |
( )

,

H c
IJ

a b
I

a b

a
J

b
I

a

i j i

i I

j

j Ji I

i j

j J

i

i I

( ) (= + − − −

− − + +

∈∈∈

∈ ∈

∑∑∑

∑ ∑

1 1

1 1 1
JJ

b j

j J∈
∑ =)2 0

Example of the minimum mean squared residue methodFigure 4
Example of the minimum mean squared residue 
method.
Page 9 of 11
(page number not for citation purposes)



BMC Bioinformatics 2009, 10:255 http://www.biomedcentral.com/1471-2105/10/255
after a cluster has been identified, its rows are not further
considered in the construction of new Z1 matrices. This
approach is guaranteed to identify all submatrices with
minimum mean squared residue across all time point exper-
iments. Note that, since the operation Z2 = A - Z1 is per-
formed using all the rows of A during each iteration, and
since we are seeking for the set of rows of Z2 such that
max(Z2(n,:) - min(Z2(n,:)) < ε, MiMeSR can allow rows
(genes) to belong to more than one cluster. The biological
equivalent of this notion is that genes may be involved in
more than one genetic pathway or to be regulated by more
than one transcription factors.

Statistical Significance and Complexity Analysis of MiMeSR
For practical reasons, it is important to assess the effects of
the ε parameter on the clusters that are identified by
MiMeSR. This can be done by sensitivity analysis in which
the parameter ε is perturbed and the results are compared.
For this analysis, it is usually sufficient to consider one or
two values above and below the originally selected value
of ε. Only clusters that are consistently identified by
MiMeSR as ε varies should be retained for further exami-
nation. Note that the number of genes in these clusters
may also change. The user therefore needs to determine a
rule for dealing with genes that may be dropped from the
clusters as ε changes. The most conservative approach
would be to retain only the genes that remain in the clus-
ters for all values of ε around its selected value. It can be
easily shown that the overall complexity of MiMeSR is
~O(NMK), where K is the number of minimum mean
squared residue clusters in A. Note that K corresponds to
the maximum number of constant columns matrices that
can be constructed using the rows of A without identifying
redundant clusters.
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