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Dissecting closely linked association signals
in combination with the mammalian
phenotype database can identify candidate
genes in dairy cattle
Zexi Cai* , Bernt Guldbrandtsen, Mogens Sandø Lund and Goutam Sahana

Abstract

Background: Genome-wide association studies (GWAS) have been successfully implemented in cattle research and
breeding. However, moving from the associations to identify the causal variants and reveal underlying mechanisms
have proven complicated. In dairy cattle populations, we face a challenge due to long-range linkage disequilibrium
(LD) arising from close familial relationships in the studied individuals. Long range LD makes it difficult to distinguish if
one or multiple quantitative trait loci (QTL) are segregating in a genomic region showing association with a
phenotype. We had two objectives in this study: 1) to distinguish between multiple QTL segregating in a genomic
region, and 2) use of external information to prioritize candidate genes for a QTL along with the candidate variants.

Results: We observed fixing the lead SNP as a covariate can help to distinguish additional close association signal(s).
Thereafter, using the mammalian phenotype database, we successfully found candidate genes, in concordance with
previous studies, demonstrating the power of this strategy. Secondly, we used variant annotation information to search
for causative variants in our candidate genes. The variant information successfully identified known causal mutations
and showed the potential to pinpoint the causative mutation(s) which are located in coding regions.

Conclusions: Our approach can distinguish multiple QTL segregating on the same chromosome in a single analysis
without manual input. Moreover, utilizing information from the mammalian phenotype database and variant effect
predictor as post-GWAS analysis could benefit in candidate genes and causative mutations finding in cattle. Our study
not only identified additional candidate genes for milk traits, but also can serve as a routine method for GWAS in dairy
cattle.
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Background
Over the last decade, the development of high density sin-
gle nucleotide polymorphism (SNP) arrays and
next-generation sequencing (NGS) technologies have
made genome-wide marker sets available in many organ-
isms [1, 2]. Combining these with phenotypic records on
many individuals, genome-wide associate studies (GWAS)
present a powerful tool to undercover genetic variants as-
sociated with variation in the phenotype [3]. In human,
numerous studies successfully identified causal variants

for traits such as height [4], bodyweight [5] as well as sev-
eral complex diseases [6]. However, in livestock, long
range linkage disequilibrium typically results in imprecise
determination of quantitative trait loci (QTL) locations
and the associated genomic regions containing several
positional candidate genes. In addition, two or more QTL
located close to each other may be misidentified as one
QTL. In such situations, additional analyses need to be
performed to distinguish multiple QTL located close to
each other.
To resolve these issues, we need additional informa-

tion over and above association statistics. For traits with
Mendelian inheritance, techniques such as homozygosity
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mapping and studies of recombinant haplotypes provide
important clues due to the unambiguous association of
at least some genotypes with phenotypic differences. For
quantitative traits, no such close associations exist. How-
ever, genomic information of various types do allow rela-
tive prioritization among candidate variants. The
challenges are which information to consider
post-GWAS and how to combine them with GWAS sta-
tistics. Expression quantitative trait loci (eQTL) mapping
can help; expression profiles as the dependent trait in a
GWAS have identified causal genes in some studies [7].
Nevertheless, eQTL studies are time consuming and ex-
pensive. Therefore, alternative approaches to incorporate
gene expression data into GWAS are needed. Other
sources of additional information like variants’ annota-
tion [8] and evolutionary conservation scores [9] have
been used. Unfortunately, these analyses need to be de-
signed on a case-by-case basis [10]. Their implementa-
tion is challenging in livestock due to the sparsity of
annotation data.
In this study, we used an approach to separate mul-

tiple closely linked QTL in dairy cattle by fixing the lead
SNP as a covariate. This approach detects QTL chromo-
some by chromosome, and generates a list of lead SNPs
for each QTL. The method is demonstrated by applica-
tion to three milk yield traits in Nordic Holstein cattle.
Many previously identified loci were also confirmed
here. Furthermore, we used the mammalian phenotype
database to help to find the candidate genes and Variant
Effect Predictor (VEP) annotations to screen for possible
causal mutations.

Results
We applied a GWAS analysis approach that automatic-
ally and iteratively accounts for the effects of QTL iden-
tified in previous iteration(s), a similar approach to
conditional analysis implemented in GCTA [11]. The
impact of pre-correction on type I error rate was
assessed by analyzing simulated data with the effect of a
quantitative trait nucleotide (QTN) added to the real
phenotypic data (for details on simulation, see Method
section). The candidate genes were picked as the closest
genes to the lead SNP and listed in Tables 1, 2 and 3.
The search for candidate genes started with the top SNP
location. However, the whole genomic region showing
strong associations with the trait was searched, as the
top SNP may not be always located closest to the causal
gene due to differences in: LD, imputation accuracy and
minor allele frequency. Therefore, we included discus-
sion on other relevant genes (based on association re-
sults, known gene function etc.) which could be
candidate genes underlying the QTL.
Our approach of including associated SNPs as covari-

ates in subsequent rounds of analyses did not increase

the type I error rates. We simulated one SNP as a QTN
and considered 10 other SNPs with different levels of
LD (r2) with the QTN in order to test whether our
method introduces type I error into analysis when fixing
lead SNPs detected in previous iterations as covariates
[12]. We generated new phenotypes from the real
phenotypic value plus the simulated QTN effects. The
QTN’s contribution to individuals’ phenotypes was ob-
tained by multiplying the genotype dosage of the QTN
with the allele substitution effect which was drawn from
a normal distribution with a mean 20% of the standard
deviation (SD) of the phenotype and variance as 1% of
the phenotypic variance. The simulation was repelicated
100 times. We detected the simulated QTN as the lead
SNP in the first round of all 100 replicates. When the
simulated QTN was included in the model as a covari-
ate, we did not observed any of the 10 SNPs in LD with
QTN to be significant (i.e., no false positives detected).

The GWAS of fat yield
Analyzing milk fat yield, our approach detected nine add-
itional QTL over and above the QTL detected in the first
round (Fig. 1 and Table 1). In Table 1, the first SNP on
each chromosome is the lead SNP from the first round of
GWAS analysis, the rest are the additional SNP(s)
detected on a chromosome. Sixteen SNPs on chromosome
14 have the same P-value in the first round, and these
SNPs are in high LD with the two known causative
polymorphisms in DGAT1 [13], BTA14: 1802265
(rs109234250) and BTA14: 1802266 (rs109326954)
(Additional file 1: Figure S1). The variant effect predictor
(VEP) [14] annotation showed these two variants in
DGAT1 are missense mutations. The second strongest as-
sociation signal was located on chromosome 5 with lead
SNP, BTA5: 93948357 (rs209372883) located within the
intron of MGST1. MGST1 was previously reported associ-
ated with the milk fat content [15]. On chromosome 26,
our lead SNP pointed to COX15. In a human study, this
gene was proposed involved in biosynthesis of heme A
[16]. Even though this gene is a promising positional can-
didate gene, no biological information currently links this
gene to milk fat yield. Another gene known to affect milk
fat content is SCD1 [17] located at chromosome 26:
21141592 ~ 21,148,318. Our lead SNP on chromosome 26
(BTA26:20547445, rs136702635) is located close to it. We
estimated the variance explained by QTL. The QTL (18
QTL) found from the first round explained 23.56% of the
variance of de-regressed proof breeding value (DRP) for
fat yield and all QTL (27 QTL) explained 28.57% of the
DRP variance (Table 4).

The GWAS for protein yield
We ran the analysis on the milk protein yield (Fig. 2),
and found 34 lead SNPs (Table 2), 12 of which were
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detected in the second or third round. The strongest as-
sociation signal for protein yield was on BTA14 with
lead SNP BTA14:1835440 (rs208567981), located within
BOP1. The annotation of BTA14:1835440 (rs208567981)
is a missense mutation, and the SIFT annotation is toler-
ant. However, this signal is most likely due to the known
mutation in DGAT1. The lead SNP (rs208567981) was
in strong LD with SNPs located within DGAT1 and the
–log10(P) value of these 19 SNPs within DGAT1 were
larger than 47.99 (including two known causative vari-
ants in DGAT1, Additional file 1: Figure S2). This result
shows that the causal mutation may not necessarily be
the SNP in highest association. The second lead SNP of
this analysis is BTA6: 88477501, which is located near

the well-studied casein genes CSN1S1, CSN1S2, CSN3
and CSN2 [18]. We estimated the variance explained by
QTL. The QTL (22 QTL) found only from the first
round explained 12.52% of the DRP variance for protein
yield and all QTL (34 QTL) explained 16.76% of the
DRP variance (Table 4).

The GWAS for milk yield
We applied our analysis to milk yield (Fig. 3). A total of
26 lead SNPs (Table 3) were detected, out of which six
were detected in the second, third or fourth round. The
most significant association signal was in the DGAT1
gene. The second most significant association signal was
at BTA20:29996719 (rs43116343), which is close to

Table 1 Lead SNPs from genome-wide associated regions for fat yield in Nordic Holstein cattle. Base positions are given as position
in UMD 3.1.1 [49]

BTA base position Imputation accuracy Effect –log10(p) Region Gene Annotation

1 71,227,484 0.9745 −1.77 9.66 70,442,929~71,477,578 TNK2 intron

2 126,979,882 0.9972 −1.31 11.46 126,041,707~127,230,335 PIGV (near) downstream

2 85991577b 0.9542 1.30 8.91 85,042,155~86,241,732 ANKRD44 intron

3 7,226,390 0.9998 −1.09 9.01 6,264,604~7,476,497 NOS1AP intron

5 93,948,357 0.9906 3.28 62.41 93,698,481~94,198,670 MGST1 intron

5 20284735b 0.9692 −1.30 9.79 20,035,379~20,534,779 5S_rRNA (near) intergenic

6 95,497,933 0.9996 −1.45 14.76 95,248,213~95,747,954 PAQR3 (near) intergenic

6 32950721b 0.4975 6.33 11.39 32,367,171~33,200,834 ENSBTAG00000047255 intron

7 57,287,990 0.8807 −1.66 20.11 57,038,215~57,538,309 KCTD16 intron

9 38,715,137 0.9809 −1.47 8.89 38,345,408~38,965,425 LAMA4 intron

11 88,771,449 0.9876 1.16 10.43 88,521,462~89,021,477 ENSBTAG00000047976 (near) intergenic

11 15323223b 0.8962 −1.32 9.81 14,855,568~15,573,444 TTC27 intron

12 68,965,758 0.9957 −1.10 8.93 68,502,223~69,216,445 ENSBTAG00000045195 (near) intergenic

14a 1,802,265 0.9398 −6.93 240.56 1,549,133~2,049,435 DGAT1 missense

14a 1,802,266 0.9362 −6.93 240.56 1,549,133~2,049,435 DGAT1 missense

14 67981742b 0.7652 1.65 8.71 67,117,232~68,231,920 STK3 intron

14 1321721c 0.4442 1.46 8.82 1,087,168~1,583,427 ENSBTAG00000046435 missense

15 65,891,100 0.9992 1.50 12.99 65,641,131~66,141,839 ELF5 (near) intergenic

15 25044706b 0.9908 −1.17 9.80 24,795,472~25,295,470 ZBTB16 intron

16 31,496,700 0.9501 −1.37 9.32 30,519,873~31,746,789 CNST intron

17 62,543,160 0.9898 1.14 10.49 62,224,291~62,793,298 TBX5 intron

18 18,970,551 0.9442 −1.19 10.30 18,341,203~19,220,732 NKD1 (near) intergenic

19 27,522,927 0.8500 −1.32 10.86 26,625,240~27,773,922 ASGR1 (near) intergenic

20 22,609,736 0.9813 1.53 14.23 21,664,412~22,859,809 MAP3K1 (near) intergenic

20 44186112b 0.9997 1.53 10.20 43,936,468~44,436,133 ENSBTAG00000040572 (near) intergenic

26 20,547,445 0.9993 −1.76 21.46 20,299,309~20,797,570 COX15 intron

26 42408595b 0.9998 −1.21 10.30 41,409,014~42,658,925 TACC2 intron

29 23,609,412 0.7717 2.06 10.73 22,613,737~23,859,451 ENSBTAG00000047094 (near) intergenic

Total number of significant SNPs 52,334
aFourteen additional SNPs on chromosome 14 located near DGAT1 gene had same highest P value (details on those not presented). Note, bindicated this SNP was
found on second round, cindicated this SNP was found on third round
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MRPS30. A recent study showed MRPS30 to be associ-
ated with lactation persistence in Canadian Holstein cat-
tle [19]. This lead SNP is also close to the growth
hormone receptor, GHR [20]. The causative mutation of
GHR is BTA20:31909478 (rs385640152), and is known
to affect milk yield [20]. The third strongest lead SNP
was BTA5:93953487 (rs210234664). This SNP is close to
MGST1. A previous eQTL study showed MGST1 may

affect milk composition [21]. With our approach, we de-
tected BTA6: 38027010 (rs43702337) in the third round,
located in ABCG2. ABCG2 was previously reported to
affect milk yield in dairy cattle [22]. This SNP is a mis-
sense variant; its SIFT annotation is “deleterious” and
has previously been proposed as a causative mutation
[23]. We estimated the variance explained by QTL. The
QTL (20 QTL) found from the first round explained

Table 2 Lead SNPs from genome-wide associated regions for protein yield in Nordic Holstein cattle. Base positions are given as
position in UMD 3.1.1 [49]

BTA base position Imputation accuracy Effect –log10(p) Region gene Annotation

1 63,177,947 0.9885 −1.94 12.35 62,590,679~63,428,175 ENSBTAG00000046854 (near) intergenic

2 124,837,669 0.9886 1.59 12.63 124,587,873~125,089,732 PTPRU intron

2 86095020a 0.9910 1.27 9.53 85,393,563~86,345,056 ANKRD44 intron

3 17,160,521 0.9717 −1.15 8.76 16,197,245~17,415,613 S100A12 (near) upstream

4 103,211,543 0.9321 −1.06 8.74 102,341,267~103,461,820 ATP6V0A4 intron

5 93,511,826 0.8626 −1.37 14.25 93,087,740~93,762,020 LMO3 (near) intergenic

5 21792183a 0.9813 −1.37 10.39 21,542,557~22,042,238 SNORD107 (near) intergenic

5 87923795b 0.9926 1.50 8.97 86,950,758~88,173,798 ETNK1 (near) intergenic

6 88,477,501 0.9962 −2.60 25.98 88,227,821~88,727,537 SLC4A4 intron

6 48,694,003a 0.9785 1.89 12.16 47,720,473~48,944,178 ENSBTAG00000045570 (near) intergenic

6 88847595b 0.9009 −1.82 23.84 88,477,501~89,097,608 GC (near) intergenic

7 41,372,989 0.9999 −1.54 18.14 41,085,164~41,623,965 MGAT1 (near) intergenic

7 72100619a 0.9077 1.59 13.29 71,120,920~72,350,707 EBF1 (near) intergenic

8 93,065,787 0.8573 1.65 10.07 92,816,321~93,315,869 GRIN3A Intron

8 31538155a 1.0000 1.91 9.62 30,550,864~31,788,181 LURAP1L (near) intergenic

9 33,267,855 0.8655 −1.46 11.96 32,627,954~33,518,971 SLC35F1 (near) intergenic

10 93,933,304 0.8370 −1.36 9.90 92,933,459~94,183,400 SEL1L intron

11 35,512,708 0.9999 −1.45 11.82 35,189,581~35,762,749 ENSBTAG00000027786 (near) intergenic

13 37,208,792 0.9279 −1.69 10.90 36,702,834~37,459,042 MKX (near) intergenic

14 1,835,440 0.7471 2.84 48.66 1,448,510~2,085,468 BOP1 intron

14 67981742a 0.7652 1.78 11.60 67,731,848~68,231,920 STK3 intron

16 32,262,983 0.9290 −1.52 12.79 31,268,349~32,513,084 SMYD3 intron

18 57,015,407 0.9754 2.56 17.71 56,767,474~57,265,703 POLD1 intron

18 15057077a 0.9934 1.27 9.99 14,811,219~15,308,407 VPS35 intron

19 27,522,927 0.8500 −1.42 12.55 27,156,952~27,773,922 ASGR1 (near) intergenic

19 61014793a 0.8505 −1.08 8.65 60,313,953~61,265,218 KCNJ2 (near) intergenic

20 69,006,609 0.9920 −1.29 11.27 68,120,719~69,256,618 IRX1 (near) intergenic

20 8830351a 0.9433 −1.71 10.61 8,345,063~9,080,402 ENSBTAG00000012775 (near) intergenic

23 10,974,968 0.9304 −1.18 10.68 10,234,192~11,224,969 FGD2 (near) intergenic

25 36,403,719 1.0000 1.33 10.25 36,112,575~36,654,175 EPO (near) intergenic

26 37,695,494 0.9122 −1.41 14.76 36,699,144~37,945,656 SHTN1 (near) intergenic

27 36,304,978 0.9834 1.06 8.52 36,037,123~36,555,106 ANK1 intron

29 17,620,617 0.9576 1.47 10.37 16,671,270~17,870,637 NARS2 intron

29 35459126a 0.9999 1.61 10.11 34,854,011~35,709,168 NTM intron

Total number of significant SNPs 36,644

Note, aindicated this SNP was found on second round, bindicated this SNP was found on third round

Cai et al. BMC Genetics           (2019) 20:15 Page 4 of 12



19.02% of the DRP variance for milk yield and all QTL
(26 QTL) explained 21.50% of the phenotypic variance
(Table 4).

Post-GWAS analysis using the mammalian phenotype
database
The criteria for selecting positional candidate genes was
the gene located closest to the lead SNP. For future
identification and research on genes biologically associ-
ated with milk traits, we tried to find whether there are
other genes which should be considered as potential
candidate genes other than the candidate gene lists (Ta-
bles 1, 2 and 3). Considering the high LD structure of
cattle population, the causal genes may be located within
the genome region in LD with lead SNPs. One source of
additional information that may help to prioritize genes,
is to find the link between the gene and the possible

function in the mammalian phenotype database related
to milk and milk-organ related traits [24]. Therefore, we
extracted genes which overlap with the LD region of the
lead SNP and search them in the mammalian phenotype
database [24]. We only paid attention to two kinds of
phenotypes: “abnormal mammary gland development”
or “abnormal milk composition”. Ten genes from the
GWAS hits were also annotated as related to these two
types of phenotype. This annotation appears to have bio-
logical relevance, although the enrichment of these 10
genes in the mammalian phenotype database analyzed
by Fishers’ exact test was not significant. The results
showed five genes were reported to be related with “ab-
normal milk composition” (Table 5). Out of this list,
CSN1S1, CSN2, CSN3 and DGAT1 were reported in
dairy cattle and also identified in the present study. Fur-
thermore, we identified six genes related to “abnormal in

Table 3 Lead SNP from genome-wide associated regions for milk yield in Nordic Holstein cattle. Base positions are given as position
in UMD 3.1.1 [49]

BTA base position Imputation accuracy Effect –log10(p) Region Gene Annotation

2 80,753,895 0.9454 1.13 9.95 79,777,813~81,003,948 NABP1 (near) intergenic

3 56,402,959 0.9308 −1.36 11.68 56,152,966~56,653,364 ENSBTAG00000001873 (near) intergenic

4 101,547,644 0.7008 −1.66 12.65 100,921,921~101,798,041 CHRM2 (near) upstream

5 93,953,487 0.9726 −2.10 29.52 93,703,737~94,203,599 MGST1 (near) upstream

5 31005518b 0.9943 1.42 12.25 30,202,453~31,258,920 WNT1 (near) upstream

5 85080296c 0.7619 −1.28 11.24 84,425,435~85,330,671 KRAS (near) intergenic

5 20569435d 0.9944 1.23 9.37 19,600,731~20,820,066 CCER1 (near) intergenic

6 88,847,595 0.9009 −1.78 21.61 88,598,011~89,097,608 GC (near) intergenic

6 46901490b 0.7413 −1.28 11.45 46,181,675~47,152,919 SEL1L3 (near) intergenic

6 38027010c 0.9950 −4.75 9.47 37,669,181~38,279,802 ABCG2 missense

7 65,370,850 0.9848 −1.36 13.58 65,120,872~65,620,985 GLRA1 (near) intergenic

8 73,877,814 0.8453 −1.37 11.14 73,629,406~74,127,901 ENSBTAG00000010829 (near) upstream

8 42062591b 0.9595 −1.27 10.07 41,064,643~42,313,291 KCNV2 (near) intergenic

9 33,478,527 0.8801 −1.25 9.23 32,627,954~33,728,755 ENSBTAG00000015497 (near) intergenic

10 1,989,907 0.9469 −1.15 9.92 1,016,031~2,240,288 ENSBTAG00000047622 (near) intergenic

13 36,822,330 0.9933 −1.66 10.74 36,572,364~37,072,486 MPP7 intron

14a 1,802,667 0.7975 5.98 178.35 1,545,264~2,044,412 DGAT1 intron

15 54,392,611 0.9577 1.57 16.58 53,485,007~54,642,856 PPME1 intron

16 28,384,260 0.9984 1.64 10.50 28,012,864~28,634,313 CNIH3 (near) intergenic

17 66,510,224 0.9438 1.83 11.63 66,119,023~66,760,263 CORO1C intron

18 46,583,346 0.9829 1.86 11.97 46,333,384~46,833,392 UPK1A (near) upstream

19 27,442,452 0.7904 −1.26 9.71 26,592,355~27,692,965 bta-mir-497 (near) downstream

20 29,996,719 0.9580 −2.95 31.02 29,748,423~30,246,822 MRPS30 (near) intergenic

23 25,076,472 0.9797 −1.34 9.23 24,219,868~25,326,583 GCM1 intron

26 37,716,420 0.9790 −1.43 12.28 36,730,021~ 37,966,463 SHTN1 (near) intergenic

28 34,972,377 0.9991 1.18 9.81 34,722,402~35,222,855 ZMIZ1 (near) intergenic

Total number of significant SNPs 55,600
aEight additional SNPs on chromosome 14 had same highest P value. Note, bindicated this SNP was found on second round, cindicated this SNP was found on
third round, dindicated this SNP was found on fourth round
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mammary gland development” (Table 6) in mammalian
phenotype database. In this list DGAT1 showed abnor-
mal phenotype in both kinds of phenotype description
we searched. In addition to the well-studied genes
(CSN1S1, CSN2, CSN3 and DGAT1), the remaining five
genes are ELF5, CAT, STK3, CHUK, and WNT1. ELF5 is
one of the candidate genes proposed by the closest genes
to lead SNP (BTA15: 65891100) associated with the fat
yield (Table 1). ELF5 was previously found related to
mouse mammary development [25] and may also influ-
ence the milk content through milk protein synthesis in
cattle [26]. CAT is also located close to the same lead
SNP as ELF5. CAT is involved in several biological pro-
cesses including GO term ‘responds to fatty acid’ [27].
CHUK, close to BTA26: 20547445, is associated with fat

yield (Table 1). This gene is known as a key gene involved
in mammary development in mice [28]. STK3 is the near-
est gene to the second lead SNP (BTA14: 67981742) on
the same chromosome associated with milk protein yield
(Table 2). This gene was found to play a pivot role in con-
trolling cell proliferation [29] and tumor suppression [30]
in human studies. WNT1 is the nearest gene to the second
lead SNP of milk yield (Table 3).

Annotation of SNPs in LD with lead SNPs
As shown before, the causative mutation maybe located
in the neighboring region of the lead SNP. Therefore, we
extracted all SNPs in LD with leading SNPs (r2 > 0.2)
and annotated them using VEP [14]. We extracted
27,612 SNPs and obtained 29,249 annotations (because
some genes or transcripts overlap). The majority of these
SNPs are intergenic variants or intron variants (Fig. 4a).
Among the SNPs that changed the coding sequence of
the protein, most of them were synonymous variants
(Fig. 4b). Using this result, we checked if we could
prioritize candidate mutations in the candidate genes.
For example GHR, the well-known causative mutation
for GHR is BTA20:31909478 (rs385640152, F279Y) [20].
The annotation for this SNP is a missense mutation and
the SIFT score is 0.02 which is ‘deleterious’.
Further, we checked whether we can detect some can-

didate mutations in the new candidate genes. Four genes
(CSN1S1, CSN2, CSN3 and DGAT1) were found related
to abnormal milk composition and DGAT1 related to
mammary gland development (Table 5 and Table 6) as
reported previously. In addition to DGAT1, we found

Fig. 1 Manhattan plot for association of SNP with fat yield in Nordic Holstein cattle. Red horizontal line indicates genome-wide significance
level [−log10(P) = 8.5]

Table 4 The genetics variants explained by QTL and the rest of
SNPs

Number of QTL V(G1)/Vpb (%) V(G2)/Vpc (%)

Fat1a 18 23.56 61.12

Fat2a 27 28.57 56.40

Prot1a 22 12.52 72.20

Prot2a 34 16.76 67.14

Milk1a 20 19.02 66.27

Milk2a 26 21.50 63.12

Note, aFat means the trait of fat yield, Prot means the trait of protein yield,
Milk means the trait of milk yield; 1 indicate the lead SNP list only included
the lead SNP from the first round, 2 indicated the lead SNP list included all
lead SNP found by our approach. bmeans the percentage of genetics variants
explained by the QTL, c means the percentage of genetics variants explained
by the rest of SNP other than QTL
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one tolerance missense mutations in CSN2. Moreover, in
IL4I1, we found one deleterious missense mutations.

Discussion
Although functional gene clustering is weaker in eukary-
otes genomes than in prokaryotes genomes, functional
grouping of the genes with same or similar function still
exists [31]. Therefore, in GWAS analysis, we may fail to
detect the nearby genes and may treat them as one sig-
nificant signal. In our study, we used an analysis ap-
proach to detect multiple nearby QTL by iteratively
fixing the lead SNP as covariate. However, such an ap-
proach can inflate type I error rate [12]. To avoid intro-
ducing additional type I errors, we placed a condition
that the lead SNPs detected in the second and

subsequent rounds must be found to be genome-wide
significant in the first round (i.e., significant according to
conventional GWAS criteria). In addition, we tested our
approach on simulated data with a simulated QTN and
multiple SNPs with various levels of LD with the QTN.
In 100 replicates, we found no additional SNP in LD
with the QTN other than the simulated causative vari-
ants. By using this analysis, we were able to detect mul-
tiple QTL (as well as designating the lead SNP for each
QTL) on a chromosome automatically. For example, we
detected a known QTL on BTA6 (BTA6:38027010,
rs43702337) in the third round and also another QTL at
46Mb (in the second round). This SNP is located in the
gene ABCG2 which was previously reported to affect milk
yield in dairy cattle [22] and this lead SNP was the most

Fig. 2 Manhattan plot for association of SNP with protein yield in Nordic Holstein cattle. Red horizontal line indicates genome-wide significance
level [−log10(P) = 8.5]

Fig. 3 Manhattan plot for association of SNP with milk yield in Nordic Holstein cattle. Red horizontal line indicates genome-wide significance
level [−log10(P) = 8.5]
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probable causative mutation [23]. Furthermore, our ap-
proach also showed the potential to distinguish closely
linked QTL. For example the lead SNPs on chromosome
6 of protein content, we detected the first association sig-
nal at BTA6: 88477501 and the third association signal at
BTA6: 88749792. Similar conditional analyses were also
applied in human and other livestock studies [32–34].
Here, we analyzed one lead SNP at a time, as opposed to
Bolormaa et al. [34] who included all lead SNPs simultan-
eously in the model. We also compared the genetic vari-
ants explained by the QTL found by first round and all
the QTL found by our approach. The results showed the
QTL found at second and third round did explain more
phenotype variants (Table 4).
Post GWAS, we face the challenge of identifying

the candidate genes. The conventional method is to
use the nearest gene, but this may miss the target as
many-a-time the lead SNP may not be from the
causal gene. This could be due to imputation inaccur-
acies, multiple QTL in the vicinity or random chance
factor. Therefore, we need to use additional informa-
tion to prioritize the candidate genes. In this study,
we used the mammalian phenotype database to search
for candidate genes from the genes located in associ-
ation regions. The mammalian phenotype is based on
mouse mutation lines. As a test, we extracted all
genes located within LD of the lead SNPs for all
three milk yield traits and searched for related pheno-
type terms. Here, we searched for two phenotype
terms ‘abnormal mammary gland development’ and
‘abnormal milk composition’. We successfully identi-
fied some well-known genes affecting milk related

traits in cattle as well as new candidate genes (Table
5 and Table 6). For the term ‘abnormal milk compos-
ition’, we identified five genes. Four of them were re-
ported previously in different studies [35, 36], and
only DGAT1 is the nearest gene to the lead SNP on
chromosome 14. Another term we searched is ‘abnor-
mal in mammary gland development’ and found six
genes. ELF5, STK3 and WNT1 are the nearest genes
to the lead SNPs. However, differences between mice
and cattle may introduce some false positives. In all,
using this strategy we not only found some
well-studied genes missing from the nearest genes
method (pick the gene which is nearest to lead SNP
as candidate genes), but also identified new candidate
genes which may be helpful in finding causal factors.
We also face another challenge of identifying the

causative variant once the causal gene is identified as
levels of linkage disequilibrium in cattle are high [37]. In
many cases the causative variant is not the lead SNP
[38] but another SNP hidden within the LD of the lead
SNP. In human studies, there are different strategies to
prioritize variants [10]. In this study, information from
Ensembl [14] was used to prioritize potential causative
variants. In our case, the DGAT1 and ABCG2 can be de-
tected in our lead SNP list, and the causative mutation
of both can be detected in VEP annotation as missense
variants. GHR was found nearby the location of lead
SNPs. For ABCG2 and GHR, the SIFT score show these
mutations as ‘deleterious’. For DGAT1, even though the
SIFT showed these two mutations are tolerated the
amino acid of the protein is changed. Therefore, the im-
pact of moderate and high reported by VEP can be con-
sidered as possible causative mutations, while SIFT score
can be used to provide additional support.
In summary, our analysis approach can distinguish

nearby association signals of multiple QTL. In our study,
we found candidate genes reported by previous studies.
Followed by searching genes within the LD region of the
lead SNPs, we can find high confidence candidate genes.
Lastly, using VEP can help us to find putative causative
mutations within candidate genes and provides a good
source for further functional validation. However, our
approach will not be able to pinpoint causal variants

Table 5 Genes related to “abnormal milk composition” phenotype
in the mammalian phenotype database [24] overlapped with milk
QTL identified in the present study

Gene name Location Phenotype

CSN1S1 BTA6: 87,141,556-87,159,096 abnormal milk composition

CSN2 BTA6: 87,179,502-87,188,025 abnormal milk composition

CSN3 BTA6: 87,378,398-87,392,750 abnormal milk composition

DGAT1 BTA14: 1,795,351-1,804,562 abnormal milk composition

IL4I1 BTA18: 56,691,667-56,725,849 abnormal milk composition

Table 6 Genes related to “abnormal of mammary gland development” in the mammalian phenotype database [24] overlapped with
milk QTL identified in the present study

Gene name Location Phenotype

WNT1 BTA5: 31,000,183- 31,003,266 abnormal mammary gland morphology

CAT BTA15: 65,779,325-65,815,261 decreased mammary gland tumor incidence

ELF5 BTA15: 65,824,442-65,854,386 abnormal mammary gland development

STK3 BTA14: 67,677,676-67,987,801 increased mammary gland tumor incidence

DGAT1 BTA14: 1,795,351-1,804,562 abnormal mammary gland development

CHUK BTA26: 20,966,010-21,008,277 abnormal mammary gland growth during pregnancy
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located in the non-coding and regulatory regions due to
lack of annotation of the cattle genome.

Conclusion
In this study, we designed an approach for detecting
closely linked multiple association signals and performed
the analysis in Nordic Holstein cattle for milk, fat and
protein yields. The results showed we not only detected
most of the well-known genes affecting these three milk
yield traits but also detected additional candidate genes.
Post-GWAS, we used information from the mammalian
phenotype database and variant effect predictor to con-
firm known genes and causative mutations. In the mean-
while, we detected additional genes which might be
contributing to variation in milk traits in Nordic
Holstein cattle. Therefore, we concluded our approach
can be used routinely for GWAS studies in dairy cattle.

Methods
Phenotype and genotype data
No animal experiments were performed in this study,
and therefore, approval from the ethics committee was
not required.
Phenotypic records for Nordic Holstein cattle are kept

in a centralized database (Nordic Cattle Genetic Evalu-
ation, NAV. http://www.nordicebv.info/). Breeding values
for milk, fat and protein yield (MY, FY and PY) are based
on production figures expressed in kilograms taken from
routine milk records and then combined into an index for
each trait. For details on genetic evaluation for milk yield
traits in Nordic countries see (http://www.nordicebv.info/
production). The breeding values used for association ana-
lysis were de-regressed proof breeding values [39, 40]
from the routine genetic evaluation by NAV and were
available for 5043 progeny tested Holstein bulls.
The association study was carried out by using im-

puted WGS data, as previously described by Iso-Touru
et al. [41] and Wu et al. [42]. A total of 4921 bulls were

genotyped with the Illumina BovineSNP50 BeadChip
(54 k) ver. 1 or 2 (Illumina, San Diego, CA, USA). The
54 k genotypes were imputed to WGS variants by a
2-step approach [43]. First, all animals were imputed to
the high-density (HD) level by using a multibreed refer-
ence of 3383 animals (1222 Holsteins, 1326 Nordic Red
Dairy Cattle, and 835 Danish Jerseys), which had been
genotyped with the Illumina BovineHD BeadChip. Sub-
sequently, these imputed HD genotypes were imputed to
the WGS level by using a multibreed reference of 1228
animals from Run4 of the 1000 Bull Genomes Project
[1] (1148 cattle, including 288 individuals from the glo-
bal Holstein population, 56 Nordic Red Dairy Cattle, 61
Jerseys, and 743 cattle from other breeds [1] and add-
itional data from Aarhus University (80 individuals, in-
cluding 23 Holsteins, 30 Nordic Red Dairy Cattle, and
27 Danish Jerseys).
Different variant calling pipelines were used for the

1000 Bull Genome Project data and the in-house Nordic
data at Aarhus University. The whole genome sequence
data at Aarhus University was analyzed as described by
Brøndum et al. [44]; while the same for 1000 Bull Genome
Project was described by Daetwyler et al. [1]. Detailed
guidelines are available at http://www.1000bullgenomes.
com. Data from both sources were available as VCF files.
The data from the two sources were combined using
Picards MergeVCFs (https://broadinstitute.github.io/pic
ard/). As the 1000 Bull Genomes Project only shares data
after variant calling, some markers were not called for all
animals in the combined dataset. To avoid large gaps of
missing markers in the dataset, only markers that were
called in both the Nordic and the 1000 Bull Genomes Pro-
ject datasets were kept. For positions containing both a
SNP and an INDEL, the INDEL was discarded, as the im-
putation methods rely on unambiguous sequences of vari-
ants. Positions with disagreements between alleles for
sequence and HD data were also deleted. Reference geno-
type probability data was run through BEAGLE [45] and

Fig. 4 The VEP annotation of SNPs in linkage disequilibrium (LD > 0.20) with leading SNPs. a The summary of all annotation. b The summary of
annotation that change the protein coding sequence
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all markers with an R2 value (squared correlation between
the true and imputed allele dosages) below 0.9 were re-
moved from the original sequence data. This was done in
order to remove poorly imputed markers that might have
adverse effects on the imputation procedures.
Imputation from 54 k to HD genotypes to HD and im-

putation to the WGS level were undertaken with IM-
PUTE2 v2.3.1 [46] and Minimac2 [47], respectively. The
imputation to whole genome sequence was done in
chunks of 5Mb with the length of buffer region of 0.25
Mb on either side. A total of 22,751,039 biallelic variants
were present in the imputed sequence data. After ex-
cluding SNP with a minor allele frequency below 1% or
with large deviation from Hardy–Weinberg proportions
(P < 1.0− 6), 15,512,960 SNPs for fat yield, 15,551,720
SNPs for protein yield and 15,551,614 SNPs for milk
yield on 29 autosomes in Nordic Holstein cattle were
retained for association analyses. The average accuracy
(r2-values from Minimac2) was 0.85 for across breed im-
putation. Information on the distribution of imputation
accuracy as a function of minor allele frequency has pre-
viously been published [42].

The methodology of multiple QTL detection
We developed an analysis approach to run the condi-
tional GWAS analysis, similar to the GCTA-COJO ap-
proach in GCTA [11]. However, GCTA-COJO uses
GWAS summary data while we have reanalyzed the data
after fitting only the lead SNP(s) on a chromosome. Fur-
thermore, we used imputed dosage data instead of num-
ber of copies of the reference allele. This takes account
of inaccuracies in genotype imputation. We first per-
formed a single SNP GWAS analysis using GCTA [11]
for each chromosome as the first round. Then we
ranked the SNP based on their –log10P value in the
GWAS. The SNP with the largest –log10P value, the lead
SNP, within each chromosome was identified. An
experiment-wise 0.05 type I error rate after Bonferroni
correction for 15,512,960~15,551,720 simultaneous tests
corresponds to a threshold of –log10P ≈ 8.5. If the –
log10P value of the lead SNP exceeded 8.5; we extracted
the lead SNP’s genotype dosage, fitted it as a covariate,
and scanned the whole chromosome again as the second
round. If the result of second round detected another
SNP with a –log10P value exceeding 8.5 and this SNP
also was significant in the first round (–log10P > 8.5), we
extracted the allele dosage of this SNP and fixed it as an-
other covariate and scanned the chromosome in a third
round. This same procedure was iterated until no add-
itional SNP remained significant. The lead SNP in each
round were collected to build a lead SNP list. Moreover,
in each round solo SNP, that is, SNP with no other sig-
nificant SNP within a 1 Mb region were removed. A
boundary for each QTL peak was defined as follows: for

each QTL, we scanned the 1 Mb region up- and
down-stream of each lead SNP, if SNP –log10P value de-
creased by more than 3 units compared to the value at
the leading SNP and the region is larger than 0.25Mb
we set this SNP as a boundary, otherwise we set ±0.25
Mb as the boundary. The list of candidate genes were
generated from the closest annotated genome feature to
the lead SNP list.

Testing the type I error rate using simulation data
We used simulated phenotype data to test whether our
approach to detect multiple QTL on a chromosome by
incorporating previously identified QTL as covariates,
inflates the type I error rates [12]. We selected a SNP
randomly from the genome as a causative mutation
(QTN) with a MAF (Minor Allele Frequency) between
0.05 and 0.10 and in Hardy Weinberg equilibrium. Ten
additional SNP with different levels of LD (linkage dis-
equilibrium, r2) with the simulated QTN were selected.
These 10 SNPs have different r2 with the QTN as fol-
lows: one with 0.9–1, one with 0.8–0.9, one with 0.8–
0.7, one with 0.7–0.6, one with 0.6–0.5, one with 0.5–
0.4, one with 0.4–0.3, one with 0.3–0.2 and two with less
than 0.2. Allele substitution effects at the QTL were
sampled from a univariate normal distribution with
mean of 20% of the standard deviation of phenotype and
variance equal to 1% of the phenotypic variance. We re-
peated this simulation and applied our analysis 100
times. Lastly, we investigated how many times we found
a SNP in LD with the simulated QTN after we fix the
simulated causative mutation as a covariate i.e. false
positive detection.

LD calculation and annotation
We calculated the pairwise r2 between lead SNP and all
other SNPs on the same chromosome using PLINK [48]
and extracted all the SNPs which have r2 > 0.2 with the
lead SNP. All these SNPs were annotated by VEP
(Variant Effect Predictor) [14]. To find the candidate
genes, we extracted all the genes which overlap with LD
regions of the lead SNP and searched these gene entries
in the Mammalian Phenotype database [24]. We col-
lected all the lead SNPs and calculated the pairwise r2

with SNPs in the chromosome. The boundary was set to
the last SNP that has r2 > 0.2. Then we extracted all the
genes overlapping these regions and searched them in
the database. We found 417 genes located in the LD re-
gions, of which 388 have gene symbols. These 388 genes
were searched in the database and 375 have mutation
lines with phenotype descriptions in the Mammalian
Phenotype database. We refined results using two terms
for phenotypes: ‘abnormal in mammary gland develop-
ment’ and ‘abnormal in milk production’.
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The genetics variants explained by QTL
We used the lead SNP list to generate the genetic relation-
ship matrix (GRM) as group 1. Then we excluded all flank
2.5Mb SNPs of the lead SNP from the imputed HD data
to generate GRM as group 2. At last, we estimated vari-
ance explained by these two groups for each trait. The
whole analysis was conducted using GCTA [11].

Additional file

Additional file 1 Figure S1. The locuszoom [1] figure of previous report
causative mutation of DGAT1 of the genome-wide association result milk
fat yield in Nordic Holstein cattle. and Figure S2. The locuszoom figure
of previous report causative mutation of DGAT1 of the genome-wide
association result in milk protein yield in Nordic Holstein cattle.BOP1 was
not include in USCS refFlat file [2]. (DOCX 551 kb)
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