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Substrate and cell fusion influence 
on slime mold network dynamics
Fernando Patino‑Ramirez1*, Chloé Arson1,3 & Audrey Dussutour2,3*

The acellular slime mold Physarum polycephalum provides an excellent model to study network 
formation, as its network is remodelled constantly in response to mass gain/loss and environmental 
conditions. How slime molds networks are built and fuse to allow for efficient exploration and 
adaptation to environmental conditions is still not fully understood. Here, we characterize the 
network organization of slime molds exploring homogeneous neutral, nutritive and adverse 
environments. We developed a fully automated image analysis method to extract the network 
topology and followed the slime molds before and after fusion. Our results show that: (1) slime 
molds build sparse networks with thin veins in a neutral environment and more compact networks 
with thicker veins in a nutritive or adverse environment; (2) slime molds construct long, efficient and 
resilient networks in neutral and adverse environments, whereas in nutritive environments, they 
build shorter and more centralized networks; and (3) slime molds fuse rapidly and establish multiple 
connections with their clone‑mates in a neutral environment, whereas they display a late fusion with 
fewer connections in an adverse environment. Our study demonstrates that slime mold networks 
evolve continuously via pruning and reinforcement, adapting to different environmental conditions.

Transportation networks where fluids are transported from one point of the network to another are ubiquitous in 
nature. Vascular networks in animals, plants, fungi and slime molds are commonly cited examples of such natural 
transportation networks. These networks are often studied as static architectures, although most of them have 
the ability to alter their morphology in space and time in response to environmental  conditions1. Morphological 
alterations often include short term changes in the vein diameter and long-term structural adaptation such as 
addition or loss of  veins1,2. The slime mold Physarum polycephalum is a unicellular organism that is often used 
to study problem-solving in single-celled  organisms3–8 and constitutes an ideal model system to study short and 
long term alterations in network morphology, in response to environmental conditions.

The motion and behaviour of Physarum polycephalum rely on a complex internal architecture which consists 
of a complex network of interconnected veins. The main function of this vein network is to transport oxygen 
and nutrients to maintain homeostasis in cells that range from 10 square micrometres to 10 square  meters9. 
These veins contract and relax periodically, causing the cytoplasm to flow back and forth—a phenomenon called 
“shuttle streaming”. These contractions produce a pressure gradient that pushes the cytoplasm towards the cell 
periphery where veins cannot be distinguished due to their high space concentration. The resulting pseudopods 
have a fan-like structure. The slime mold membrane extends and retracts in synchrony with the shuttle stream-
ing, allowing cell migration at a speed up to few centimeters per  hour10. In a homogeneous environment, the 
exploration process of slime mold alternates between refinement and generation of pseudopods that explore 
the  domain11.

The frequency and the amplitude of the vein contractions depend on external  cues12. For instance, when 
Physarum polycephalum perceives a localized chemical attractant such as glucose in the environment, the veins 
contract at a high rate and the membrane migrates toward the  attractant13–15, whereas when it senses a localized 
chemical repellent such as Sodium Chloride (NaCl), the veins contract at a lower rate and the membrane retracts, 
moving away from the  repellent16. It has been shown that slime molds growing in an environment where NaCl is 
homogeneously distributed slow down the exploration process to allow production of mucus protection, whereas 
slime molds that grow in an environment where glucose is homogeneously distributed slow down the exploration 
process to allow  metabolization11. Hence, Physarum polycephalum can adjust its behaviour, shape, size and migra-
tion speed based on environmental conditions. Interestingly, as the slime mold moves and expands, its networks 
of veins are also evolving and  growing17. A question that arises is how external cues affect network morphology.
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Physarum polycephalum cells have been modeled as undirected graphs by a number of authors, which even 
resulted in the creation of a public repository of slime mold extracted  graphs18, and different codes for network 
extraction from raw  images19,20, which describe different segmentation networks based on the characteristics 
of the acquired images. Different studies on the network dynamics of slime molds suggest that the networks 
are hierarchical, with the distribution of veins widths and lengths following exponential, gamma or log-normal 
distributions, with the majority of the veins being short and thin, with a few long and thick  veins21–23. As is the 
case in biological networks, the mean node degree is close to three in Physarum polycephalum networks, with 
little variations due to the existence of end branches. Thicker and longer veins have higher centrality than their 
adjacent  veins20,24. Smaller, less central veins allow adaptability and redundancy of the network as it constantly 
evolves and coarsens as a result of  exploration20,23. Even though the majority of studies on the network dynam-
ics of Physarum polycephalum have focused on neutral environments, a recent  study25 revealed that changes in 
vein diameters can be induced by localized chemical attractants. However, the impact of these changes on the 
complete network morphology was not investigated in detail. Takamatsu et al.26 and Ito et al.22 studied the effect 
of nutrients (oat flakes) and a mild repellent (KCl) on the network formed by Physarum polycephalum, show-
ing that substrates containing oat usually yield networks with thinner veins but longer overall networks than 
substrates containing KCl, which promote thicker veins but shorter networks.

Another interesting feature of Physarum polycephalum is that it can be severed into viable and structurally 
similar yet smaller cells. Upon contact, these cells can fuse with each other. Slime mold fusion constitutes a defin-
ing feature of the lifestyle of slime molds , allowing them to share information once  merged27, and even before it, 
through the layer of mucus deposited during  growth28. When two different networks merge, remodeling might 
involve changes in vein diameter as well as pruning of supernumerary veins as seen in animal vascular  systems29. 
Formation of an extended network by fusion of microplasmodia (micrometer-sized cell without tubular vein 
network) has been  investigated30, but to our knowledge, the reorganization of Physarum polycephalum networks 
after fusion of macroplasmodia (millimeter-sized cell with a tubular vein network) has never been studied.

Hence, due to its extremely original behaviour, fast migration rate and outstanding network topology, the acel-
lular slime mold Physarum polycephalum offers an attractive model for the analysis of morphogenesis dynamics 
underlying cellular migration, exploration and fusion. In this paper, we grow two slime mold cells of the same 
strain in adverse, nutritive and neutral environments in order to characterize the morphology, network and 
dynamics of Physarum polycephalum before and after fusion. First, we investigate whether and how the topology 
of slime mold networks is affected by different environmental conditions, by comparing an adverse environment 
(using sodium chloride NaCl as a repellent), a nutritive environment (using glucose as a chemo-attractant) and 
a neutral environment (using plain agar). Second, we analyze the evolution of slime mold networks within the 
3 h after fusion. We develop a program that automatically analyzes sequences of images to track the area and 
shape of the surface covered and explored by the slime mold, transforms images of slime mold into undirected 
graphs, and calculates network cost, efficiency and resiliency indexes. Our program allowed us to run multiple 
experiments simultaneously, imaging up to 20 dishes at the same time, without affecting the precision of the 
computed cost and efficiency of the complete networks.

Methods
Species. The slime mold Physarum polycephalum is a unicellular organism that belongs to the Amoebozoa. 
Its vegetative state, the plasmodium, is a giant mobile cell that consists of a syncytium of nuclei and an intracel-
lular cytoskeleton, which forms a complex cytoplasmic network of veins. Its cytoplasm consists of a viscous 
phase (ectoplasm) and a liquid phase (endoplasm) characterized by different concentrations of fibrous proteins. 
The ectoplasm, which contains actin and myosin, forms the contractile walls of the veins. Within these veins 
flows the endoplasm, which contains organelles such as nuclei and mitochondria. Ecto- and endo-plasms are 
convertible into one another. A starving plasmodium can enter a dormant stage, called sclerotium, and turn back 
to a plasmodium after being transferred to a fresh food medium. In this paper, we used the Australian strain pro-
vided by Southern Biological, Victoria, Australia. We revived a total of 12 sclerotia to conduct the whole study.

Rearing conditions. The slime molds were reared on a 1% agar medium with rolled oat flakes. They were 
fed every day and their agar medium was replaced daily. Slime molds were 2 weeks old when the experiment 
started. All experiments were carried out in the dark, at a temperature of 25 degrees Celsius, a humidity of 80%, 
for 48 h. Pictures were taken with a Canon 70D digital camera. A light source underneath the petri dishes was 
turned on for 3 s when photographs were taken.

Experimental setup. To investigate how the substrate affects the vein network evolution before and after 
fusion, we observed the behaviour of two slime molds that explore a medium that is neutral, slightly nutritive 
or adverse. Two circular slime molds (13 mm diameter) were placed directly on two opposite sides of a circular 
arena that consisted of a 90 mm diameter petri dish filled with either a plain 1% agar (neutral environment, 
i.e. control treatment), a plain 1% agar mixed with glucose (100 mM, nutritive environment), or a plain 1% 
agar mixed with salt (100 mM, adverse environment). It is important to note that while we called the substrate 
containing glucose “nutritive” as glucose in a nutrient, this substrate cannot sustain the slime mold growth by 
 itself31. Hence, the slime mold biomass did not change in the course of the experiment. All slime molds were 
fed just before the experiment, so we assumed that they were in the same physiological state. We replicated the 
experiment at least 40 times for each substrate. We tested and monitored each arena for 48 h taking time-lapse 
photographs every minute. A LED panel underneath the petri dishes was turned on for 3 s when photographs 
were taken using a self programmed Arduino connected to the camera.
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Image segmentation. The image analysis algorithm was implemented in  Matlab32. First, we masked man-
ually the area outside of the contour of the petri dish. Then, a Laplacian filter was applied to enhance the contrast 
of the images. A traditional segmentation using the RGB space did not yield good results because the color 
region of slime mold (light yellow) was too similar to the color values of the background (white). Therefore, we 
proposed a segmentation method based on the LAB color space. Specifically, we used the components L (light) 
and B (blue to green), since the component A proved to be non-informative to the segmentation. The segmen-
tation method in the LB space can be enhanced by adding a third dimension that is equal to the norm of the 
pixel-wise subtraction between the current image and the first image of the experiment (D). Then, the proposed 
LBD space could be segmented using any common algorithm, such as the k-means algorithm. Nonetheless, for 
the present study, we found that similar segmentation results could be found using a simpler approach: using 
the LB space, and reducing the image to an intensity array by computing L-B and normalizing the result to the 
interval [0,1]. Advantages were that the run-time of the algorithm was shorter, and that there was no need to 
broadcast the initial image of the test (to compute D) to every processor when using parallel computing. After 
the segmentation stage, the intensity image was binarized using the adaptive method for dark foregrounds pro-
posed by Bradley and  collaborators33.

Nonetheless, fading thin veins could not be captured by the binarization process. This limitation did not affect 
considerably the overall area calculation of the slime mold cell, but it impaired the calculation of connectivity 
parameters. Therefore, we coupled the binarization process with an edge detection subroutine that blurred the 
image by using a Gaussian filter ( σ = 2 ) and then performed ridge detection on the resulting array using a 
watershed  procedure34. This subroutine yields an image that better identified thin veins but not large slime mold 
regions. The union of the segmentation and ridge-detection arrays gave a binary image that combined the benefits 
of both methods, and was then used in the subsequent steps. A sample segmented image is shown in Fig. 1. In 
addition, three videos (one per substrate type) are shown in the supplementary materials.

Morphological and graph network indexes—before fusion. In the present study, we analyzed the 
influence of different substrates on the evolution of the slime mold network, initially focusing on each individual 
slime mold and later studying the network dynamics at the location where the slime molds fuse. In both stud-
ies, morphological an topological indexes were computed in order to quantify the observations. Moreover, in 
order to reduce the time needed for the program to automatically find the fusion time, we provided an initial 
guess based on visual inspection. The algorithm could function without this initial guess, which is optional. If an 
initial guess is provided, the algorithm refines the solution by finding the earliest image in which the two slime 
molds became connected to form a single object. If an initial guess is not provided, the program iterates from a 
random guess.

Morphological indexes. The pre-fusion analysis was performed by comparing networks extracted after the 
slime mold cell had covered a certain area (Covered Area CA) relative to the initial slime mold area (circle of 
13mm in diameter). In total, we compared networks for seven normalized areas, from 1 to 4 times the initial area 
of slime mold, at 0.5 intervals. The time at which the slime molds reached a given normalized area was found by 
using linear interpolation between known time-area pairs. Initially, the only known areas were the initial area 
( t = 0 ) and the area at the fusion time. In the fusion analysis, we compared networks from the time of fusion, 
up to 3 h afterwards.

Figure 1.  Segmentation process. (a) Raw image, masked at the boundary of the petri dish and enhanced 
used a Laplacian filter. (b) Segmented image overlay on original image, with highlighted pseudopods and 
cell topological skeleton. (c) Resulting undirected graph: dots and segments correspond to nodes and edges 
respectively. Approximate location of clusters shown as colored polygons. Three videos exemplifying the time-
lapse segmentation process are available as supplementary material of this study. Figures generated using Matlab 
2019a (https ://www.mathw orks.com/produ cts/matla b.html).

https://www.mathworks.com/products/matlab.html
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Besides the slime mold cell area (CA), measured from the binary image, the so-called print area (PA) was 
calculated as the total area enclosed by the cell contour, e.g. including the empty regions inside it. The number 
of empty regions inside the slime mold cell was computed as well, together with the total area covered by these 
regions (PA–CA), which corresponds to the empty space inside the slime mold cell. The ratio of empty space to 
slime mold area (CA) has a value of 0 for a slime mold cell with no empty regions or “holes”, and increases with 
the empty space area. The mean size of the empty regions was calculated as the ratio between the total empty 
area and the number of such regions.

The total length of the network was found from the topological skeleton of the segmented image, also known 
as medial axis, following Matlab’s implementation of the algorithm proposed by Lee and  collaborators35, as high-
lighted in red in Fig. 1, panel b. The average vein width was then approximated as the ratio between the slime 
mold area and the total length of the network. In addition, the algorithm proposed by  Maurer36 allowed us to 
calculate the Euclidean distance transform along the skeleton, which is the distance from the skeleton (medial 
axis) to the closest edge of the slime mold cell, and therefore corresponds to half the vein width. The pseudopodia 
of the slime mold cell were identified by sequentially eroding and dilating the image with a structuring element 
of 1mm in radius. The remaining regions after such an operation were then labeled as pseudopods (shown in 
green in Fig. 1. The proportion of pseudopods in the networks is defined as the ratio between the area of the 
pseudopods regions and the total slime mold area.

Undirected graph indexes. From the binary image, we obtained the topological skeleton and the distance trans-
form along that skeleton. From those, we constructed undirected graphs to represent the slime mold networks. 
In these graphs, the nodes correspond to the branch points and the end points of the skeleton, while the seg-
ments between them correspond to the edges. Each edge is associated to its parent nodes. The edge width is equal 
to the average value of the vein widths along it, which was calculated as two times the distance transform value. 
We also calculated the length of each edge, the Euclidean distance between the parent nodes, and the drag of the 
edge. The drag can be thought of as the resistance to flow: it was calculated as the ratio between the edge length 
and the fourth power of the edge width.

We stored the coordinates of each node and we assigned a type to each node, depending on whether the node 
fell inside a pseudopod, the initial cell, or the veins. After constructing the graph, a subroutine calculated the con-
nectivity of each node, and simplified the graph in order to avoid self-loops and repeated edges between nodes. 
A sample undirected graph constructed from a raw image is shown in Fig. 1, panel c. Four different categories 
of graph indexes were computed: connectivity, cost, transport efficiency and resiliency/hierarchy, as explained 
below. The indexes are illustrated in the simple sample graph shown in Fig. 2.

Connectivity. The node degree corresponds to the number of edges connected to a given node. It is a common 
metric used to quantify the “connectedness” of a network. Nevertheless, biological networks tend to form degree 
3 networks with little variations, and therefore the mean node degree did not provide much information on net-
work connectivity. The alpha  index37 is a measure of the density of cycles in the graph (also named loops), rang-
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Figure 2.  Sample graph. U: sample undirected graph connecting 12 nodes, all the edges in the graph have 
a uniform edge width. G: sample graph with the same topology as graph U, but an increased edge width 
between nodes 5 and 9. MST: Minimum spanning tree for U and G, some edges disappear from the graphs to 
form a simply connected network with minimum length. DT: Delaunay triangulation of graphs U and G, the 
triangulation is a maximum connected graph between the nodes, irrespective of the edge or node weights of the 
graph. The edge color is proportional to the edge betweenness in the graph.
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ing from 0 for simply connected networks (no loops) to 1 for maximum planar networks, which are networks 
in which no extra edges can be added without crossing existing ones (e.g. Delaunay triangulations). The alpha 
index was computed but, similar to the connectedness index, results were non-informative.

Network cost. We quantified the network cost in terms of the weighted wiring cost under different scenarios. 
The formal definition of the wiring cost is the sum of the upper (or lower) triangular weighted adjacency matrix 
of the graph. If the edge weight corresponds to the length of the edges, the wiring cost corresponds to the total 
length of the network. Instead, if the weight metric is the Euclidean distance between connected nodes, the wir-
ing cost corresponds to the total length of a network with the same topology, but with strictly straight segments 
between nodes. Then, we defined the tortuosity of the network as the ratio between the total network length 
(wiring cost by length) and the length of the equivalent graph with straight edges (wiring cost by Euclidean 
distance).

Furthermore, we normalized the total network length by comparing it to its upper and lower bounds. The 
minimum spanning tree (MST) is the subset of edges of the original graph that connects all the nodes with 
minimum total edge weight, and therefore is a lower bound for network cost. For instance, the MST in terms of 
length is the third graph in Fig. 2. In this example, the MST of U in terms of length or drag is not unique, given 
that the graph has double symmetry and that there is more than one solution that gives the minimum network 
length/drag. For instance, choosing either edge from 4–8 or 5–9 will yield the same (minimum) network length/
drag. On the contrary, the MST in terms of drag for graph G strictly selects edge 5–9 over edge 4–8.

The upper bound for network cost is the Delaunay triangulation (DT), which is the maximally connected 
graph for the set of nodes in the graph, irrespective of weight measures. A maximally connected graph is such 
that there is no way to add an extra edge to the network without crossing any other existing edge. Given that 
the DT of a graph depends only on the geometric distribution of its nodes, not the weight of the edges, the 
triangulation (DT) shown in Fig. 2 is the same for graphs U and G. Once we found the comparison graphs for 
each network, we mapped the network cost to the interval [0, 1] where zero and one correspond to the lower 
and upper bounds, respectively.

Transport efficiency. Transport efficiency was quantified based on the travel distance (shortest path) and the 
drag between source and sinks. Similar to the network cost, we compared the transport efficiency between pairs 
of nodes in the network against a lower bound. We computed the shortest path between every pair of nodes 
along the network (using Matlab’s implementation of Dijkstra’s algorithm) in terms of edge length, and its lower 
bound, the Euclidean distance between node coordinates. Then, we calculated the length efficiency index (LE) 
 defined38 as follows:

where lij and eij are the path length and the Euclidean distance between nodes i and j, respectively.
Referring to the sample graphs in Fig. 2, one can see the differences in transport efficiency, for instance 

between nodes 2 and 7 of the graphs. It becomes evident that the DT offers the best efficiency, since the path from 
node 2 to 7 passes only through nodes 2, 4 and 7, with a total path length that is similar to a straight line between 
nodes 2 and 7. Conversely, the same path along graph U passes through nodes 2, 1, 4, 8 and 7 (it is not unique), 
with a path length that is clearly longer than a straight line, and therefore, with lower efficiency. Moreover, the 
same path along the MST passes through nodes 2, 1, 4, 5, 9 and 8, yielding an even longer path length and lower 
efficiency, showing that network cost and path efficiency are oftentimes inversely correlated.

In addition to the general efficiency index (LE), we also studied the distribution of path efficiency, by com-
puting eij/lij for each pair of nodes i, j and by calculating the mean value and the coefficient of variation (COV, 
standard deviation divided by the mean) of the set of individual path efficiencies.

Similarly, we computed the pairwise shortest paths in the graph, this time in terms of minimum drag between 
nodes dij . In this case, the lower bound is a path with minimum possible drag between nodes, which corresponds 
to the shortest path (straight line) through an infinitely wide vein, which equals zero. For comparison, our lower 
bound cij was the drag between nodes i, j through a vein with a diameter of 0.5 mm and shortest possible length 
(euclidean distance). Setting an arbitrary vein width (in this case 0.5 mm) can shift and stretch the values of 
drag efficiency, but it does not modify its distribution, and therefore, it does not alter the relative values among 
graphs. We thus computed the mean and COV of the drag efficiencies dij/cij for every graph, and we compared 
the values relative to one another instead of discussing the significance of their magnitudes.

Edge hierarchy and network resiliency. In order to quantify the relative importance of edges in the graph, we 
calculated the edge betweenness centrality, defined as the percentage of all the shortest paths between nodes that 
pass through each edge. Similar to the shortest path efficiency, we calculated the edge betweenness in terms of 
length and drag. An example of the edge betwenness distribution is shown in Fig. 2 in the form of edge colors. 
From the DT, it is evident that each edge is used by approximately 8% of the shortest paths between nodes, with a 
very homogeneous distribution. On the contrary, more centralized networks such as the MST, show the depend-
ency of the network on some edges, such as edge 5–6 which is used in about 65% of the shortest paths, since it is 
the only node connecting the upper and lower regions of the graph. A comparison between the drag between-
ness of graphs U and G shows the influence of the edge weight (drag in this case), even though the topology of 
both networks is the same, the low drag of edge 5–9 in graph G skews the betweenness distribution, showing 
that this edge becomes significantly more important in the graph in comparison to edge 4–8. Apart from the 
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difference in drag between those edges (graph U), the load is distributed and becomes symmetric at about 32% . 
The frequency distribution of betweenness for the graphs followed an exponential distribution for both metrics 
(length and drag); it was parametrized by the parameter µ , equivalent to the mean of the edge betweenness 
values.

In addition, we studied the network resiliency in terms of the fault tolerance (FT) of the  graphs38–40. The FT 
corresponds to the percentage of edges that can be removed from the graph while still connecting a given per-
centage of the nodes, usually 50% . The selection of the edges to remove was random and so the FT was calculated 
as the average of 30 independent realizations of the procedure. In order to provide bounds of comparison, we 
calculated the FT for the MST (lower bound) and the DT (upper bound) of the graph. We mapped the FT of the 
actual network to the interval [0,1] where the bounds correspond to the MST and the DT, respectively.

Moreover, in order to study the effect of edge hierarchy in the resiliency of the network, we proposed a modi-
fied procedure to calculate the FT, this time by systematically removing the k edges with the highest/lowest drag 
betweenness with 1% ≤ k ≤ 100% of the number of edges in the graph. Removing the most ’important’ edges 
of the graph (highest betweenness) is considered a worst-case scenario, and starting from the least important 
edge, a best-case scenario.

Cell fusion indexes. We tracked the fusion region from fusion time (FT) up until 3 h after fusion, by analyz-
ing images every 15 min. In order to find the fusion region, we compared the print of both slime mold cells right 
before fusion (BF), and the print of the fused slime mold 5 min after fusion (AF). The difference between AF and 
BF (AF-BF) gave an image of the newly grown regions ( ri ), from which, one (or more) vein connected the two 
slime mold cells. We calculated the region obtained by adding each ri to BF until the regions became connected. 
Then, at FT, we extracted the region of slime mold that was within 5 mm from the connecting region. In order to 
capture possible expansion of slime mold adjacent to this region, we added an offset of 2 mm around its contour. 
The resulting area was defined as the fusion region (FR).

Then, at each time step, we measured the slime mold area, print area, ratio of empty and slime mold areas, 
average size of the enclosed empty regions, network length and mean and maximum vein widths inside the fusion 
region (FR). We observed large variability among the index values, attributed to the wide differences among the 
shape and extent of the fusion regions themselves. To alleviate this issue and better observe the evolution after 
fusion, most of these indexes were normalized by their initial value at fusion. Indexes specific to the fusion region 
were defined based on graph analysis, and are explained in the following section.

Fusion region graph indexes. We analyzed the evolution of the graph within the fusion region in terms of 
number of nodes and edges, mean and maximum edge thickness within FR. In addition, we studied the con-
nectivity between the two initial slime mold cells and its evolution over time, which was highly variable among 
environments, as shown in Fig. 3. To do this, we calculated the shortest path between the two initial locations 
of the slime mold cells in terms of length and drag and in terms of the number of veins connecting the initial 
slime mold cells. The number of connections between the initial slime mold cells was calculated from the maxi-
mum flow of the graph, using Matlab’s implementation of Boykov-Kolmogorov’s algorithm. In general terms, 
the maximum flow of the graph between two nodes is the critical edge capacity that limits the flow between such 
nodes. Then, in the case of unweighted graphs (i.e. every edge has a weight of 1), the maximum flow corresponds 
to the maximum number of distinct paths between the nodes, i.e. the number of connecting veins.

Then, in order to count the maximum number of veins connecting initial slime mold cells, we used an initially 
unweighted graph, we picked one node inside each initial cell, and increased the weight of their surrounding 
edges to a large value. This to make sure that the connections bottleneck occurred in the connection between 
both sides of the network. Specifically, we increased the weight of the edges within 25 mm of each source node 
to a value of 100. Then, the maximum flow between the nodes corresponded to the number of connecting veins 
between the initial slime mold cells. Furthermore, following the same procedure with a graph weighted by its 
edge width, we calculated maximum flow as the total bandwidth between both sides of the graph. We present 

Figure 3.  Fused slime mold cells. Raw images taken 3 h after initial fusion of the slime mold cells in different 
substrates. Images illustrate the influence of the substrate in the number and thickness of connecting veins 
between sides of the network.
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the results both in terms of number of connecting veins and in terms of the average width of the edges, which 
was calculated as the total bandwidth divided by the number of connecting veins. In a similar way, the shortest 
path between the initial slime mold cells was tracked over time, both in terms of minimum path length between 
initial slime mold cells and in terms of minimum drag path.

Statistical analyses. To assess the difference in the various parameters measured between the three treat-
ments, we used linear mixed models (function lmer, Package lme4) or generalized linear mixed models (func-
tion glmer, Package  lme441) in R (RStudio Version 1.2.1335). The models were fitted by specifying : the response 
variables (the various indexes defined above), the explanatory variables: treatment (categorical predictor), the 
normalized area or the time after fusion (continuous predictors) and the random effects: the plasmodium from 
which each individual slime molds were cut from (plasmodium identity) and the replicate (slime mold identity). 
The response variables that did not fit linear model requirements were transformed using the “bestNormal-
ize” function (“bestNormalize”  package42). The outcomes of all the models are presented in the supplementary 
information.

Results
The following section is divided into two parts. First, we study the influence of the different environments (neu-
tral, adverse and nutritive) on the network characteristics of the slime mold cells, growing freely before fusion. 
Secondly, we analyze the network dynamics after fusion in the different environments.

Influence of substrate on slime mold networks. Slime mold morphology analysis. The first step of 
the analysis focuses on the expansion rate of the slime mold cells in different environments, as shown in Fig. 4. 
Results show that slime molds exploring a neutral environment expand to cover four times their initial area after 
10 h whereas slime molds exploring a nutritive or an adverse environment reach the same area only after 21 
and 26 h in average, respectively (Table S1, Fig. 4). This result confirms that the expansion rate depends on the 
substrate characteristics, as observed in our previous  study11.

Note that the total area enclosed by the whole slime mold cells is not always the same. Therefore, we quantified 
the ratio between the empty area (not covered by slime mold) and the slime mold cell area, as shown in Fig. 5.

While expanding on a substrate, slime molds build networks that enclose empty regions and appear as mesh 
net structures. The total area covered by such empty regions is larger when a slime mold is exploring a neutral 
substrate than the other two substrates (Table S2, Fig. 5a). Since we are comparing the geometry and network of 
slime mold cells that cover the same area (CA), it also means that the total area explored by slime molds (print 
area PA) in the neutral environment is larger than on the other two substrates. The number of empty regions is 
the lowest on a nutritive substrate and the highest on the neutral substrate (Table S3, Fig. 5b) while the area of the 
empty regions is the smallest on the adverse substrate (Table S4, Fig. 5c). Thus, on a neutral substrate, the slime 
molds build sparse networks enclosing numerous empty spaces, while on a nutritive substrate, they construct 
networks presenting few but large empty regions, and on an adverse substrate, they establish a tight and compact 
network. We also notice that the proportion of pseudopods is the highest on a nutritive substrate (Tables S5–S6).

Slime mold network topology analysis. The topology analysis of the slime mold networks first shows that on all 
substrates, the number of edges and the number of nodes are highly correlated regardless of the network size. 

Figure 4.  Time elapsed to target areas. Slime mold area normalized by the initial cell size (horizontal axis) 
versus time elapsed to reach such area (vertical axis). Solid lines correspond to the mean value among replicates 
for the same substrate and shaded regions correspond to the confidence interval.
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The mean node degree is in average 2.65. Figure 6 shows that there is a linear relationship between the number 
of nodes and edges in the networks, which holds for every environment and cell size studied. The fact that the 
number of edges is consistently 35% more than the number of nodes explains that the connectivity of the net-
works is an inherent characteristic of the slime mold networks.

Figure 5.  Empty regions inside slime mold cell. (a) Ratio between empty space inside slime mold cell and slime 
mold area as a function of normalized slime mold cell area (An). The solid lines and shaded areas correspond to 
the means and confidence intervals among replicates, respectively. (b) Boxplot graph of the number of enclosed 
empty regions inside the slime mold cell at An = 4. (c) Boxplot graph of the mean size of the empty region at 
An = 4, computed as the total empty area divided by the number of enclosed regions. Box plots show median 
(horizontal line), interquartile range (box), distance from upper and lower quartiles times 1.5 interquartile range 
(whiskers), and outliers ( > 1.5x upper or lower quartile).
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Regarding the total length of the networks, slime molds migrating on a neutral substrate build longer net-
works (Table S7, Fig. 7a) with narrower veins (Tables S8–S9, Fig. 7b, right hand-side and Fig. 7c), more nodes 
(Table S10, Fig. 6) and more edges (Table S11, Fig. 6) than on the other two substrates.

We observe that when slime molds reach three times their initial area (An = 1), the vein width becomes con-
stant. We also note a general decrease of vein width over the initial expansion from An = 1 to An = 3, which was 
expected, since the biomass remains constant in these  environments11: pseudopods are gradually transformed 
into veins. The main interpretation is that on a neutral substrate, the print area (PA) of the slime molds is larger 
because the slime molds are exploring: there are more empty spaces, and there are more connections between 
nodes and between edges. Since we are comparing slime molds that have the same cell area (CA) (and density), 
veins have to be narrower than in the nutritive and adverse environments, by biomass conservation (Fig. 7).

The analysis of vein width and vein length distribution indicates that veins are the narrowest and the short-
est when slime molds explore a neutral environment (Tables S12–S15, Fig. 8, Supplementary Figures S39–S40), 
following a log-logistic distribution with abundant short and thin veins and few long and thick veins.

The analysis of the normalized length of the networks shows that in general, slime mold networks have low 
tortuosity (e.g. edge lengths are close to the straight-line distances between nodes), with a slight difference in 
tortuosity and normalized network length between slime molds exploring a neutral substrate and slime molds 
exploring a nutritive one (Table S16, Table S17), the latter being the most tortuous (Fig. 9a), the former being 
the longest (Fig. 9b). Interestingly, we observe that the total length of the slime mold network is closer to that of 
a minimum spanning tree (which corresponds to a normalized length of zero) than to the total length of a fully 
connected network of the same topology (Delaunay triangulation, normalized length of 1), which at the same 
time, suggests that even though slime molds form networks with loops, those networks are far from being fully 
connected networks, keeping their total length closer to the MST.

The efficiency of the network measures how effective the network is to connect all its regions with one another. 
We calculate such efficiency in terms of path length (length efficiency, LE) and in terms of path drag (drag effi-
ciency, DE). Drag can be understood as the resistance to flow between two points, and therefore a higher drag 
efficiency means higher ease of flow. The length efficiency is the lowest for the slime molds exploring a nutritive 
substrate (Table S18, Table S19, Fig. 10a) whereas the drag efficiency is the lowest for the slime molds exploring 
a neutral substrate (Table S20, Table S21, Fig. 10b).

Another important metric of transportation networks is centrality, which is a measure of importance of 
the nodes or edges in the network, in terms of how often they are used during transport between locations. A 
homogeneous network has an even distribution of node/edge importance while a centralized network depends 
heavily on some important nodes/edges to route the network traffic. In the following, we measure edge impor-
tance in terms of betweenness centrality relative to both length and drag, which we calculate as the percentage 
of shortest paths (by length or drag) that pass through each node. The distribution of node importance in the 
networks (represented by mean edge betweenness), shows that slime molds in neutral environments are more 
homogeneous than those exploring nutritive and adverse environments. Slime molds in a nutritive environment 
are the most centralized among treatments (Tables S22–S23, Fig. 11a,b).

Network resiliency, understood as the capacity of a network to perform adequately even with damage, is 
measured in terms of normalized fault tolerance. Fault tolerance is calculated as the percentage of randomly 
chosen edges that can be removed from the network while still connecting 25% , 50% or 75% of the nodes in the 
network. Fault tolerance is normalized to the interval [0, 1], where the bounds correspond to a simply connected 

Figure 7.  Total Network Length and average vein width. (a) total network length as a function of normalized 
slime mold cell area (An). (b) Average vein width of the network as a function of normalized slime mold cell 
area (An), computed as the ratio between the slime mold area and the total network length. (c) Boxplot graph 
of the average vein width at An = 4. The solid lines and shaded areas correspond to the means and confidence 
intervals among replicates, respectively. Box plots show median (horizontal line), interquartile range (box), 
distance from upper and lower quartiles times 1.5 interquartile range (whiskers), and outliers ( > 1.5x upper or 
lower quartile).
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(MST) and a maximally connected (DT) networks respectively. Results from Fig. 12 show that the networks in the 
neutral and adverse environments are similar in terms of resiliency, while the networks in the nutritive substrate 
are the least resilient (Tables S24, S25, S26, Fig. 12). The fact that networks in a nutritive environment are the most 
centralized and the least resilient suggest that they depend heavily on certain edges which sustain the connectivity 
of the network. On the contrary, the exploratory behaviour of slime molds in neutral or adverse conditions yields 
networks that are less centralized and more resilient, e.g. more capable to overcome accidental disconnections.

Moreover, the relationships between network cost (normalized network length) and resiliency (normalized 
fault tolerance) and the edges importance distribution (mean drag betweenness) show that the normalized fault 
tolerance is positively correlated with the normalized network length (Table S27, Fig. 13a) whereas the mean drag 

Figure 8.  Distribution of veins width (top row) and length (bottom row). Bars in the frequency histograms 
show the mean percentage of network veins within a given range, while vertical error bars show the confidence 
interval.
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betweenness is negatively correlated with the normalized network length (Table S28, Fig. 13b), Which shows that 
networks with higher network length have a more balanced importance distribution and are also more resilient.

Given that the normalized fault tolerance (NFT) is based on random removal of edges, it does not take into 
account the importance of the edges in the network (also called edge hierarchy). For this reason, it is interesting 
to calculate the decay of the number of nodes connected as a function of removed edges, where this time, the 
edges are sorted by their importance (drag betweenness) and then removed from the least (most) to the most 
(least) important edges, which correspond to the best (worse) case scenarios respectively for network resiliency. 
Results are shown in Fig. 14 together with the mean values of random fault tolerance shown in Fig. 12 (before 
normalization).

Results show that edge hierarchy significantly influences the fault tolerance of networks, showing a steep loss 
of connected nodes (around 70% disconnected edges) after the 25% of the most important edges are removed 
from the networks. This effect is even more considerable on the nutritive substrate, which is consistent with the 
fact that these networks are more centralized than those on the other substrates (see Fig. 11). However, regard-
less of the substrate, the percentage of connected edges remains almost unchanged (above 95% of connected 
nodes) even after removing the 15% of the edges with the lowest importance, which suggests that these edges are 
not essential to the flow of the network, but significantly contribute to resiliency. Regarding the random fault 

Neu Nut Adv

0.64

0.66

0.68

0.7

0.72

0.74

0.76

0.78

0.8

0.82

M
ea

n 
[-

]

Neu Nut Adv

0.1

0.15

0.2

0.25

0.3

C
oe

ffi
ci

en
t o

f v
ar

ia
tio

n 
(C

O
V

) 
[-

]

a) Length efficiency distribution (LE)

Neu Nut Adv
0

1

2

3

4

5

6

7

M
ea

n 
[-

]

Neu Nut Adv

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

C
oe

ffi
ci

en
t o

f v
ar

ia
tio

n 
(C

O
V

) 
[-

]

b) Drag efficiency distribution (DE)

Figure 10.  Transport efficiency. (a) Length efficiency distribution: ratio between the distance along the network 
and the Euclidean distance between every pair of nodes in the network. (b) Drag efficiency distribution: ratio 
between the drag along the network and along a straight path with a 0.5 mm width (arbitrary, constant value). 
The coefficient of variation (COV) corresponds to the standard deviation divided by the mean of the values. Box 
plots show median (horizontal line), interquartile range (box), distance from upper and lower quartiles times 1.5 
interquartile range (whiskers), and outliers ( > 1.5x upper or lower quartile).
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Figure 11.  Edge betweenness: measure of edge importance, calculated as the percentage of shortest paths 
between nodes that pass through each edge. (a) Mean betweenness considering that the graph is weighted by 
the edge length (BL). (b) Mean betweenness considering that the graph is weighted by the edge drag (BD). Box 
plots show median (horizontal line), interquartile range (box), distance from upper and lower quartiles times 1.5 
interquartile range (whiskers), and outliers ( > 1.5x upper or lower quartile).
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tolerance, the networks on neutral and adverse substrates show very similar resiliency while the networks on 
the nutritive substrate are more vulnerable to damage.

Analysis of slime mold fusion process. The second part of the analysis focuses on the fusion process 
between two slime mold cells growing on different substrates. We measured the time at which the slime molds 
fused and the area of the whole slime mold as soon as they fused. Networks on a neutral environment reach 
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fusion faster, which is consistent with the expansion rates observed in Fig. 4. Nonetheless, the area of the slime 
mold cells at fusion exhibits no significant differences among treatments (Table S29), showing that the differ-
ences among treatments correspond to difference in expansion rates and not in slime mold cell morphology 
(Fig. 15).

In the following, we focus on the fusion region, i.e. the neighborhood where the slime mold cells fused at the 
first place. We tracked its characteristics for 3 h from the fusion time. First, we calculated the number of edges 
and nodes inside the fusion region. Figure 16 shows the relationship between nodes and edges within the whole 
network, and just inside the fusion region.

Results show that the relationship between nodes and edges in the whole network is similar to that observed 
in the individual slime mold cells (Fig. 6). Within the fusion region, this relationship depends on the way the 
edges inside the region are counted. But in any case, the node-to-edge relationship has a strong correlation 
irrespective of the substrate.

Next, we study the morphology evolution of the slime mold cell within the fusion region. Figure 17 shows 
the change of slime mold area, print area and enclosed area.

Results have been normalized with respect to their values at fusion time. In general, the slime mold and print 
areas increase for a certain time after fusion, reaching a maximum, and then steadily decrease. Statistic analyses 
show that the rate at which the slime mold area decreases after fusion on a neutral substrate is significantly 
higher than the rate on the adverse and nutritive substrates (Table S30). Similarly, the rate at which the print area 
decreases in the neutral environment is higher than that in the nutritive environment (Table S30). Lastly, the 
ratio of empty area to slime mold area increases steadily for all the treatments, suggesting that the slime mold is 
refining, becoming less compact in the process. Slime mold is refining at a faster rate in the nutritive environment 
than in the neutral environment (Table S31).

Results from Fig. 18a show that the network length significantly increases after fusion. Even though it eventu-
ally reduces, it is always higher than the initial network length at fusion. The refinement rate at which the net-
work length decreases in the neutral environment is higher than that in the nutritive environment (Table S32). 
Refinement inside the fusion region is further observed through the evolution of the average and maximum vein 
widths (Fig. 18b,c), which reduce after fusion and eventually reach an equilibrium. Statistical analyses show that 
the rate at which the maximum and average vein widths decrease is faster in neutral environments compared to 
nutritive ones (Tables S33–S34). In addition, the maximum vein widths after 3 h from fusion are significantly 
lower on the neutral substrate and are significantly different in the nutritive environment compared to the other 
two (Table S34).

Figure 14.  Fault tolerance Decay. Fault tolerance by edge importance. Decrease of the percentage of connected 
nodes in the graph (vertical axis) as a function of edge removal (horizontal axis). Dashed lines correspond to 
the mean random tolerance calculated for 25%, 50% and 75% of the nodes, connected by a spline. Solid lines 
and shaded regions correspond to the mean and confidence intervals (CI) for the worst and best case scenarios, 
resulting from removing the most important edges first and last, respectively.
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To analyze the evolution of the connectivity between the previously separated slime mold cells, we tracked 
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the number and average width of the veins that connect both sides of the newly fused slime mold and we also 
tracked the path distance and the drag between both sides. The number and width of the connecting veins are 
found from the maximum flow of the graph, as described in the methods section.

From Fig. 19a, we can see that the number of connecting veins in the neutral and nutritive environments 
consistently increases after fusion, while it remains relatively constant in the adverse environment, with between 
1 and 2 veins connecting both sides of the initial slime mold cells (Table S35). The average width of the veins con-
necting the slime mold cells remains relatively constant after fusion (Fig. 19b), with the networks in the adverse 
environment showing a higher connecting vein thickness than the ones in the neutral environment (Table S36). 
These results suggest that slime molds in the neutral environment create several, relatively thin connecting veins 

Figure 17.  Area indexes inside the fusion region (FR). (a) slime mold area normalized by the area at fusion. (b) 
Print area of the slime mold cell (including enclosed empty space inside cell), normalized by the print area at 
fusion. (c) Ratio between enclosed empty space and slime mold areas.

Figure 18.  Network length and vein width inside FR (a) Network length inside normalized by the network 
length at fusion. (b) Average vein width inside FR. (c) Maximum vein width inside FR. Solid lines correspond 
to the mean value among replicates for the same substrate and shaded regions correspond to its confidence 
interval.
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between slime mold cells, in contrast to the adverse environment, in which the connection between slime mold 
cells depends on few (around 1 or 2) thicker veins.

Moreover, the shortest path between the connected slime mold cells is significantly longer in adverse envi-
ronments, as shown in Fig. 19c (Table S37), which might be a consequence of the expansion dynamics of slime 
mold in such environments. A neutral environment fosters a ’spread-out’ network (Fig. 5), which is more likely 
to fuse with the other slime mold cell at mid-distance, eventually resulting in a shorter path between slime mold 
cells. On the contrary, the networks in adverse environments follow a more compact expansion direction, tak-
ing significantly more time to fuse (Fig. 15) and possibly resulting in fusing regions in more diverse locations, 
through which connecting veins develop, eventually resulting in longer connecting paths.

The drag between slime mold cells, shown in Fig. 19d, shows that even though the path length between slime 
mold cells in the neutral environment is lower than that in the adverse environment, the fact that the veins in 
the neutral environment are thinner (including the connecting veins) results in a higher drag between slime 
mold cells (Table S38). Moreover, while the drag and path lengths between slime mold cells remain relatively 
constant in the adverse environment, they decrease on the neutral substrate, suggesting the networks in the 
neutral environment further optimize the connection between slime mold cells after fusion (Tables S37–S38).

Discussion
The analysis of slime mold networks and expansion dynamics with a semi-automated image processing approach 
confirms that substrates have a direct impact on the expansion rate of the  cells11,43. Expansion slows down in 
nutritive and adverse environments (Fig. 4), which yields an earlier time to fusion in a neutral environment 

Figure 19.  Connectivity between slime mold cells. (a) Number of connecting veins between fused slime 
mold cells. (b) Average width of the connecting veins, calculated as the total width of the region between 
slime mold cells, divided by the number of connecting veins. (c) Path length between initial slime mold cells: 
shortest distance between the two initial slime mold cells along the network. (d) Minimum drag along the path 
connecting the two initial slime mold cells in the network.
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(Fig. 15). Based on a comparison of slime mold cells of same area, it was found that slime molds in the neutral 
conditions follow an exploratory behavior, creating spread-out networks quickly, while slime molds in adverse 
environments minimize their number of connections and expansion rate, to avoid exposure to the repellent 
substance and save  energy44 , while still exploring the domain. On the contrary, slime molds in the nutritive 
environment seem to focus on metabolizing the glucose, pushing aside the exploratory behavior. This observa-
tion is supported by the total network length and average vein widths of the substrates (Fig. 7), which shows 
that slime molds in neutral environments build longer networks with thin veins, as they are more ’spread-out’, 
while nutritive and adverse substrates promote compact, denser networks. Hence, our findings confirm previ-
ous  observations22,26 that network characteristics depend on the environmental conditions and our results are 
in agreement with previous observations on vein  width18,21.

The connectivity of the different networks is not affected by the substrate or time period of expansion of 
the networks, and we observed a linear relationship between connectivity and the number of edges and nodes 
(number of edges around 1.35 times the number of edges), which supports the fact that the mean node degree 
of slime mold cells is a little below 3—a common feature of biological networks as previously shown by other 
 authors20,24. Moreover, when comparing the networks to the theoretical bounds, e.g. simply (MST) and fully 
(DT) connected networks, we found that slime molds yield total lengths closer to simply connected networks 
with low tortuosity, suggesting a cost minimization strategy.

Slime mold networks contains loops, even though slime mold seems to minimize its network length, as dem-
onstrated by a relatively high transport efficiency when compared to the straight distance between nodes. Such 
efficiency proved to be higher in neutral and adverse environments when compared to nutritive environments. 
Conversely, the drag efficiency of the networks built in the neutral substrate was the lowest, which is congruent 
with the fact that neutral environments promote a spread-out network (longer distances), with thinner veins 
(higher drag). The normalized network length (relative to the MST and DT) proved to be proportional to the 
normalized fault tolerance (resiliency) of the networks, while it was inversely proportional to the mean drag 
betweenness (network centrality). These findings show that longer networks (with the same total area) are more 
connected and therefore are more resilient and less centralized.

The similarity between the network dynamics of the networks built in neutral and adverse environments arises 
again when considering the load balance and resiliency of the networks. Slime molds in the nutritive environ-
ment produce more centralized networks, e.g. the traffic depends on few  edges24, which also explains the fact that 
such networks are less resilient, becoming more disconnected as some edges disappear from the  network45. This 
observation suggests that even though the slime molds in neutral and adverse environments have significantly 
different expansion rates, they still follow a similar exploration strategy, while the slime molds in the nutritive 
environment follow a different dynamic due to the presence of the glucose being absorbed.

By observing the fusion process between slime mold cells, we noted that after coming into contact with each 
other, usually via two pseudopods, a dense, fusion region develops. And after a certain point (about 20 min), 
that region starts thinning at different rates (faster in the neutral environment), going from a dense region to an 
array of connecting veins, thinner in the neutral environment. In terms of connectivity between fused cells, the 
fast exploration dynamics of the slime molds in a neutral environment results in a highly connected network, 
with several, thin connecting veins between the previously disconnected cells. On the contrary, the networks 
in the adverse environment remain connected with few (1 or 2 in average) but thick veins. Regarding the path 
length and drag between the connected cells in a neutral environment, the number of connecting veins between 
the two slime mold cells results in shorter (more efficient) paths, compared to the other two treatments. And 
even though veins in the neutral environment are generally thinner, their thickness evolves to reduce the drag 
between the connecting paths.

Through our study, we show that slime molds build elaborate networks that are highly responsive to envi-
ronmental conditions. These networks develop as the organism explores its environment for new resources. In 
many vascular networks observed in living systems, efficiency corresponds to a measure of how fast nutrients 
and oxygen can be transported along the network, while cost measures how much energy or carbon is needed 
to construct such network. Slime mold networks, similarly to fungal networks, are built following local itera-
tive expanding steps rather than a pre-planned  blueprint46. The expansion involves building links and nodes in 
excess, followed by selective pruning and reinforcement of particular links, that refines the network to maximize 
the transport efficiency, modifying the hierarchy of the network  edges47, and is consistent without centrality 
measurements (see Fig. 11). It has been demonstrated that coupling between strengthening and elimination in 
slime molds allows the network to transit from a fine mesh in a neutral environment to an optimal solution when 
food resources are added in the environment, as shown in previous  studies47,48.

We observed that slime molds networks in exploration mode exhibit many loops. Loops are a common feature 
of natural networks such as as animal, plant and fungi vascular  networks49. It has been suggested that the redun-
dancy of vascular networks could be an adaptation to the varying physiological demands of different parts of the 
system and a way to withstand  damages50. The existence of loops prevents disconnection of the network. In the 
absence of loop, severing a vein would result in the loss of all the network sections downstream from that vein. 
In contrast to plants and animals in which the vascular networks form only a small part of the organism and is 
usually protected and preserved from the environment, in both slime mold and fungi, the network defines the 
organism  itself46. Hence, vascular networks in plants and animals are usually very efficient and short, but they 
require time to adapt to variable environmental conditions. In contrast, fungi and slime mold networks tend to 
be robust and flexible, but long and  redundant51.

More broadly, deploying an efficient network in a constrained environment with a finite amount of resources 
is a common objective to both biological and human-made systems. Regardless of scale, ranging from ecosys-
tems and communities, such as ant colonies, to simple organisms and organs, such as neural arbors and vascular 
systems, it has been observed that network deployment strategies seek to maximize travel efficiency and/or 
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redundancy (and therefore resiliency) while minimizing cost. Commonalities between natural and engineered 
networks have originated the field of bio-inspiration, which aims to mimic biological principles to improve the 
design and construction of human-made systems. For instance, the principles of networks scale have shown to 
be applicable to both biological, human, and geographic networks expanding the similarities between networks 
to the principles behind the formation of basins and hydrology  systems52. Comparison between biological and 
computational networks showed the differences between sparse and robust networks in terms of connectivity and 
optimization  strategies53 and highlighted the potential to combine biological principles and engineering control 
to yield more efficient networks than those created with each strategy  alone54. Other studies have focused on 
transportation networks. For instance, Patino-Ramirez et al.55 showed that a bio-inspired road network design 
based on leaf venations can reduce the unitary construction cost of the networks, while yielding similar path 
efficiencies to those obtained with global optimum networks, such as Steiner Trees. Similarly, Tero et al.40, showed 
that slime mold creates efficient algorithms in terms of cost, path efficiency and resiliency, that can outperform 
current design methods used to design railway systems.

Civil infrastructure networks are traditionally designed to optimize objective functions (such as traffic flow) 
under static constraints (such as land use regulations). Network resilience and security have recently gained 
attention in several fields of engineering that study the impact of global threats such as pandemics, terrorism or 
climate  change56. It has become increasingly important to design networks that adapt to disruptions (e.g., cut 
connection after a natural disaster) or attacks (e.g., data hacking or spread of a disease). In this context, classical 
optimization under constraint is not applicable. Slime mold networks extend beyond the boundaries of a given 
set of nodes, and continue to extend during optimization of the vein network left behind. Slime mold is a good 
model organism to study network optimization under perpetual expansion. A possible application is the neces-
sary adaptation of networks of utilities as urban areas grow or recess or the redistribution of flow in networks 
used cyclically or seasonally. For example, the direction of road lanes is inverted twice a day in some large cities 
like Washington DC. Storm water management relies on the simulation of weather scenarios, in which the final 
design option, e.g. pipe upsizing, underground storage, or bio-filtration, remains  empirical57,58. Probabilistic 
approaches were used to assess the vulnerability of power  systems59 and virtual  networks60, such as internet 
and optical networks, to physical infrastructure damage. The most recent publications treat the resilience of 
inter-related networks such as power, water and cellular  networks61. In all of these models, analyses are done a 
posteriori. More dynamic approaches based on the game theory were adopted to secure infrastructure and infor-
mation networks, whereby the cost of creating and removing links in a graph is calculated at every move of the 
attacker or the  defender62. No strategy has been proposed yet to account for the splitting and fusion functions of 
slime mold networks, which relate to specialization versus generalization behavior. How to split water networks 
to ensure autonomy of communities in remote areas? When should two countries merge electrical power grids 
after a hurricane? So far, these questions are open. To the authors’ best knowledge, the only studies available to 
date focus on data  fusion63–65 or on emergency operation center  fusion66. The dynamics of slime mold networks 
before and after fusion in response to various environmental constraints has a potential to inspire new strategies 
to design adaptable information and infrastructure networks, resilient to natural and biological hazards as well 
as geopolitical risks.

Concluding statement
Slime molds are a good model organism to study networks. First, slime mold networks are both a transport 
system and the organism itself, and are therefore more dynamic than vascular networks in plants and animals. 
Second, slime mold networks adopt an array of topologies in response to environmental conditions. Third, slime 
mold networks can be continuously remodelled via pruning and reinforcement, adapting to different nutrient 
conditions and damage. Fourth, slime mold networks differ from other types of vascular networks, due to an 
unlimited capacity for expansion, combined with an ability to maintain its functionality as a living unit. Lastly, 
self-fusion yields optimised interconnected networks.

Data availability
The index datasets generated and analysed during the current study are included in this published article as Sup-
plementary Information files. Raw images data is available from the corresponding author on reasonable request.
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