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Abstract

The use of agricultural resources or environments by wildlife may result in opportunities for

transmission of infections amongst wild animals, livestock and humans. Targeted use of bio-

security measures may therefore reduce disease risks, although this requires practical

knowledge of where such measures would be most effective, and effective means of com-

municating risks so that stakeholders can make informed decisions about such investment.

In parts of Europe, the European badger Meles meles may act as a wildlife reservoir for

Mycobacterium bovis, the causative agent of bovine tuberculosis, and badger visits to farm-

yards may provide potential opportunities for transmission of M. bovis to cattle. Biosecurity

measures are effective in reducing badger activity in farmyards, although it is unclear which

farms should be targeted with such measures. We used cameras to monitor badger activity

in 155 farmyards in south west England and Wales, and related variations in the presence

and frequency of badger visits to farm characteristics. Badgers were recorded on camera in

40% of farmyards monitored. However, the frequency of visits was highly variable, with bad-

gers recorded on >50% of nights in only 10% of farms. The presence of badgers in farm-

yards was positively associated with the density of badger setts, the number of feed stores

and the number of cattle sheds, and negatively associated with the distance to the nearest

active badger sett, the presence of a house/dwelling and the number of cattle housed on the

farm. The frequency of visits was negatively associated with the distance to the nearest

active badger sett and the number of cattle housed. Models predicted the presence/absence

of badgers in farmyards with 73% accuracy (62% sensitivity, 81% specificity, using a cut off

value of 0.265). Models could not distinguish between farms with low/high frequency of vis-

its, although farms predicted as having badgers present typically had a higher frequency of

visits than those that were not. We developed and present an interactive web based applica-

tion: the Badger Farm Assessment Tool (BFAT), to allow users to enter the characteristics

of a farm and generate a relative risk score describing the likelihood of badger visits.
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Introduction

Wildlife species act as reservoirs for many globally important and emerging diseases of

humans and livestock [1, 2]. Management of diseases in wildlife may involve reducing host

numbers, vaccination, medication or modifying the environment in order to reduce opportu-

nities for disease transmission [3, 4]. Interventions in wildlife populations are challenging and

often costly, but where wild animals exploit anthropogenic resources, opportunities exist to

take practical steps to manage access and hence reduce the risks of infection transmission. In

order to evaluate and install such measures effectively, we require information on patterns of

resource exploitation by the target wildlife species.

Bovine tuberculosis (bTB), caused by Mycobacterium bovis, is a globally important disease

of cattle, and in many countries wild animals can act as a reservoir and a potential source of

infection for livestock [5]. In the United Kingdom and Ireland, European badgers (Meles
meles) are the principal wildlife reservoir of M. bovis infection, where they contribute to vary-

ing extents, to the ongoing cattle bTB epidemic [6–8]. Infected badgers may excrete M. bovis
in their urine, saliva or faeces and it has been suggested that onward transmission to cattle

could potentially occur either directly during close contact, or indirectly via contamination of

the environment [9]. Farmyards have been suggested as potentially important location for

transmission, as several studies have recorded badgers entering yards and farm buildings, with

observed instances of close direct contact with cattle and contamination of cattle feed, bedding

or water with excretory products [10–17]. Experimental studies have shown that M. bovis can

survive in substrates including feed, water or soil [18] and that environmental contamination

by deer can result in infection in cattle [19]. For these reasons, wildlife activity in farmyards is

a concern for bTB control and is the subject of ongoing research in the UK and several other

countries where there is a transmission risk from wildlife [16, 20–23].

Experimental trials have shown that practical measures such as sheet gates or electric fenc-

ing can be used to reduce badger activity in farmyards [14, 24, 25]. Judge et al. [14] demon-

strated that such measures were 100% effective in keeping badgers out of farmyards, when

correctly deployed and adequately maintained, and could significantly reduce activity, even

when applied to only part of the farm (feed stores or cattle housing). In a review of the poten-

tial transmission pathways and management options, Ward et al. [26] suggested that excluding

badgers from farmyards or buildings may be a simple and effective strategy for reducing the

risk of bTB transmission to cattle, and current UK government advice to farmers recommends

the use of such measures as part of a ‘five point plan’ for biosecurity (http://www.tbhub.co.uk/

biosecurity/protect-your-herd-from-tb/). However, although badgers have been observed in

farmyards in multiple studies in south-west England [10, 12, 14], recent studies from both

England and Ireland have reported relatively little activity in farmyards [16, 17, 22], suggesting

that this behaviour may be less frequent in certain situations. In addition, significant variation

in badger visits have been observed among farms within studies [14, 17]. Research by [14]

recorded no badger activity at 41% of farms monitored for 12 months, in an area of the UK

with generally high badger densities and high incidence rates of bTB in cattle.This study also

found substantial variation in the frequency of visits amongst the 59% of farms that did experi-

ence badger visits, with only a handful of sightings at some farms, but sightings on more than

60% of nights at around 10% of farms. The reasons for this variation are unclear, although a

recent meta-analysis using data from five studies, indicated that badger population density was

positively correlated with badger visits to farmyards [17]. Unfortunately the relatively small

scale of studies to date ([10] = 2 farms, [14] = 40 farms, [17] = 20 farms), has made it difficult

to investigate this variation further.

Predicting badger visits to farm yards

PLOS ONE | https://doi.org/10.1371/journal.pone.0216953 May 24, 2019 2 / 20

Competing interests: We can also confirm that

there are no competing interests of any kind. This

affiliation with Biocensus Ltd. does not alter our

adherence to PLOS ONE policies on sharing data

and materials.

http://www.tbhub.co.uk/biosecurity/protect-your-herd-from-tb/
http://www.tbhub.co.uk/biosecurity/protect-your-herd-from-tb/
https://doi.org/10.1371/journal.pone.0216953


Applying biosecurity measures to farms can potentially be expensive depending on the

measures used (approximately £650 - £12500) and should ideally deployed in cost effective

way to farms with badger activity. Information is therefore required on the extent of badger

visits to farmyards at the landscape scale, and on the factors which influence the likelihood

that visits occur. In addition, tools are needed to effectively communicate such assessments to

stakeholders (farmers or vets) so that they can make informed decisions on whether and how

to implement biosecurity measures.

We used motion activated surveillance cameras to monitor badger activity in buildings and

yards on 155 farms in the south west of the UK. We investigated whether the presence of bad-

gers and the levels of activity observed were related to farm characteristics, and whether such

relationships could be used to predict this activity. Finally, we used the statistical relationships

identified to build an interactive web-based tool to allow stakeholders to enter the characteris-

tics of a farm and generate a relative score of the likelihood of badger visits.

Materials and methods

2.1 Farm selection

The study was carried out on 155 farms in 2012 and 2013, comprising 75 in Gloucestershire,

75 in the wider south-west of England and five in Wales (Fig 1), all in the high risk disease

regions in GB. Farms were recruited into the study by either a personal visit, word of mouth,

or via adverts placed in the local farming press. All farms had a cattle herd under annual bTB

testing and kept cattle or cattle feed in buildings for at least part of the year. As farms were not

randomly selected, it is possible that there is a bias in the sample such that farms are not repre-

sentative of those in the wider landscape. For example, those with TB, or suspected badger

activity may have been more likely to join the study. The implications of this are discussed in

more detail in the discussion section.

2.2 Farm surveys

2.2.1 Badger surveys. All accessible land within a 500 m radius of the approximate central

point of each farm yard was surveyed for badger setts (communal burrows), and the location

and activity level (number of well used, partially used and unused entrance holes) was

recorded for each sett. A 500 m radius from the farm yard was chosen because this approxi-

mates to the size of badger social group territories observed and estimated for south-west

England (social group density is around one per 0.8 km2 [27, 28]). If badgers were present in

the area and accessing the farm then it is likely that at least some setts would fall within this

radius. It is possible that this area could encompass setts resident on the farm, or an intersec-

tion of groups from neighbouring land. This survey data therefore provides a relative index of

badger activity in the immediate vicinity surrounding each farm. In some instances, it was not

possible to survey all land within the 500 m radius. Where possible, badger setts located over

field boundaries from adjacent land that was accessible were noted; however, it was not possi-

ble to record activity scores for those setts. This is typical of many farms in the landscape

where all land is not accessible to famers or surveyors. In order to control for this the total area

(in km2) was calculated for each farm.

2.2.2 Camera surveys. Badger activity in farmyards was recorded using infra-red, motion

triggered camera traps (Bushnell Trophy Cam, Bushnell Outdoor Products, Overland Park,

Kansas, USA). Cameras were deployed at potential badger access points to cattle sheds, feed

stores, hay/straw barns, silage clamps and yards on all study farms. Between two and nine cam-

eras were deployed on each farm, depending on the size and the number of buildings and

potential entrance points for badgers. The cameras were set to take still images (a burst of
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three when triggered) and were operational for 24 hours each day throughout the surveillance

period on each farm. Cameras were in place for a minimum of 4 weeks at each farm (range

28–39 days, median = 30). Camera surveillance was carried out on 75 farms from 11th April to

24th September 2012 (Year 1), and on a further 80 farms from 17th April to 30th September

2013 (Year 2). Surveillance was carried out from April to September as previous studies have

shown that badger visits are generally low in winter, and are more frequent to in spring and

summer, particularly in drier conditions [12]. Given limitations on the availability of staff and

cameras, the surveillance was carried out in a rolling program throughout the surveillance

period. Each camera was fitted with a memory card (2 Gb minimum) and was visited half-way

through the surveillance period on each farm to check battery life, memory card space and any

camera malfunctions or damage. After the cameras were collected, digital photographs were

downloaded and checked for images of badgers. The dates and times of all images of badgers

were collated on a database for each camera, along with the type of building visited (i.e. feed

store, silage clamp or cattle housing).

2.2.3 Collection of other farm level variables. Data were collected on several variables

relating to the potential attractiveness of farms to badgers, either by direct observation or dis-

cussions with farmers. Survey variables were chosen based on the published literature [10, 12,

14, 27] and expert opinion (the authors and other badger ecologists with the Animal and Plant

Health Agency). Efforts were also made to choose variables that would be easy to collect (i.e.

questions that farmers are able to answer easily), such that they could potentially be used in

future farm assessment surveys. Four variables related to food availability; number of feed

stores; production of palatable crops; cattle feed type; and feed accessibility (Table 1). Three

Fig 1. The location of farms included in the present study where badger surveys and monitoring work were

undertaken.

https://doi.org/10.1371/journal.pone.0216953.g001
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variables related to farm size and type; number of cattle sheds; maximum number of housed

cattle and presence of a dairy (milking parlour) on the farm (Table 1). Two variables related to

human presence or disturbance; presence of a house; and presence of lights (Table 1). The

presence of dogs on the farm (yes/no answer from asking the farmer) was also included as a

variable, as dogs may potentially deter wildlife. Unfortunately it was not possible to determine

whether dogs were roaming at night or to quantify dog presence on camera from the data

available. Due to the rolling nature of the surveillance program, season was also included as

three level categorical variable (spring = April–May, summer = June–July, autumn = August–

September) to account for potential changes in badger behaviour and diet over the survey

period [27]. Previous studies have shown that badger visits to farmyards peak in dry conditions

in summer, likely due reduced availability of invertebrate prey [12]. To account for this we

also calculated the proportion of nights (over the observation period) which were classed as

‘worm nights’ following [29]. A worm night (ie a night when worms are available to badgers)

is classed as a night where the temperature did not fall below 0˚C and where there was at least

2mm of rain in the preceding 72 hours [29]. Night length potentially determines the length of

observation period for each night, with more opportunity for activity when nights are longer.

However, night length was not included in analyses, as this was partly explained by the season

variable. In addition, previous observations that badger visits to farmyards are higher in sum-

mer (when nights are shorter), suggests that longer nights (observation periods) do not

increase opportunities for badger activity in farmyards.

2.3 Statistical analyses

2.3.1 Factors effecting badger visits. In order to investigate factors related to badger visits

we conducted a series of generalized linear models using the R package ‘lme4’ [30]. We carried

Table 1. Description of farm level variables recorded during the present study.

Category Variable Description Type

Badger field signs Badger sett

density

Number of badger setts recorded divided by area surveyed Continous

Nearest active

sett

Distance from farm buildings/yard to nearest active badger sett, to nearest 100m (0–

100m, 101–200m, 201–300m, 301–400m, 401–500 m, >500 m)

Continuous (1–6)

Farm

Characteristics

Feed Stores Number of feed stores on farm Continuous

Palatable crops Does the farmer grow crops palatable to badgers? (cereals; wheat, barley, maize, oats) Categorical (y/n)

Cattle feed Are cattle fed cereals or concentrates Categorical (y/n)

Feed

accessibility

Is palatable feed (cereals or concentrates) accessible to badgers (in the farmers view over

a 12 month period)

Categorical (never / sometimes / all

year)

Cattle sheds Number of cattle sheds (buildings regularly housing cattle) Categorical (0–2, 3–4,�5)

Max cattle

capacity

Maximum number of cattle housed at any time on the farm Continuous

Dairy Presence or absence of dairy cattle on farm Categorical (y/n)

Lights Presence of outdoor lighting which is on at night Categorical (y/n)

House Presence of a house / dwelling present on farm Categorical (y/n)

Dogs Presence of dogs on the farm Categorical (y/n)

Other variables Season Period of time when camera surveillance carried out Categorical

(spring: Apr-May, summer: June—

July, autumn: Aug—Sep)

Worm nights Measure of rainfall. Number of nights with�2mm of rain in previous 72 hours, based

on Kruuk and Parish [29].

Continuous

https://doi.org/10.1371/journal.pone.0216953.t001
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out one set of analyses to investigate factors influencing the presence /absence of badger visits

at farms (badger presence =�1 badger observations over the period), with a binomial (0/1)

response. We then conducted a second set of analyses to investigate factors influencing the fre-

quency of badger visits (proportion of survey nights on which badger visits were photo-

graphed) at the subset of farms visited by badgers, using a binomial (proportion) response. In

both analyses, fixed effects included in the models consisted of 14 variables outlined in Table 1.

Although the number of cameras deployed varied among farms, camera number was not

included as a measure of survey effort in the analyses. This is because the number of cameras

was dictated by the size of the farm and number of access points. As such, larger farms (with

more cameras) could not be viewed as necessarily having higher survey effort than smaller

farms (with fewer cameras).

Models containing all first order combinations of variables (Table 1) were evaluated via

model averaging using the ‘MuMIn’ package (version 1.15.6) [31, 32]. Prior to analyses all con-

tinuous predictor variables were standardised to mean = 0 and sd = 0.5 following [32], such

that effect sizes (model coefficients) were on comparable scales. Average coefficients were cal-

culated from a top model selected using a corrected Akaike Information Criterion (adjusted

for small sample size ΔAICc) cut-off of six units, which has been suggested as having a 95%

probability of containing the most parsimonious model [33]. Model ranking and averaging of

proportion models used QAIC followed Bolker [34], as proportion data (badger visit rate) had

a skewed distribution and initial analyses indicated over dispersion. In both analyses, variable

coefficients with 95% confidence intervals that did not span zero were deemed to have a con-

sistent or ‘significant’ positive/negative effect on badger visits [32].

Lowess plots and descriptive statistics were used to investigate the functional form of con-

tinuous predictor variables and to assess whether linearity assumptions were met (and whether

transformations were required). Collinearity among predictors was investigated using Pear-

son’s correlations and by calculating variance inflation factors for final models. Model fit, het-

eroskedasticity, influential points and leverage values were investigated using Pearson

residuals and a range of plots and functions using the ‘car’ package in R, following [35]. Spatial

autocorrelation was investigated by calculating Moran’s I for both response and predictor

variables.

2.3.2 Assessing the accuracy of model predictions. Once final models comprising only

variables with consistent positive/negative effects had been identified for badger presence/

absence and badger visit rates, the predictive accuracy of these models was tested. Prediction

accuracy was tested using the 155 farm ‘training data set’, and a ‘test data set’ of 40 farms not

used in the earlier analyses. The test data set farms had been monitored using trail cameras for

a continuous 12 month period as part of an earlier, independent study investigating the effec-

tiveness of biosecurity measures in preventing badger visits [14]. These farms were located in

Gloucestershire and were randomly selected, although all farms had at least 30 cattle housed

for at least part of the year (see [14] for details). Only footage prior to the application of biose-

curity measures at these farms was used.

Models of presence/absence produce a predicted probability of 0 to 1 for each farm. To

change this into a categorical prediction (i.e. yes or no) required setting a cut-off or threshold

value (above which badgers were classed as present and below which they were considered

absent) [36]. We therefore calculated receiver operating characteristic (ROC) curves, which

plot sensitivity (the probability that farms with badger visits are correctly identified) against

1—specificity (the probability that farms with no badger visits are correctly identified) for all

potential cut-off values between 0 and 1. Model accuracy was calculated using the area under

the curve (AUC), which acts as a single summary statistic of diagnostic accuracy [37]. Models

with AUC values of 0.5 are viewed as uninformative (i.e. no better than a random guess) while
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values of 1 indicate a perfect test with 100% accuracy. Swets [38] suggests that values of

0.5<AUC�0.7 = low accuracy, 0.7<AUC�0.9 = moderate accuracy (and ‘useful for some pur-

poses’) and AUC>0.9 = high accuracy. We also chose a single cut-off value that maximised

model accuracy (i.e. % of farms correctly classified) in order to produce presence/absence pre-

dictions for individual farms. Changing this cut off could increase sensitivity or specificity,

depending on whether the priority was to identify farms with visits (i.e. to make sure that mea-

sures are applied where they are needed), or to minimise false positives (i.e. to avoid applying

measures at farms where they are not needed). This is discussed at greater length later in the

discussion. Agreement between predictions and observed badger presence/absence was calcu-

lated using Cohen’s Kappa statistic, and by the construction of ‘confusion matrices’. Finally,

the accuracy of badger rate predictions were investigated using correlation analyses to com-

pare observed and predicted values, for both the 155 farm training data set and the 40 farm

test data set.

2.3.3 Creation of an interactive farm assessment tool. In order to calculate and display

our predictions of the likelihood of badger visits to unsurveyed farms, we created an interactive

app BFAT or ‘Badger Farm Assessment Tool’ using the R package shiny [39]. The shiny app

consists of an interactive interface, whereby users can enter their farm characteristics in rela-

tion to variables identified as important predictors of badger visits. These parameters are then

used to produce an individual farm score for badger visits, displayed via several figures. A

range of methods are available for visualising and communicating probability and risk, with

several studies demonstrating that there is significant variation among people with regard to

what formats they prefer or best understand [40, 41]. Individual farm scores were therefore

displayed using a range of formats, including text and pictographs.

Results

A total of 155 farms were included in the study, consisting of 82 beef farms, 42 dairy, 19 mixed

(beef and dairy), 11 calf rearing/suckler herds and one rare breed herd (beef). Badgers were

recorded on camera at 40% (62/155) of farms monitored. Field surveys recorded badger setts

within 500 m (of the centre of the farm building complex) at 133/155 farms (86%), and active

badger setts at 120/155 farms (77%). The proportion of camera nights where badgers were

observed in farmyards varied markedly amongst farms (Fig 2), with badgers observed on more

than 50% of camera nights at 11% (17/155). Badgers were most often recorded in cattle hous-

ing and yards, followed closely by feed stores, feed and/or water troughs and hay/straw barns,

and least often at silage clamps and calf pens (Table 2), although this variation in visits was not

significant (X2
6 = 6.778, p = 0.34). Of the 155 farms, 44 were under TB restrictions at the time

of the study. In univariate analyses the TB status at the farm was not associated with the pres-

ence of badgers on camera (null model AIC = 184.94, badger presence AIC = 182.07, Devi-

ance1 = 2.86, p = 0.09) or with the proportion of survey nights where badgers were seen (at

farms where badgers were present, null model AIC = 65.68, proportion nights badgers seen,

AIC = 67.44, Deviance1 = 0.23, p = 0.62).

There was evidence of spatial autocorrelation among farms in relation to the presence of

badgers in farmyards (Moran’s I observed = 0.05, expected = -0.006, p = 0.005), but not in the

frequency of badger visits (Moran’s I observed = -0.005, expected = -0.006, p = 0.95). However,

there was also spatial autocorrelation in the badger sett density variable (observed = 0.17,

expected = -0.006, p =<0.005) and distance to nearest sett variable (observed = 0.02, expected

= -0.006, p =<0.005), suggesting badger activity is clustered in the landscape. Spatial autocor-

relation was not controlled for in subsequent analyses, as not to dilute or mask the effects of

these badger abundance variables, which are likely to be key factors influencing badger visits.
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3.1 Factors effecting presence / absence of badger visits

The likelihood of cameras recording badgers on farms was significantly related to the presence

of badger field signs within a 500 m radius, and to several farm characteristics (Figs 3 & 4, full

model coefficients are in Table A S1 Appendix). Likelihood increased with the density of bad-

ger setts surrounding the farm and with proximity to the nearest active sett, such that farms

with closer setts and more setts were more likely to be visited (Figs 3 & 4). Sett density had a

skewed distribution with >30 setts per km2 recorded at one farm (11 setts recorded, despite

only 34% of the 500m radius being accessible), though removing this outlier had no effect on

the coefficient for this variable (outlier included: coef = 1.09, CI = 0.06–2.13. outlier removed:

coef = 1.05, CI = 0.03–2.12). Badgers were more likely to be present at farms with higher

Fig 2. Histogram displaying the proportion of survey nights when badger visits were recorded on 62 farms

(training data) where badger visits occurred.

https://doi.org/10.1371/journal.pone.0216953.g002

Table 2. Badger visits recorded on camera to different areas within the surveyed farms.

Area of Farm Number farms location monitored % Farms where badgers seen

Cattle housing 144 27.1

Yard 140 27.1

Feed store 99 26.3

Feed trough 55 25.5

Hay/Straw barn 111 25.2

Silage clamp 45 13.3

Calf pen 33 12.1

https://doi.org/10.1371/journal.pone.0216953.t002
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numbers of feed stores, and with more cattle sheds, particularly where there were more than

five cattle sheds on the farm (Fig 3). Badgers were less likely to be present in farmyards where

there was a house or dwelling than in those without (Fig 3). The likelihood of badger visits also

declined with the cattle capacity (max number of cattle that could be housed), such that farms

with larger herds were less likely to be visited (Figs 3 & 4). Cattle capacity had a skewed distri-

bution, with high values of�600 at four farms. Cattle capacity still had a consistent negative

effect with these outliers excluded, although the coefficient was lower (-1.60 compared to -1.90

if included) with confidence intervals closer to zero (-3.11 to -0.01, compared to -3.32 to

-0.48). Several other variables were contained in top models (�6 AIC), but the estimates

spanned zero, suggesting an inconsistent or non-significant effect (Table B in S1 Appendix).

The overall top model set (�6 AIC) was very large and consisted of 150 candidate models.

However, the coefficients were very similar to a smaller top model set using a cut off of�2

AIC (n = 8 models, Table B in S1 Appendix). Model diagnostics indicated no significant issues

with outliers (high leverage values), heteroscedasticity or collinearity among variables. Hos-

mer-lemeshow tests indicated no evidence of poor model fit for the top model set (X2
5 = 5.53,

p = 0.35).

Fig 3. Factors affecting the likelihood of badger visits (top) and the frequency of badger visits at farms where they were present (proportion of nights badgers

seen, bottom). Values are average model coefficients (change in log odds) calculated for variables included in the top model set (� 6 AIC, Table A in S1

Appendix). Arrows indicate 95% confidence intervals. Model-averaged regression slopes are considered important if they are consistently positive or negative

(i.e. their confidence intervals do not span zero). Continuous variables (sett density, cattle capacity, active sett distance and feed stores) were standardised

(mean = 0, sd = 0.5) prior to analysis.

https://doi.org/10.1371/journal.pone.0216953.g003
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3.2 Factors affecting the frequency of badger visits

At the 62 farms visited by badgers, the frequency of visits (proportion of nights where visits

were recorded) was related to the cattle capacity at the farm and the distance to the nearest

active badger sett (Figs 3 & 5). As with badger presence/absence, the frequency of badger visits

was negatively related to the distance to the nearest active sett, such that farms with closer

active setts had a higher number of visits (Fig 5). However, in contrast to the presence/absence

analysis the cattle capacity (max cattle housed) was positively related to badger visits, such that

Fig 4. Predicted probability of badgers being present (at least one observation on camera) in farmyards in relation to four farm level variables; cattle

capacity, feed stores, badger sett density and distance to nearest active badger sett. Bold lines represent the marginal predicted probability and dashed lines

(or error bars) the standard deviation. Circles summarise the raw data, with the size of the grey point scaled to the number of observations in that group

(smallest point = 1, largest point = 45).

https://doi.org/10.1371/journal.pone.0216953.g004
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Fig 5. Predicted badger visitation rate (proportion of nights badgers observed) in relation to the maximum cattle capacity on the farm and the distance

to the nearest active badger sett. Bold lines represent the marginal predicted probability and dashed lines (or error bars) the standard deviation.

https://doi.org/10.1371/journal.pone.0216953.g005

Fig 6. Accuracy of model at predicting badger presence/absence at 40 farmyards used as a test data set. Figure A is the ROC (receiver operator curve),

which displays the true positive rate (proportion of farms with badgers present identified) vs the false positive rate (proportion of farms wrongly classified as

having badgers present) for a varying cut off value. Figure B displays the percentage of farms correctly identified as having badgers present (sensitivity—grey

line), badgers absent (specificity—black line) and total accuracy (dashed line), relative to the cut off used (farms with a predicted probability above this value

are classed as having badgers present).

https://doi.org/10.1371/journal.pone.0216953.g006
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farms with higher cattle capacity had a higher frequency of visits (Fig 5). As with the badger

presence/absence analyses the overall top model set (�6 AICc) was very large and consisted of

392 candidate models. However, the coefficients were very similar to a smaller top model set

using a cut off of�2 AICc (n = 19 models, Table B in S1 Appendix).

3.3 Accuracy of model predictions–badger presence/absence

Six variables were found to be related to the likelihood of badgers being recorded in farmyards

(Fig 3). When applied to the 155 farm training data set used in the analyses, the averaged vari-

able coefficients for the badger presence model (using the average coefficients in Table 1) had

an ROC AUC of 0.80 (95% CI = 0.73–0.88, Fig 6). When applied to the 40 test farms (not used

in the analyses) the ROC AUC had a similar value of 0.77 (95% CI = 0.61–0.92, Fig 6), suggest-

ing that the model was ‘moderately accurate’ [38]. Maximum accuracy (% farms correctly clas-

sified) with the 155 farm training data set was 78.0% using a cut-off value of 0.261–0.271

(midpoint = 0.265) to classify farms as having badgers present. Applying a cut-off value of

0.265 to the 40 test farms correctly identified 12/19 farms with badgers present (sensitiv-

ity = 63.2%), 17/21 farms with badgers absent (specificity = 81.0%) and 29/40 farms overall

(total accuracy = 72.5%, Table 3). Using this cut-off the positive predictive value (PPV: % of

farms where badgers were predicted as present where badgers were observed) and negative

predictive value (NPV: % of farms where badgers were predicted as absent where badgers were

not observed) were 70.8% and 75.0% respectively (Table 3). Adjusting the cut-off could

increase sensitivity or specificity, as well as PPV and NPV, although this would compromise

overall accuracy (Fig 6). It was also possible to increase overall accuracy to 75% using the 40

test farms and a lower cut-off (0.128 to 0.152, Fig 6), although this significantly reduced accu-

racy (to 64.5%) when applied to the 155 training farms.

3.4 Accuracy of model predictions–badger visit rate

Two variables were found to be related to the badger visit rate at farms (Figs 3 and 5). The pre-

dicted rate was significantly correlated with the observed rate at the 62 training farms where

badgers were present (t60 = 3.34, p = 0.001, r = 0.40 Fig 7). However, when applied to the 40

farm test data set, the predicted visit rate showed only a poor correlation with the observed

rate, either at all 40 farms (t38 = 0.97, p = 0.34, r = 0.16, Fig 7), at the farms where badgers were

present (at least one camera sighting, t17 = 0.34, p = 0.74, r = 0.08, Fig 7) or at farms which

were predicted as having badgers present (using the presence/absence model, t14 = 0.30,

p = 0.77, r = 0.08). However, among test farms where badgers were present (at least one visit),

those that were predicted as having badgers present (based on the presence/absence model)

had higher maximum monthly visit rates (i.e. the maximum visit rate recorded in a given

month over the 1 year survey period) than those which were predicted as having badgers

absent (coefficient = 0.41, X1
2 = 4.78, p = 0.03). This suggests that the presence/absence model

is more likely to identify farms with higher rates of visits than those with low rates.

3.5 Communicating farm level risk scores

In order to communicate farm level risk scores to stakeholders we developed an interactive

tool using shiny in R https://btb-statistics.shinyapps.io/badger_farm_assessment_tool_

prototype/ (code for the app is in S1 Appendix). Users can enter data on the six farm-level var-

iables that were significantly related to badger presence/absence in the analyses in this study

(Fig 8). The tool then uses the coefficients (Fig 3, Table A in S1 Appendix) to predict the prob-

ability of badger visits to yards or buildings taking place on that farm. Rather than display a

single probability value, the predicted value is given as a percentage (quantile) compared to the
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predicted probability values for the 195 farms in this study (155 training farms + 40 test

farms). The relative percentage risk score is divided into ‘low likelihood of badger visits’ and

‘high likelihood of badger visits’ using a cut-off of 0.25 probability, which equates to the 54th

percentile in the 195 farms (Fig 9). This risk score is then communicated using a sliding scale

or ‘thermometer’ style pictograph, and is described in the text. An explanation of the low or

high risk category is displayed below this using a 10 x 10 grid (with each point representing a

farm), which is a standard approach in risk communication [40]. The numbers on the grid

reflect the positive predictive values displayed in Table 3. Links are provided to government

approved biosecurity advice at the bottom of the tool.

Discussion

Badgers were observed in 40% of the 155 farmyards monitored over the one month survey

period, suggesting that a significant proportion of farms in the survey area experienced some

level of badger activity. The frequency of badger visits (proportion of nights where badgers

were seen) among the farms where badgers were present was highly variable. As in Judge et al.

[14], a minority of farms (approx. 10%) were frequently visited by badgers with others receiv-

ing comparatively low levels of activity. Given that monitoring only took place for one month,

and that surveillance coverage was not complete, this is likely to be an underestimate of levels

Table 3. Confusion matrix displaying model predictions for badger presence/absence in farmyards (using a cut-off of 0.25) compared to observed survey results

(based on camera sightings) at the 40 test farms where badger activity was monitored for 12 months. Values for sensitivity (% of farms with badgers present correctly

identified) and specificity (% of farms with badgers absent correctly identified), PPV (positive predictive value: % of farms where badgers were predicted as present where

badgers were observed) and NPV (negative predictive value: % of farms where badgers were predicted as absent where badgers were not observed).

Observed

Absent Present

Model Prediction Absent 17 7 PPV = 70.8%

Present 4 12 NPV = 75.0%

Specificity = 81.0% Sensitivity = 63.2%

https://doi.org/10.1371/journal.pone.0216953.t003

Fig 7. Observed rate of badger visits to farmyards (proportion of nights of observation when visits took place) compared to the predicted rate (based on model

parameters, Figs 3 and 5) at the 62 training farms analysed to produce the model (Fig A) and at the 40 test farms (Fig B).

https://doi.org/10.1371/journal.pone.0216953.g007

Predicting badger visits to farm yards

PLOS ONE | https://doi.org/10.1371/journal.pone.0216953 May 24, 2019 13 / 20

https://doi.org/10.1371/journal.pone.0216953.t003
https://doi.org/10.1371/journal.pone.0216953.g007
https://doi.org/10.1371/journal.pone.0216953


of visits to the sampled farms. However, it is also possible that the farms in this study were not

representative of those in the wider landscape, as farms were not randomly selected. For exam-

ple, farmers concerned about badger activity may have been more likely to take part in the

study than those which were not concerned about badgers. The sample size in this study was

large (n = 155) and included a mix of farms, but the non-random selection is an important

limitation, such that the results here may not be directly applicable to all farms in the wider

landscape. Nevertheless, our results are similar to those from previous intensive monitoring of

40 randomly selected farms in Gloucestershire which formed part of our test data) and further

highlights that farmyards could provide opportunities for transmission of infection between

badgers and cattle [6, 12].

Fig 8. Interactive tool displaying an interface for entering farm characteristics.

https://doi.org/10.1371/journal.pone.0216953.g008
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We found that the presence or absence of badgers and the frequency of their visits was

related to several farm characteristics, including measures of badger abundance. Unsurpris-

ingly, an active sett in close proximity increased the likelihood that badgers would be observed

in farmyards and increased the frequency of badger visits. The density of badger setts (a poten-

tial proxy for badger density [42]) within 500 m of the farm was also related to badger pres-

ence, but not to the frequency of visits. This contrasts slightly with results from [17] who

found a correlation between badger density and farm visit rate. Badgers exhibit variable forag-

ing strategies [43] with higher individual variation associated with competition for resources

[44]. Competition at higher densities may, therefore, favour the utilisation of resources found

in farmyards. High population density may also increase the likelihood of risky or bold behav-

iour. For example, studies have shown that badgers in small groups (<4 animals and those

with low levels of activity) are more wary, or ‘neophobic’ [45] and are less likely to exploit

novel anthropogenic resources [46].

Previous observational and tracking studies suggest that badger activity in farmyards is

largely associated with foraging behaviour, with frequent observations of visits to feed stores

and consumption of stored cattle feed [10, 11]. The number of feed stores or cattle sheds in the

Fig 9. Example output from the interactive tool displaying the percentage risk score relative to other farms and an illustration of what this means using a

10X10 grid.

https://doi.org/10.1371/journal.pone.0216953.g009
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current study may be an indication of the number of potential feeding opportunities within

the farm, which may explain why these characteristics were positively related to the presence

of badgers in farmyards. The likelihood of badgers being present was also related to the num-

ber of cattle that could be housed on the farm (cattle capacity) and the presence of an occupied

house or dwelling. Badgers were less likely to visit farms with higher cattle capacity and with

the presence of a house or dwelling. It is not clear why this should be, but one possible explana-

tion is that both variables are indicative of higher levels of human activity on the farm, which

could deter badger visits. Interestingly, although the presence of badgers was negatively related

to the cattle capacity, where badgers were present the frequency of their visits was positively

related to this variable. This could be because although badgers may be generally disinclined to

visit larger, busier farms, where they are present (typically on smaller farms with lower capac-

ity) the number of animals housed is a proxy for increasing quantities of feed and hence more

opportunities for foraging.

The aim of the present study was not only to identify ecological factors associated with bad-

ger visits to farmyards, but to test whether these variables could be used as a predictive tool.

The capacity to identify those farms most likely to experience badger visits could be used to

target advice to farmers and hence to direct the deployment of biosecurity measures. Our

models could predict badger presence with 73% accuracy, with overall sensitivity and specific-

ity of 63% and 81% respectively (using a probability cut-off of 0.265). Using a different cut off

value could increase specificity or sensitivity, which could be desirable under certain circum-

stances. For example, if the disease risk in the local badger population was perceived to be low,

or if measures were likely to be very expensive a high sensitivity (to avoid placing measures

where they are not needed) could be advantageous.

Using a cut-off of 0.25, farms identified by the model as having a high likelihood of badgers

being present typically also had a higher frequency of badger visits than those not identified.

However, overall the model of badger visit frequency, as opposed to presence/absence, had

poor predictive power, and was unable to distinguish between farms with high or low levels of

activity. The extent to which wild animals exploit anthropogenic food sources and environ-

ments is likely to be influenced by a variety of behavioural factors, including associations with

other individuals with a tendency to use these resources [47], or could be mediated through

learning from parents [48]. Badger visits to farmyards could also be influenced by such pro-

cesses, or by chance events which makes the behaviour difficult to predict from ecological fac-

tors alone.

Previous studies have highlighted that badgers entering farmyards may present potential

opportunities for disease transmission to cattle, although the mechanisms and the magnitude

of the risks are unclear [6, 12, 49]. In addition, the absolute disease risk from any given badger

is likely to depend on the level of infectiousness, which can vary significantly amongst individ-

uals and social groups [50]. Transmission could occur from chance events, which may depend

on the nature of the badger behaviour in farmyards, such as how their activity patterns overlap

directly or indirectly with cattle. Such events would need to result in sufficient exposure to M.

bovis, although the minimum infectious dose for cattle is low, at 6–10 bacilli [51]. Intuitively

farms with a higher frequency of badger visits should have a higher risk of infection, although

we found no evidence that badger visits was associated with the current TB status of the farm

(in simple univariate analyses). This is not that surprising, as transmission may require a par-

ticular set of circumstances, such that any relationship between the two may be weak, highly

variable and/or non-linear in nature. Several studies have also demonstrated that TB risk is

influenced by a complex mix of factors including badger activity, as well as cattle movements

and other farming practices [52]. Quantifying the risk from badgers farm visits is therefore

likely to require large multivariate analyses, considering a range of factors.
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Although the model for predicting the likely presence of badgers in farmyards did not have

perfect predictive accuracy, these initial findings nonetheless have potential implications for

the targeting of biosecurity measures [14]. Often studies of wildlife management problems

describe ecological patterns or relationships, but fail to identify how such knowledge can be

effectively transferred to stakeholders in order to inform their choices. Communicating risk is

notoriously difficult, although numerous examples exist particularly in the field of human

medicine [40], as well as other disciplines. In an attempt to address this challenge we created

an interactive web based tool. Based on the models in this study the tool allows users to enter

their farm details and produce a relative risk of the likelihood of badger visits. Variables relat-

ing to the farm buildings or herd size will be straight forward to enter and most farmers will

have an approximate idea of the number and location of setts on their land, although on aver-

age these numbers tend to be slight underestimates [53]. Farms predicted as being at high risk

of receiving visits could experience a range of badger activity levels, which could in turn relate

to highly variable levels of disease risk. In addition, each farm will pose its own challenges and

there may be other factors or priorities which influence the application of biosecurity measures

[14]. It is envisaged that the output from the assessment tool could therefore form part of a

wider discussion between farmers and vets in developing a biosecurity plan for a farm. Such a

discussion could consider local TB risk in their area, the potential costs of badger-proofing

farmyards, and other information on disease patterns or risk from government or private ani-

mal health professionals.

In summary, we found that badger visits to farm buildings occurred at a significant propor-

tion of farms at the landscape scale and that the presence of badgers could be predicted on the

basis of farm characteristics. An interactive ‘farm assessment tool’ developed using the model

outputs, represents a first step in providing stakeholders with information to help them target

interventions aimed at reducing opportunities for TB transmission amongst badgers and cat-

tle. Collection of further data, along with future research into ecological and behavioural fac-

tors which influence badger activity in farmyards may help to improve the predictive ability of

these models. A similar approach to that described here could also be applied to identify areas

of risk in other situations, such as pasture fields, in order to direct biosecurity measures in the

wider farming environment.
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5. Palmer MV, Thacker TC, Waters WR, Gortázar C, Corner LAL. Mycobacterium bovis: A Model Patho-

gen at the Interface of Livestock, Wildlife, and Humans. Veterinary medicine international. 2012;

2012:236205. https://doi.org/10.1155/2012/236205 PMID: 22737588.

6. Godfray HCJ, Donnelly CA, Kao RR, Macdonald DW, McDonald RA, Petrokofsky G, et al. A restate-

ment of the natural science evidence base relevant to the control of bovine tuberculosis in Great Brit-

ain†. Proc R Soc B. 2013; 280(1768):20131634. https://doi.org/10.1098/rspb.2013.1634 PMID:

23926157

7. Griffin J, Williams D, Kelly G, Clegg T, O’boyle I, Collins J, et al. The impact of badger removal on the

control of tuberculosis in cattle herds in Ireland. Preventive veterinary medicine. 2005; 67(4):237–66.

https://doi.org/10.1016/j.prevetmed.2004.10.009 PMID: 15748755

8. Allen AR, Skuce RA, Byrne AW. Bovine Tuberculosis in Britain and Ireland–A Perfect Storm? the Con-

fluence of Potential Ecological and Epidemiological Impediments to Controlling a Chronic Infectious Dis-

ease. Frontiers in Veterinary Science. 2018; 5(109). https://doi.org/10.3389/fvets.2018.00109 PMID:

29951489

9. Corner LAL, Murphy D, Gormley E. Mycobacterium bovis infection in the Eurasian badger (Meles

meles): the disease, pathogenesis, epidemiology and control. Journal of comparative pathology. 2011;

144:1–24. https://doi.org/10.1016/j.jcpa.2010.10.003 PMID: 21131004.

Predicting badger visits to farm yards

PLOS ONE | https://doi.org/10.1371/journal.pone.0216953 May 24, 2019 18 / 20

http://www.ncbi.nlm.nih.gov/pubmed/10642539
http://www.nature.com/nature/journal/v451/n7181/suppinfo/nature06536_S1.html
http://www.nature.com/nature/journal/v451/n7181/suppinfo/nature06536_S1.html
https://doi.org/10.1038/nature06536
http://www.ncbi.nlm.nih.gov/pubmed/18288193
https://doi.org/10.3389/fvets.2014.00027
http://www.ncbi.nlm.nih.gov/pubmed/26664926
https://doi.org/10.1155/2012/236205
http://www.ncbi.nlm.nih.gov/pubmed/22737588
https://doi.org/10.1098/rspb.2013.1634
http://www.ncbi.nlm.nih.gov/pubmed/23926157
https://doi.org/10.1016/j.prevetmed.2004.10.009
http://www.ncbi.nlm.nih.gov/pubmed/15748755
https://doi.org/10.3389/fvets.2018.00109
http://www.ncbi.nlm.nih.gov/pubmed/29951489
https://doi.org/10.1016/j.jcpa.2010.10.003
http://www.ncbi.nlm.nih.gov/pubmed/21131004
https://doi.org/10.1371/journal.pone.0216953


10. Garnett B, Delahay R, Roper T. Use of cattle farm resources by badgers (Meles meles) and risk of

bovine tuberculosis (Mycobacterium bovis) transmission to cattle. Proceedings of the Royal Society of

London Series B: Biological Sciences. 2002:1499–87. https://doi.org/10.1098/rspb.2002.2030

11. Garnett BT, Roper TJ, Delahay RJ. Use of cattle troughs by badgers (Meles meles): A potential route

for the transmission of bovine tuberculosis (Mycobacterium bovis) to cattle. Appl Anim Behav Sci. 2003;

80(1):1–8. https://doi.org/10.1016/S0168-1591(02)00204-6.

12. Tolhurst BA, Delahay RJ, Walker NJ, Ward AI, Roper TJ. Behaviour of badgers (Meles meles) in farm

buildings: Opportunities for the transmission of Mycobacterium bovis to cattle? Appl Anim Behav Sci.

2009; 117:103–13. https://doi.org/10.1016/j.applanim.2008.10.009

13. Ward AI, Tolhurst BA, Walker NJ, Roper TJ, Delahay RJ. Survey of badger access to farm buildings

and facilities in relation to contact with cattle. Vet Rec. 2008; 163(4):107–11. https://doi.org/10.1136/vr.

163.4.107 PMID: 18660519

14. Judge J, McDonald RA, Walker N, Delahay RJ. Effectiveness of biosecurity measures in preventing

badger visits to farm buildings. PloS one. 2011; 6(12):1–8.

15. O’Mahony DT. Use of water troughs by badgers and cattle. The Veterinary Journal. 2014; 202(3):628–

9. https://doi.org/10.1016/j.tvjl.2014.10.016 PMID: 25458885

16. O’Mahony DT. Multi-species visit rates to farmyards: Implications for biosecurity. The Veterinary Jour-

nal. 2015; 203(1):126–8. https://doi.org/10.1016/j.tvjl.2014.10.011 PMID: 25458881

17. Woodroffe R, Donnelly CA, Ham C, Jackson SY, Moyes K, Chapman K, et al. Use of farm buildings by

wild badgers: implications for the transmission of bovine tuberculosis. European Journal of Wildlife

Research. 2017; 63(1):6.

18. Fine AE, Bolin CA, Gardiner JC, Kaneene JB. A study of the persistence of Mycobacterium bovis in the

environment under natural weather conditions in Michigan, USA. Veterinary Medicine International.

2011;2011.

19. Palmer MV, Waters WR, Whipple DL. Investigation of the transmission of Mycobacterium bovis from

deer to cattle through indirect contact. Am J Vet Res. 2004; 65(11):1483–9. PMID: 15566085

20. Walter WD, Anderson CW, Smith R, Vanderklok M, Averill JJ, VerCauteren KC. On-farm mitigation of

transmission of tuberculosis from white-tailed deer to cattle: literature review and recommendations.

Veterinary medicine international. 2012;2012.

21. Payne A, Chappa S, Hars J, Dufour B, Gilot-Fromont E. Wildlife visits to farm facilities assessed by

camera traps in a bovine tuberculosis-infected area in France. European journal of wildlife research.

2016; 62(1):33–42.

22. Mullen EM, MacWhite T, Maher PK, Kelly DJ, Marples NM, Good M. The avoidance of farmyards by

European badgers Meles meles in a medium density population. Appl Anim Behav Sci. 2015; 171(Sup-

plement C):170–6. https://doi.org/10.1016/j.applanim.2015.08.021.

23. Berentsen AR, Miller RS, Misiewicz R, Malmberg JL, Dunbar MR. Characteristics of white-tailed deer

visits to cattle farms: implications for disease transmission at the wildlife–livestock interface. European

Journal of Wildlife Research. 2014; 60(2):161–70. https://doi.org/10.1007/s10344-013-0760-5

24. Tolhurst BA, Ward AI, Delahay RJ, MacMaster A-M, Roper TJ. The behavioural responses of badgers

(Meles meles) to exclusion from farm buildings using an electric fence. Appl Anim Behav Sci. 2008; 113

(1–3):224–35. http://dx.doi.org/10.1016/j.applanim.2007.11.006.

25. Poole DW, McKillop IG, Western G, Hancocks PJ, Packer JJ. Effectiveness of an electric fence to

reduce badger (Meles meles) damage to field crops. Crop Protect. 2002; 21(5):409–17. https://doi.org/

10.1016/S0261-2194(01)00123-5.

26. Ward A, Judge J, Delahay R. Farm husbandry and badger behaviour: opportunities to manage badger

to cattle transmission of Mycobacterium bovis? Preventive veterinary medicine. 2010; 93(1):2–10.

https://doi.org/10.1016/j.prevetmed.2009.09.014 PMID: 19846226

27. Roper T. Badger: HarperCollins UK; 2010.

28. Judge J, Wilson GJ, Macarthur R, Delahay RJ, McDonald RA. Density and abundance of badger social

groups in England and Wales in 2011–2013. Sci Rep. 2014; 4. https://doi.org/10.1038/srep03809

PMID: 24457532

29. Kruuk H, Parish T. Feeding Specialization of the European Badger Meles meles in Scotland. The Jour-

nal of Animal Ecology. 1981; 50:773. https://doi.org/10.2307/4136
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