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Human cord blood-derived primitive CD34-negative
hematopoietic stem cells (HSCs) are myeloid-biased long-term
repopulating HSCs
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published online 13 March 2015

Hematopoietic stem cells (HSCs) possess both self-renewal and
multi-lineage differentiation abilities and maintain lifelong hema-
topoiesis. Recent studies have revealed that the murine HSC
compartment consists of heterogeneous HSC subpopulations in
terms of their lineage-biased differentiation potentials.1–6 Dykstra
et al. have recently categorized murine HSCs as α-, β-, γ- and
δ-cells, according to the contribution ratio of myeloid or lymphoid
cells in the repopulation assays.1,2 In addition, other groups have
reported that lineage-biased HSCs could be prospectively isolated
by their surface immunophenotypes. For example, CD41+ murine
HSCs have shown to possess a long-term (LT) repopulating
capacity and showed a marked myeloid-biased reconstituting
capacity.3 In addition, the murine platelet-primed von Willebrand
factor (vWF)-positive HSCs have LT-myeloid-biased lineage
repopulation potentials and can self-renew.4 Furthermore, Morita
et al.5 reported that the murine HSC compartment could be
segregated according to the expression levels of CD150 antigen,
and CD150high HSCs had the most potent self-renewal activities, as
well as the the highest myeloid-biased lineage differentiation
potentials. All of these reports demonstrated that myeloid-biased
murine HSCs have a LT-repopulating capacity and can produce
lymphoid-biased HSCs. Therefore, myeloid-biased HSCs were
thought to be most primitive HSCs in the murine HSC
hierarchy.1–6

Conversely, it has not yet been elucidated whether the human
HSC compartment consists of homogeneous or heterogeneous
HSC subsets in terms of the lineage-biased differentiation
potentials. It has long been believed that human HSCs
and hematopoietic progenitor cells (HPCs) exist only in the
CD34-positive (CD34+) fraction. However, we recently identified
CD34-negative (CD34−) SCID-repopulating cells (SRCs) in the
human cord blood (CB) using an intra-bone marrow injection
(IBMI) technique.7–13 In addition, we developed high-resolution
purification methods for these CB-derived CD34− SRCs using
18Lineage (18Lin)-specific antibodies.10–13 These highly purified
lineage-depleted CB-derived CD34− cells possessed not only SRC
abilities but also colony forming cell (CFC) abilities in the
methylcellulose semi-solid culture.10–13 These observations clearly
demonstrated that human CB-derived HSCs/HPCs (HSPCs) exist
not only in the CD34+ but also in the CD34− fraction. However, the
functional differences between these human CD34+/− HSPCs are
not fully elucidated. Therefore, in this study, we precisely analyzed
the differences in the differentiation potentials between CD34+/−

HSPCs in vivo and in vitro.
In order to compare the in vivo differentiation potentials of

CD34+/− SRCs, we first performed an SRC assay. The CB-derived
18Lin-negative (18Lin−) CD34+/− cells, both of which contain
highly purified CD34+/− SRCs,10 were transplanted into NOD/Shi-
scid/IL-2 Rγc

null (NOG) mice using the IBMI technique. Then, the
percentages of CD19+, CD33+ and other types of cells (defined as
human CD45+, CD19−, CD33− cells) in the human CD45+ cells

produced from CD34+/− SRCs in the mouse BMs were serially
analyzed (schematically presented in Supplementary Figure S1).
The human CD45+ cell repopulation capacities of both
CD34+/− SRCs were not significantly different (Figure 1a and
Supplementary Figure S2). These data were consistent with our
previously reported data that both CD34+/− SRCs possessed
comparable human CD45+ cell repopulation capacities.7–13 How-
ever, the differentiation potentials of these CD34+/− SRCs with
regard to the CD33+ myeloid cells were clearly different. These
CD34− SRCs showed significantly higher rates of CD33+ myeloid
cell repopulation (Figures 1e and 2). At 5–6, 12 and 18–24 weeks
after transplantation, CD34− SRCs showed significantly higher
percentages of CD33+ cells (74.4, 30.4 and 29.8%, respectively;
Po0.01) compared with CD34+ SRCs (22.8, 13.1 and 17.7%,
respectively) in the mouse BMs (Figures 2g–i). Surprisingly, a
number of the mice that received CD34− SRCs showed exclusively
human CD33+ myeloid cell repopulation at 5 weeks after
transplantation (Figure 2d and Supplementary Figure S3B).
However, these CD34− SRCs were not myeloid-committed
progenitors. Because all of the mice received CD34− SRCs
showed multi-lineage human hematopoietic cell reconstitution
at 18–24 weeks after transplantation (Figures 1 and 2,
Supplementary Figures S2 and S3). We have previously reported
that these CD34− SRCs possessed secondary and tertiary (41 year)
multi-lineage reconstituting abilities as did CD34+ SRCs.12 The
percentages of CD33+ cells in the mice that received CD34− SRCs
were gradually decreased from the early-to-late weeks after
transplantations (Figures 2g–i), and concomitantly the percen-
tages of CD19+ B-lymphoid cells increased (Figures 2j–l).
In contrast, CD34+ SRCs produced significantly higher percen-

tages of CD19+ cells compared with CD34− SRCs until 12 weeks
after transplantation (Figures 2a, b, j and k). At 5–6, 12 and
18–24 weeks after transplantation, the mean percentages of
CD19+ cells in the mouse receiving both CD34+/− SRCs were 66.7
and 21.0% (Po0.01), 80.8 and 64.7% (Po0.05), and 59.7 and
65.6% (P= 0.496), respectively (Figures 2j–l). Therefore, CD34+

SRCs predominantly produced CD19+ cells in the mouse BM at
each time point (Figure 2 and Supplementary Figure S3A). These
results were consistent with recently reported data.14

We next further analyzed the multi-lineage differentiation
potentials of CD34+/ − SRCs. At 18–24 weeks after transplanta-
tion, mice were killed and the human hematopoietic multi-
lineage reconstitutions in the mouse left tibia (injection site)
were analyzed by FACS. Both CD34+/ − SRCs could produce
comparable levels of CD34+ progenitor cells, CD19+ B lympho-
cytes, CD14+ monocytes, CD41+ megakaryocytes and CD3+

T lymphocytes in the murine BM (Figures 1b–d, f and g and
Supplementary Figure S2), as we reported previously.10–13

However, CD34− SRCs produced higher percentages of CD33+

cells compared with those of CD34+ SRCs (Figures 1e and 2g–i),
as above-mentioned. On the contrary, CD34+ SRCs produced a
significantly higher percentage of CD235a+ cells compared with
CD34− SRCs (Figure 1h). Collectively, these results demonstrated,
for the first time, that human CB-derived CD34− SRCs are
myeloid-biased SRCs.
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We further analyzed in vitro the differentiation potentials of
CD34+/− HSPCs by a CFC assay and coculture with human bone
marrow-derived mesenchymal stromal cell (MSC) feeders, which
support human HSCs, as we recently reported.13 As shown in
Supplementary Figure S4A, in the presence of 30% fetal calf serum
(FCS) supplemented with a cocktail of cytokines, including stem
cell factor, interleukin (IL)-3, granulocyte colony-stimulating factor,

granulocyte/macrophage colony-stimulating factor and erythro-
poietin (EPO), the plating efficiency (PE) of 18Lin−CD34+ cells
(69.8%) was significantly higher than that of 18Lin-CD34- HSPCs
(50.9%) (Po0.05). The 18Lin-CD34+ cells formed all types of
colonies, including CFU-GM (61.5%), BFU-E (30.2%) and CFU-Mix
(7.0%). Conversely, 18Lin−CD34− cells formed mainly BFU-E
(57.4%) and CFU-Mix (40.9%) colonies, and only a few myeloid
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Figure 1. Comparision of the multi-lineage differentiation potentials between CD34+/− SRCs at 18–24 weeks after transplantation.
At 18–24 weeks after transplantation, the mice were killed and BM cells were collected from the left tibia. (a) The percentages of human
CD45+ cells in the mouse BM with hemolysis. The expression of surface markers including human (b) CD3, (c) CD14, (d) CD19, (e) CD33,
(f) CD34 and (g) CD41 on human CD45+ cells are indicated. (h) The percentages of CD235a+ cells on mouse CD45− human CD45+/− cells in the
mouse BM without hemolysis. Each open circle represents the data of an individulal mouse. Open and gray bars show the mean percentages
of each marker-positive cell.
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colonies (1.7%), which is consistent with our recent data.10–13

In addition, in order to further assess the erythroid and
megakaryocyte differentiation potentials of CD34+/− HSPCs, a
CFC assay was performed in the presence of 10% platelet-poor
plasma supplemented with TPO, EPO and IL-3. Under these
conditions, the PE of 18Lin−CD34− cells (66.9%) was significantly
higher than that of 18Lin−CD34+ cells (29.4%) (Po0.01). The
18Lin−CD34− cells formed erythroid (16.3%), megakaryocyte
(29.3%) and erythro-megakaryocytic mixed colonies (54.2%;
Supplementary Figure S4B).

Finally, we analyzed the differentiation potentials of CD34+/−

HSPCs in the coculture system. The fold increase of 18Lin−CD34+

cells (207-fold) was significantly greater than that of 18Lin−CD34−

cells (29.9-fold; Po0.01)), after 7 days cocultuers (Supplementary
Figure S5A). In addition, the number of CD34+ cells maintained/
generated from 1×103 18Lin−CD34+ cells (4.6 × 104) was signifi-
cantly higher than that generated from 1×103 18Lin−CD34− cells
(0.6 x 104) (Po0.01; Supplementary Figure S5B). The numbers of
CD11b+ and CD14+ cells produced from one CD34+ cell generated
from 1×103 18Lin−CD34+ cells were significantly higher than those
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Figure 2. Serial analysis of the ratio of CD19+ and CD33+ cells produced from CD34+/− SRCs in the mouse BM. The percentages of CD19+,
CD33+ and other type of cells on the human CD45+ cells in the mice BM cells from the right tibia were serially analyzed from 5–24 weeks after
transplantation by the BM aspiration method. The CD19+ or CD33+ cells on the human CD45+ cells were gated as indicated in Supplementary
Figure S2. The human CD45+CD19−CD33− cells were defined as ‘other type of cell’. Each individual mouse was identified by ear punching and
the human hematopoietic cell repopulation was traced from 5–24 weeks after transplantation. (a–f) The percentages of CD33+ (filled bar),
CD19+ (open bar) and other types of cells (gray bar) in the human CD45+ cells in the mouse BM from the right tibia. Each bar indicates the
data of an individual mouse receiving (a–c) CD34+ and (d–f) CD34− SRCs. The mean percentages of (g–i) CD33+ and (j–l) CD19+ cells on
human CD45+ cells in the mouse BM at each time point are indicated. The data represent the means± s.d.
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produced from one CD34+ cell generated from 1×103 18Lin−CD34−

cells (Po0.01; Supplementary Figures S5D and E). Conversely, the
number of CD41+ cells produced from one CD34+ cell generated
from 1×103 18Lin−CD34− cells was significantly higher than that
produced from one CD34+ cell generated from 1×103 18Lin−CD34+

cells (Po0.01; Supplementary Figure S5F). These results are fairly
consistent with the results of the CFC assay, in which 18Lin−CD34−

cells showed poor myeloid colony formation, and mainly formed
erythro-megakaryocytic colonies.
It was recently reported that murine most primitive CD150high

or vWF+ HSCs showed megakaryocyte primed gene expression
patterns, and in the CFC assay, they formed more megakaryocyte
containing colonies compared with CD150int or vWF- HSCs.3–5,15

Therefore, it is suggested that human CD34− HSPCs are the human
counterpart of the above-mentioned murine primitive HSCs.
In summary, the present data clearly demonstrated, for the first

time, that human CB-derived CD34− SRCs (HSCs) possess myeloid-
biased LT-repopulating capacities. We also recently reported that
CD34− SRCs could produce most primitive CD34+ SRCs (Lin−CD34+

CD38−CD90+CD45RA− SRCs) in the cocultures with human bone
marrow cell-derived mesenchymal stromal cells.13 These results
suggest that myeloid-biased CD34− HSCs may produce lymphoid-
biased CD34+ HSCs. In other words, the expression of CD34 may
segregate or separate lymphoid-biased HSCs from myeloid-biased
HSCs. Collectively, it may be suggested that the human myeloid-
biased LT-repopulating CD34− HSCs reside in the apex of the
human HSC hierarchy. However, the molecular mechanisms which
control the lineage bias program of the primitive human HSCs
have not yet been determined. Further investigation at the single-
cell level is necessary to better elucidate the pathway of human
HSC lineage differentiation.15 These studies also have important
implications for clinical HSC transplantation in patients with
malignant and nonmalignant hematological diseases.
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