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Abstract

The aim of this study was to investigate the effects of ankle and hip muscle fatigue on motor

adjustments (experiment 1) and symmetry (experiment 2) of postural control during a quiet

standing task. Twenty-three young adults performed a bipedal postural task on separate

force platforms, before and after a bilateral ankle and hip muscle fatigue protocol (random-

ized). Ankle and hip muscles were fatigued separately using a standing calf raise protocol

(ankle fatigue) on a step and flexion and extension of the hip (hip fatigue) sitting on a chair,

at a controlled movement frequency (0.5Hz), respectively. In both experiments, force, cen-

ter of pressure, and electromyography parameters were measured. The symmetry index

was used in experiment 2 to analyze the postural asymmetry in the parameters. Our main

findings showed that muscle fatigue impaired postural stability, regardless of the fatigued

muscle region (i.e., ankle or hip). In addition, young adults used an ankle motor strategy

(experiment 1) before and after both the ankle and hip muscle fatigue protocols. Moreover,

we found increased asymmetry between the lower limbs (experiment 2) during the quiet

standing task after muscle fatigue. Thus, we can conclude that the postural motor strategy

is not muscle fatigue joint-dependent and a fatigue task increases postural asymmetry,

regardless of the fatigued region (hip or ankle). These findings could be applied in sports

training and rehabilitation programs with the objective of reducing the fatigue effects on

asymmetry and improving balance.

Introduction

Muscle fatigue is recognized as a serious social problem [1, 2] affecting daily living activities. A

relevant experimental framework has been indicated to investigate the capacity of the central
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nervous system to adapt in response to changes in muscle capacity [3]. For example, ankle

muscle fatigue has been used successfully to increase knowledge about the mechanisms of pos-

tural control in bipedal posture [4]. Muscle fatigue is characterized by a decrement in the pro-

duction of maximal force or power by the muscles [5]. Muscle fatigue develops gradually soon

after the onset of the sustained physical activity, such as when an individual performs an inter-

rupting exercise in a submaximal effort and is not able to maintain the intensity of the exercise,

reducing the capacity to generate the force that the exercise requires. Therefore, muscle fatigue

can decrease performance at work and in daily activities [6], which leads to a decrease in pro-

ductivity, as well as leading to errors in activities that require good static or dynamic postural

control [7], increasing the number of falls [6]. Understanding the consequences of muscle

fatigue could bring new insights into how motor strategies are used by the motor system after

perturbation, such as changes in joint strategy or increased asymmetry during postural

control.

Previous studies have indicated that muscle fatigue of different muscular regions of the

body, such as ankle [2, 3, 8–12], knee [8, 10, 13], hip [9, 14, 15], and lumbar and neck [8, 16],

deteriorated postural control in young adults. The effects of muscle fatigue on postural control

can be explained by the following [5, 17, 18]: i) an alteration in proprioception (muscular, ten-

don, joint, and cutaneous receptors) that affects the neuromuscular junction, causing periph-

eral fatigue; ii) inadequate central integration of sensory information that modifies the body

schema; iii) impairments in neuromuscular control and, consequently, in motor response,

deteriorating the muscular contraction (i.e., decreased muscle excitability by action potential,

which slows down the conduction of afferent inputs, reducing the propagation velocity of the

motor output [5]). To compensate the effects of muscle fatigue during a postural task, new

motor units are recruited, which requires reorganization of muscle activation and control of

the movement to compensate the deficits caused by muscle fatigue [10–14]. Previous studies

used electromyographic activity (EMG) to characterize movement strategies (e.g., postural

strategies) during postural control [19]. EMG indicates the strategies of the central nervous

system to maintain balance according to the mechanical demands of the task [19]. This muscle

reorganization may result in changes in both strategy and postural asymmetries during pos-

tural control.

Hip and ankle muscle fatigue and postural control strategy

Quiet standing posture needs to be adjusted under muscle fatigue. Previous studies have indi-

cated that body sway increased after proximal joint muscle fatigue (e.g., hip joint) compared to

distal joint muscle fatigue (e.g., ankle) in young adults [14, 15, 20]. This finding shows that

postural control under muscle fatigue has a higher dependency on the proximal joint [14, 15].

Ankle muscles are not used primarily to control the quiet standing posture in young adults

under muscle fatigue, changing the main strategy to control body sway [21]. Thus, the litera-

ture seems to indicate that changes in strategy in postural control (i.e., hip or ankle strategy)

are muscle fatigue joint-dependent [20].

After ankle muscle fatigue, young adults used a hip strategy to control posture [9]. Although

the hip joint plays an important role in proprioceptive feedback during the quiet standing pos-

ture [22], a hip strategy corresponds to greater body sway. In addition to CoP movements, pre-

vious studies have used electromyographic activity (EMG) to characterize movement

strategies (postural strategies) during postural control [19]. The central nervous system

chooses the best strategy to maintain balance according to the mechanical demands of the task

[19], which can be influenced by the internal disturbance caused by muscle fatigue. For exam-

ple, when the hip muscles are fatigued, a similar adjustment occurs with non-fatigued muscles,
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increasing the ankle and knee muscle activity to control posture [14, 15]. Vuillerme and collab-

orators [3] explain the change in postural control strategy after muscle fatigue through two

hypotheses. The first indicates that fatigued muscles are less responsive to mechanical vibra-

tions, changing the activity of muscle spindles under muscular fatigue, due to a decrease in the

gamma drive, which is used to adjust the sensitivity of the spindles [23]. Possibly due to the

influence of several metabolites and inflammatory substances or via the modulation of reflex

pathways originating from small-diameter muscles afferents, the sense of position and move-

ment are altered in the fatigued muscular region [23]. The second hypothesis proposes that

muscle fatigue reduces the reliance of the central nervous system on proprioceptive informa-

tion originating from fatigued muscles, forcing the central nervous system to use more trust-

worthy sensory inputs for regulating postural sway. However, Boyas and collaborators [2]

investigated the postural strategy after ankle muscle fatigue and showed that the ankle strategy

remains dominant even after the fatigue of these muscles. This finding seems to be contrary to

the hypothesis that the strategy to control posture is muscle fatigue joint-dependent. Further-

more, changes in postural strategy as a consequence of muscle activity have not been analyzed

in previous studies, which makes it difficult to understand the adjustments in postural control

strategy according to the joint muscle fatigued. Checking the modulation of muscle activity of

both agonist and antagonist muscles during postural control could help us to understand the

changes in postural strategies after inducing muscle fatigue considering focal and non-focal

joints (e.g., after ankle muscle fatigue: focal joint—ankle; non-focal joint—hip).

Postural control (a)symmetry and muscle fatigue

Postural control asymmetry raises postural instability due to the increase in body mass over

one lower limb [24], which can occur as a result of weight-bearing transfer from one leg to

another [25], and has been used as a reliable measure to diagnose postural control impair-

ments [25, 26]. From the biomechanical point of view, maintaining greater symmetrical pos-

ture can lead to reduced body sway, which facilitates balance control [25, 27, 28], maintaining

both the center of mass (CoM) and center of pressure (CoP) more distant from the limits of

stability [1, 21]. This improved postural control is especially interesting under muscle fatigue

due to the negative effects of muscle fatigue on postural control.

Muscle fatigue may affect postural control symmetry [29]. The contribution of each lower

limb during a quiet standing posture can increase or decrease when the individual is under a

fatigued state. Vuillerme and collaborators [30] indicated that there is an increase in the pre-

ferred limb contribution to postural control after muscle fatigue, which generates postural

control asymmetry. Despite this relevant study, the motor adjustments that cause postural con-

trol asymmetry are poorly understood, especially when different joints are fatigued. As pos-

tural control strategies and adjustments may be muscle fatigue joint-dependent, the effect of

muscle fatigue on postural control symmetry could also be joint-dependent.

Study purposes and hypothesis

The overall purpose of this study was to investigate the effects of ankle and hip muscle fatigue

on motor adjustments and postural control symmetry during an upright standing task. Two

experiments were conducted. Young adults performed several quiet standing postural tasks

before and after ankle and hip muscle fatigue. The first experiment compared the postural con-

trol and muscular control strategy (ankle and hip motor adjustments) during a quiet standing

posture between bilateral ankle and hip muscle fatigue in young adults. We hypothesized that:

i) muscle fatigue would impair postural control due to the decreased muscle strength and pro-

prioceptive deficits caused by fatigue (fatigue effects); ii) ankle muscle fatigue would impair
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postural control more than hip muscle fatigue because the ankle joint is the main joint used to

control body oscillation in young adults; iii) after bilateral ankle muscle fatigue, the hip muscu-

lar strategy would be adopted, increasing the muscular activation of the proximal muscles

(hip), and after bilateral hip muscle fatigue, young adults would continue to use the ankle mus-

cles (primary strategy) to control posture. The second experiment analyzed the effects of ankle

and hip muscle fatigue on postural control symmetry. We expected that muscle fatigue, inde-

pendent of the joint fatigue protocol, would increase postural control asymmetry, which

would be more evidenced after hip muscle fatigue as the hip joint is a structure responsible for

grosser and wider adjustments to control body stability [15].

General methods

Participants

This study was approved by the Ethical Committee of School of Science at São Paulo State Uni-

versity (#48439015.0.0000.5398). Twenty-three young male adults were invited to participate

in this study. Prior to any experimental procedures, participants were informed about the pro-

cedures of the study and signed a written informed consent form. After reading the consent

form, one individual did not agree to participate in the study. The inclusion criteria were: not

practicing any physical activities in the 48 hours preceding the experimental protocols; not

presenting self-reported cardiorespiratory, musculoskeletal, or neuromuscular illness within

the 6 months before the procedures; not taking medicines which interfere in postural control

tasks; not presenting any disturbances of balance; and uncorrected vision.

Experimental setup

Two protocols were performed on two different days: one day for the bilateral ankle muscle

fatigue protocol and another day for the bilateral hip muscle fatigue protocol. The order of

muscle joint fatigue was randomized and balanced between participants. The protocols were

performed at the same time of the day to avoid environmental (e.g., temperature) and individ-

ual interference (e.g., daily routine). The protocols were performed from 5 to 10 days apart to

allow full recovery from the previous experimental protocol (e.g., delayed onset muscle sore-

ness). Prior to the first day, the participants were instructed not to perform any physical activ-

ity in the 48-h before each evaluation. The participants performed a warm-up, including

walking and stretching for 5 min, before starting the experimental protocol. The following

sequence of tasks was performed on the two protocol days: 1) postural control protocol; 2) Iso-

metric maximum voluntary contraction (MVC) protocol; 3) ankle or hip muscle fatigue proto-

col; 4) postural control protocol immediately after fatigue protocol; 5) MVC protocol.

Postural control protocol

The participants performed quiet standing in a bipedal stance, barefoot, on two 50 cm × 50 cm

force plates (AccuGait, Advanced Mechanical Technologies Inc.—AMTI, Boston, MA), posi-

tioned 5 cm apart, with a sample rate of 200 samples/s. They placed one foot parallel to each

force platform side-by-side and shoulder-width apart. The same feet position was maintained

for all trials. The contour of the feet was drawn on a Kraft paper sheet to record the location.

Participants were instructed to remain as still as possible in an upright standing position, with

arms extended and relaxed at the side of the trunk, and with the gaze directed at a target posi-

tioned one meter away at eye level. Two 60-s trials, before and after muscle fatigue, were per-

formed. In addition, the muscular electrical activity (EMG) through 8-channel surface

electromyography (Miotool Wireless, Miotec Equipamentos Biomédicos Ltda., Porto Alegre,
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Brazil), was recorded, with a sample rate of 2000 samples/s. Surface electrodes were placed on

the tibialis anterior (TA), gastrocnemius medialis (GM), rectus femoris (RF), and biceps femo-

ris (BF) of both lower limbs, in accordance with the Surface ElectroMyoGraphy for the Non-

Invasive Assessment of Muscles (SENIAM) guidelines [31].

Maximum voluntary isometric contraction protocol

The MVC was performed in a custom-made leg press device for ankle plantar flexion (Fig 1A–

upper left and right) and hip flexion (Fig 1B–bottom left and right). Two load cells with a pre-

cision of 0.98 N were used in combination with a signal amplifier (CSA/ZL-100Kgf–MK Con-

trol–São Paulo–SP-Brazil) to collect the MVC of each leg. The load cell data were acquired

using LabVIEW software (National Instruments Inc, Austin, TX). For the ankle plantar flex-

ion, the participants were seated in a backward inclined chair, with the hip joint at 90˚ (180˚ is

full extension), knee joint at full extension (180˚), and feet in a neutral position. Only the ante-

rior part of the feet (metatarsals) stayed in contact with the leg press platform to guarantee that

the MVC was performed by the calf muscles. The position of the feet was marked in the leg

press to guarantee the same position during the trials. The body was firmly secured with velcro

straps fastening the legs and trunk, so the participants could perform ankle plantar flexion by

pressing the leg press platforms forward. For the hip flexion, the participants were seated in

the chair, with knees and hips flexed at 90˚ and feet in a neutral position and supported on a

base at the bottom of the equipment. The upper body was firmly secured with velcro straps fas-

tening trunk and ankles, fixed to the legs of the chair and free to move up. Velcro straps

attached to steel cables connected to the load cells were fixed just above the participants’ knees,

so that they could perform hip flexion by pushing upwards. In both protocols, the restraint

devices (velcro straps) were used to minimize the contribution of other parts of the body to

produce force during MVC. The joint angles were determined by a mechanic goniometer. On

both visits, the participants underwent familiarization with the Leg Press equipment. They per-

formed the tasks with both legs, with the instruction to produce maximum force as fast as pos-

sible and maintain the force for 5 s. Participants performed two attempts before and after the

ankle and hip muscle fatigue protocols, with a 60 s rest between attempts. The participants

were verbally encouraged to perform maximum efforts. Prior to the experimental procedure

(on the same day as the experimental data collection), participants performed three to five

Fig 1. Equipment used to perform the MVC protocol. A–Leg Press adapted to perform bilateral ankle plantar flexion

(upper left and right). B–Chair adapted to perform bilateral hip flexion in the seated position (bottom left and right).

https://doi.org/10.1371/journal.pone.0247395.g001
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trials of plantar flexion or hip flexion MVC protocols for familiarization (according to the pro-

tocol on that day).

Twitch interpolation technique

A neuromuscular electrical stimulation was applied by Twitch Interpolation (TI) technique

once during MVC and three times after MVC with muscle relaxed. The TI was performed

using a portable constant current electro stimulator (Bioestimulador, Insight Ltda., Ribeirão

Preto, Brazil), with 3 cm diameter circular self-adhesive electrodes (Valutrode, Arktus, Brazil).

The TI technique enables involuntary reproduction of a movement, through electrical stimula-

tion at a motor point. For this, the most sensitive site of the motor nerve on the participants’

skin was found [32, 33], applying a 2-4mA continuous electrical current. Next, the electrodes

were positioned according to the movement to be reproduced: for the ankle plantar flexion,

the electrodes were positioned in the popliteal fossa (cathode) and longitudinally in the tibial

nerve (anode); for the hip flexion, the electrodes were positioned in the L2 portion of the femo-

ral nerve (cathode) at the abdomen, and at the gluteal fold (anode). To determine the intensity

of the supramaximal electrical stimuli during MVCs, prior to the protocol and at each visit, the

maximum response threshold (MRT) for TI was determined through the application of conse-

cutive stimuli with an increment of 10mA in the relaxed muscle until the determination of an

intensity at which, with the increment, there was no increase in the force produced by the

relaxed muscle or until the voluntary limit of the participant’s sensation of discomfort [33].

During the MVC protocol, TI values 20% higher than those found in the MRT were applied

[34] to guarantee the efficacy of the stimulus. In all evaluations, the plateau of force was

reached. Thus, the entire TI protocol consisted of the application of four electrical stimuli (3

doublets and 1 single) for each MVC attempt. The first electrical stimulus was a doublet with a

frequency of 100Hz (Db100sup– 1 ms pulse duration, 10 ms interval between pulses) applied

during the peak of force (approximately 3 s after the MVC begins). The other stimuli occurred

with the muscles relaxed at moments 5, 10, and 15 s after the end of the MVC: a doublet with a

frequency of 100Hz (Db100–1 ms pulse duration, 10 ms interval between pulses), a doublet

with a frequency of 10Hz (Db10–1 ms pulse duration, 100 ms interval between pulses), and a

single with a frequency of 100Hz (Tw– 1 ms pulse duration) [33], respectively. In all attempts,

the participants were verbally encouraged to perform maximum efforts. To assess the central

fatigue, the standard technique consists of determining the level of maximal voluntary activa-

tion (VA) [35] superimposing the twitch to MVC and comparing this response to the potenti-

ated response in relaxed muscle [36]. Stimulation of the motor nerve, when the muscle is

relaxed, allows investigation of the peripheral changes through the low- and high-frequency

fatigue from the decrease in the Db100 and Db10, and investigation of the type of peripheral

changes from the ratio of the mechanical response at low- and high-frequency.

Ankle and hip muscle fatigue protocols

Muscle fatigue was induced by the following tasks: i) ankle–standing calf raise exercise (Fig

2A) on a step [37]; ii) hip–flexion and extension of hip (Fig 2B) sitting on the chair [38]. In

both protocols, the participants performed a period of familiarization to adapt to the move-

ment and velocity of the task. Subsequently, the participants were instructed to repeatedly per-

form the task, keeping the movement frequency at 0.5Hz (30 beats/min), controlled through a

metronome, with the highest range of motion. During the ankle muscle fatigue protocol, par-

ticipants were allowed to keep their hands in contact with a support positioned in front of

them, as lightly as possible, without holding it, to help maintain balance, while in the hip mus-

cle fatigue protocol, the participants were allowed to hold the chair to improve the hip
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movement. The participants were verbally encouraged, and reported the perception of effort

through the Borg scale [39] before and immediately after the fatigue protocol. The exercise was

interrupted when the participants reported they were no longer able to perform any repeti-

tions, or when they reduced the range of motion compared to the beginning of the protocol

(determined based on visual inspection) for five consecutive movements, or when they did not

maintain the movement frequency for five consecutive metronome beats.

Experiment 1: Postural control strategy and muscle fatigue

Parameters and statistical analysis

Twenty-two volunteers participated in the experimental protocol. After the first visit, two par-

ticipants declined to participate in the study, and their data were excluded from the analysis.

Thus, the data of 20 participants (1.73±0.06 m, range: from 1.60 to 1.86 m; 74.8±12.9 kg,

range: from 57.9 to 108.9 kg; 23±3 years old, range: from 20 to 33 years old) who performed

both muscle fatigue protocols were included in the analysis. The following parameters were

calculated to analyze the postural and muscular control strategy during the quiet standing pos-

ture between bilateral ankle and hip muscle fatigue:

1) fatigue parameters: time to fatigue protocol–measured by the time to fatigue of both

ankle and hip protocols; MVC parameters–a) force during MVC trial (determined as the high-

est value reached immediately before force plateau in each attempt for each lower limb) was

calculated by the sum of the force of both lower limbs (N). Force data on the ankle and hip

MVC were filtered by a 4th order low-pass Butterworth digital filter with a cut-off frequency

of 3Hz. The order and cut-off frequency values of the filter were defined based on a residual

analysis [40] of the data performed in MATLab software; b) central fatigue was calculated by

the percentage of VA (%VA) [41]; c) peripheral fatigue was calculated by the force amplitude

evoked by each Db100 and Db10 stimuli, and the relation between the evoked force during

Db10 and Db100 (Db10 / Db100) [34].

Fig 2. Schematic representation of the muscle fatigue induction protocol by standing calf raise exercise on a step (A),

and hip flexion and extension sitting on a chair (B).

https://doi.org/10.1371/journal.pone.0247395.g002
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2) center of pressure (CoP) parameters: the resultant CoP signals for each force plate were

combined to analyze the body sway (average values). The first 10 s of each recording were

ignored to avoid potential disturbances resulting from delayed stabilization after the partici-

pant stepped onto the force plates. The data were filtered with a 4th order low-pass Butter-

worth filter with a cutoff frequency of 5 Hz, defined based on a residual analysis [40]. The

following parameters of CoP in the anterior-posterior (AP) and medial-lateral (ML) directions

were calculated: displacement (the length of the CoP trajectory on the support base); mean

velocity (the displacement of the total CoP sway divided by the total duration of the trial); the

root mean square (RMS − the CoP variability around the mean CoP trajectory); and median

frequency of sway. The last parameter was calculated by employing spectral analysis of the

position time series separately in each movement direction (Matlab software version 7.10,

Mathworks). In addition, the area of sway (area of an ellipse containing 95% of the CoP data

across both AP and ML directions) was calculated. We chose to use these parameters because

they indicate global analysis, which numerically expresses the “size” of the sway patterns and

each parameter provides one piece of information on postural control, for example, RMS indi-

cates the variability of the system and mean velocity provides information about postural cor-

rections in COP [42, 43]. In addition, we chose the classic posturography parameters, which

are most commonly found in the literature and the analysis is biased by the underlying

assumption of the CoP signal as a movement [44].

3) EMG parameters: The muscle activity signals were filtered by a 6-500Hz band-pass But-

terworth filter and 4th order low-pass Butterworth filter with a 10Hz cut-off frequency, recti-

fied and amplified (1000-fold gain). The order and cut-off frequency of the filter was defined

based on a residual analysis [40]. The following EMG parameters of the preferred limb were

calculated during the postural control protocol: root mean square (RMS—values recorded

during the MVC in the non-fatigued condition were used to normalize the RMS of TA, GM,

RF, and BF obtained during other trials (in percentage—%RMSmax) [43]; median frequency;

and the co-contraction index (CI), which was analyzed through pairs of TA / GM and RF / BF

muscles and determined using Eq 1 [45]. For the CI, muscle activation was integrated (iEMG)

and normalized by the baseline iEMG (non-fatigued) [45].

CI ¼
iEMG of the antagonist
iEMG of the agonist

� 100 ð1Þ

The parameters were statistically analyzed with SPSS 22.0 and the significance alpha level was

set at 0.05. The data were tested using the sphericity Mauchly’s test and the variance equality

Levene’s test. The MVC parameters and time to fatigue protocol were compared through one-

way ANOVA with repeated measures, considering fatigue (before and after muscle fatigue)

and joint (ankle and knee joint) as factors, respectively. The CoP and EMG parameters during

posture were compared through two-way ANOVAs with factors fatigue and joint, with

repeated measures for both factors. Tukey’s Post hoc test was used to find the differences

among levels. Partial eta-squared (η2) was reported to measure effect size and interpreted as

small (effect size> 0.01), moderate (effect size> 0.06), or large (effect size> 0.14) [46].

Results of Experiment 1

Fatigue parameters. The ANOVA indicated large effects of muscle fatigue for time to

fatigue (F(1,19) = 5.72; p<0.02; η2 = 0.23). The participants performed the ankle muscle fatigue

protocol (mean±SD:270±188s) for longer than the hip muscle fatigue protocol (mean±SD:183

±107s). In both muscle fatigue protocols, the participants reported effort perception higher

than 15 (ankle muscle fatigue: 18±1; hip muscle fatigue: 17±1).
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The MVC parameters before and after muscle fatigue are presented in Fig 3. Ankle mus-

cle fatigue produced large reductions of 16.74% in force (F(1,19) = 33.63, p<0.001, η2 = 0.63),

9% in VA (F(1,19) = 17.33, p<0.001, η2 = 0.47), 13% in Db100 (F(1,19) = 11.25, p<0.003, η2 =

0.37), and 17% in Db10 (F(1,19) = 31.22, p<0.001, η2 = 0.62). Hip muscle fatigue produced

large decreases of 18% in force (F(1,19) = 14.35, p<0.001, η2 = 0.43), 14% in VA (F(1,19) =

29.91, p<0.001, η2 = 0.61), 54% in Db100 (F(1,19) = 27.43, p<0.001, η2 = 0.59), and 67% in

Db10 (F(1,19) = 9.61, p<0.006, η2 = 0.33). In addition, the ratio of the mechanical response

(Db10/Db100) was 1.10 for ankle muscle fatigue, characterizing a low-frequency fatigue,

and 0.75 for hip muscle fatigue, characterizing a high-frequency fatigue. However, the

reduction in force between the protocols did not present differences (F(1,19) = 1.97, p = 0.17,

η2 = 0.09).

CoP and EMG parameters during quiet standing posture. The two-way ANOVA

showed a main effect of fatigue and joint, and a fatigue�joint interaction for both CoP (Fig 4)

and EMG parameters (Fig 5). The F, η2 and p values are shown in Table 1.

Regarding CoP parameters (Fig 4), there were moderate increases in AP displacement and

AP median frequency, and large increases in AP and ML mean velocity, and area after muscle

fatigue. The main effect of joint indicated that the ankle muscle fatigue moderately increased

the AP displacement and median frequency, and area, and largely increased the AP RMS. The

fatigue�joint interaction occurred for AP and ML displacement, AP and ML mean velocity,

AP RMS, area, and AP median frequency. After muscle fatigue, Tukey’s post hoc indicated

large increases in AP and ML displacement (p<0.001 and p<0.001, respectively), AP mean

Fig 3. Means and standard deviations of fatigue parameters before and after ankle and hip muscle fatigue. A–

Force (N); B–Voluntary activation (%); C–Db100 (N); D–Db10 (N); �–Main effect of muscle fatigue.

https://doi.org/10.1371/journal.pone.0247395.g003
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velocity (p<0.04), AP RMS (p<0.05), and area (p<0.003), and moderate decreases in ML

mean velocity (p<0.04) and AP median frequency (p<0.01) in the ankle muscle fatigue condi-

tion compared to hip muscle fatigue condition. Furthermore, there were increases in AP and

ML displacement (p<0.001 and p<0.001), AP and ML mean velocity (p<0.001 and p<0.001),

AP RMS (p<0.02), and area (p<0.001) during the ankle muscle fatigue condition, and in AP

median frequency during the hip muscle fatigue condition (p<0.003) after muscle fatigue

compared to before muscle fatigue.

For EMG parameters (Fig 5), there were moderate decreases in RF median frequency and %

RMSmax after muscle fatigue. The main effect of joint indicated a large increase in RF median

frequency compared to the hip muscle fatigue condition during the ankle muscle fatigue con-

dition. The fatigue�joint interaction occurred for RF %RMSmax, TA median frequency, and BF

median frequency. During the hip muscle fatigue condition, Tukey’s post hoc revealed a mod-
erate decrease in TA (p<0.001) and a large decrease in BF (p<0.007) median frequency, as

well as a moderate decrease in RF %RMSmax (p<0.002) during the ankle muscle fatigue condi-

tion after muscle fatigue compared to before muscle fatigue.

Fig 4. Means and standard deviations of CoP parameters during the postural control task according to joint

fatigued before and after muscle fatigue. A–AP displacement; B–ML displacement; C–AP mean velocity; D–ML

mean velocity; E–AP RMS; F–ML RMS; G–Area; H–AP median frequency; I–ML median frequency; CoP–center of

pressure; AP–anteriorposterior; ML–medial-lateral; RMS–root mean square; �–main effect of fatigue; ¥–main effect of

joint; Ɨ–fatigue x joint interaction.

https://doi.org/10.1371/journal.pone.0247395.g004
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Discussion of Experiment 1

We hypothesized that muscle fatigue would impair postural control and that the muscular

control strategy would be fatigue joint-dependent (ankle muscle fatigue causes hip strategy,

and hip muscle fatigue causes ankle strategy). Our findings from Experiment 1 corroborated

with our first and second hypotheses; both muscle fatigue protocols changed postural control

and when the ankle muscle was fatigued the postural control was more impaired (e.g.,

increased AP displacement, AP mean velocity, AP median frequency, and area) compared to

when the hip muscle was fatigued. However, our third hypothesis for this experiment was par-

tially confirmed. Although there was no change in muscular control strategy after the ankle

muscle fatigue protocol, the young adults continued to use the ankle muscles to control pos-

ture after hip muscle fatigue. In the following paragraphs, we provide interpretations about the

effects of the muscle fatigue protocol and explanations for the higher effect of ankle muscle

fatigue on postural control and no-change in muscular control strategy after both ankle and

hip muscle fatigue.

Fig 5. Means and standard deviations of EMG parameters during the postural control task according to joint

fatigued before and after muscle fatigue. A–TA RMS; B–GM RMS; C–RF RMS; D–BF RMS; E–TA median

frequency; F–GM median frequency; G–RF median frequency; H–BF median frequency; I–TA-GM CI; J–RF-BF CI;

EMG–electromyography; RMS–root mean square; TA–tibialis anterioris; GM–gastrocnemius medialis; RF–rectus

femoris; BF–biceps femoris; CI–co-contraction index; �–main effect of fatigue; ¥–main effect of joint; Ɨ–fatigue x joint

interaction.

https://doi.org/10.1371/journal.pone.0247395.g005
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Muscle fatigue protocol and the effects on postural control. The muscle fatigue proto-

cols decrease the muscle’s ability to generate force, regardless of the muscle joint (ankle or

hip). The muscle fatigue protocols caused similar force reductions (16% after ankle muscle

fatigue protocol and 18% after hip muscle fatigue protocol). In addition, the participants

reported a higher perception of effort after muscle fatigue than before muscle fatigue, which

confirms that the exercise was strenuous. A reduction in muscle strength of the lower limbs

reduces the ability to produce or sustain the force output for joint stabilization [7, 47]. These

effects, in our study, seem to originate from both peripheral and central factors. The use of the

twitch interpolation technique during MVC showed that there was a reduction in both the

Db100 and Db10 after both muscle fatigue protocols. These factors are highly related to

peripheral fatigue [48] and can be explained by a reduction in action potential transmission

along the sarcolemma, Ca++ release, and excitability of sarcolemma and T-tubules, resulting in

lower capacity to depolarize fibers and, consequently, to produce force [48]. The exercise time

can also explain the peripheral fatigue. The muscle fatigue induction protocols of our study

were relatively short and of moderate to high intensity (ankle around 4min and 30s and hip

around 3min), corroborating with previous findings in the literature [43, 49] that suggested

the presence of peripheral fatigue after exercise at these intensities”. However, the presence of

central fatigue must not be ruled out. Our results demonstrated a reduction in VA after muscle

fatigue, a factor related to central fatigue [35], which reduces the firing rate of the pool of

motoneurons at spinal levels, impairing the signal of muscular activation [43]. Thus, both cen-

tral and peripheral fatigue affect the production of muscle force, and may reflect directly on

the control of postural stability.

Table 1. ANOVA F-, η2- and p-values of the CoP and EMG parameters during the postural control task are shown for the main effect of fatigue (before x after) and

joint (ankle x hip), and interaction between factors.

Fatigue Joint Fatigue�Joint interaction

F(1,38) values η2 values p values F(1,38) values η2 values p values F(1,38) values η2 values p values

C
oP

pa
ra
m
et
er
s

AP displacement 3.92 0.09 0.05 4.41 0.10 0.04 17.48 0.31 0.001

ML displacement ns ns ns ns ns ns 10.54 0.21 0.002

AP mean velocity 44.66 0.54 0.001 ns ns ns 8.61 0.18 0.006

ML mean velocity 15.02 0.28 0.001 ns ns ns 4.32 0.10 0.04

AP RMS ns ns ns 9.19 0.19 0.004 11.35 0.23 0.002

ML RMS ns ns ns ns ns ns ns ns ns

Area 1.57 0.14 0.01 4.09 0.10 0.04 12.61 0.24 0.001

AP median frequency 4.13 0.09 0.04 4.25 0.09 0.05 5.63 0.12 0.02

ML median frequency ns ns ns ns ns ns ns ns ns

E
M
G
pa
ra
m
et
er
s

TA RMS ns ns ns ns ns ns ns ns ns

GM RMS ns ns ns ns ns ns ns ns ns

RF RMS 4.79 0.11 0.03 ns ns ns 6.01 0.13 0.01

BF RMS ns ns ns ns ns ns ns ns ns

TA median frequency ns ns ns ns ns ns 3.64 0.09 0.05

GM median frequency ns ns ns ns ns ns ns ns ns

RF median frequency 4.52 0.10 0.04 6.83 0.15 0.01 ns ns ns

BF median frequency ns ns ns ns ns ns 7.01 0.15 0.01

TA-GM CI ns ns ns ns ns ns ns ns ns

RF-BF CI ns ns ns ns ns ns ns ns ns

CoP–center of pressure; AP–anterior posterior; ML–medial-lateral; RMS–root mean square; TA–tibialis anterioris; GM–gastrocnemius medialis; RF–rectus femoris;

BF–biceps femoris; CI–co-contraction index.

https://doi.org/10.1371/journal.pone.0247395.t001
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Ankle muscle fatigue increased body sway and impaired muscle activity, affecting pos-

tural control more than when hip muscles were fatigued in young adults. The failure of a

central processor to integrate sensory information used by the motor system to correct

/adjust the motor command [4], could explain the negative effects of muscle fatigue on pos-

tural control, which affects the input of proprioceptive information to the postural control

system due to perturbations in the neuromuscular system [13]. In addition, muscle fatigue

contributes to changing the firing rating discharges of the motor units [50], modifying the

output of muscle strength [14, 15, 25]. These changes impair motor control, increasing the

risk of falls in fatiguing conditions [12]. However, the higher effect of ankle muscle fatigue

on postural control is contrary to the literature, which indicates higher body sway after hip

muscle fatigue, suggesting greater dependence on the proximal joint (i.e., hip) for the con-

trol of posture in young adults [1, 22, 24]. The differences in the protocols applied by previ-

ous studies and the current study possibly explain the divergences between the study

results. For example, previous studies only examined the effects of unilateral fatigue and

unipedal support, without confirming the similar (or not) effects of the ankle and hip mus-

cle fatigue protocols, as occurred in our study. The greater effect of ankle muscle fatigue on

postural control can be explained in two ways: i) the ankle is a monoarticular joint, and

after fatigue, impairs postural control compensation for reduced mechanical interaction,

unlike hip fatigue, which, as it is biarticular, does not interfere in the control of the posture

of young adults, who can compensate the body oscillation with other regions of the body

and; ii) young adults mainly use the ankle muscles to control bipedal posture [21], since the

plantar flexors play a key role in the post-corrective adjustments in the anterior-posterior

plane [51], and because it is a more reliable structure to adjust posture.

Postural strategy after muscle fatigue. The adjustments in the postural motor strategy

were not muscle fatigue joint-dependent in young adults. To mitigate the effects that muscle

fatigue causes to the postural control system, people can use different postural strategies,

making motor adjustments. Classically, Winter [21] and Nashner and McCollum [52] clas-

sify two main motor strategies for the control of static bipedal posture: ankle and hip strate-

gies. The ankle joint plays a major role in postural control and young adults rely on this

joint to maintain balance. However, the use of these strategies is dependent on the difficulty

of the upright stance task and, under the effect of muscle fatigue (i.e., greater difficulty),

young adults tend to prioritize the hip strategy [6, 14, 17, 22]. After bilateral muscle fatigue

of the plantar flexors (i.e., ankle joint), individuals presented reduced RF electrical activity

and did not change the TA-GM co-contraction, which seems to be a prioritizing strategy to

use the ankle joint in the posture adjustments. A possible explanation is that co-contraction

between agonist and antagonist muscles is usually associated with increased joint stiffness,

restricting joint movement [53] and, due to faults in the somatosensory input system [22,

24], decreasing the power production capacity and neural transmission [54]. In addition, it

is necessary to consider that i) although muscle fatigue largely reduced the individual’s mus-

cle force (Fig 3A), the stabilizing muscles of the ankle joint could not be fatigued to the

point that they would need to increase their co-contraction (Fig 5I) to maintain postural

control. Previous studies indicated that a reduction of, at least, 25 to 30% of force is neces-

sary to affect postural control [17]. We found a reduction of approximately 18%; ii) the pos-

tural task proposed in our study did not threaten postural control to the point where

changing strategies was required. The postural task, standing in a bipedal condition, can be

considered an easier task for young adults even after muscle fatigue [1]. Therefore, even

with impaired postural control after bilateral ankle muscle fatigue, the primary ankle motor

strategy was performed by subjects, without performing the co-contraction. This result cor-

roborates with Boyas and collaborators [2] who indicated that the ankle strategy remained
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dominant even after being fatigued. Moreover, after bilateral hip muscle fatigue, the pat-

terns (behavior) were initially maintained, indicating that the ankle strategy was used. One

point to be considered is that, in performing a task such as controlling bipedal posture,

greater muscle activation and/or involvement of more active muscles may increase energy

expenditure and favor the onset of fatigue [55], contributing to an increased risk of falls. In

this way, it seems unreasonable to maintain greater activation and consecutively greater

muscle contraction. Thus, other adjustments should be made to mitigate the negative effects

of muscle fatigue on postural control.

Experiment 2: Postural control asymmetry and muscle fatigue

Symmetry parameters and statistical analysis

The force during MVC, CoP, and EMG parameters calculated in Experiment 1 were calculated

separately for both lower limbs (right and left lower limb) during the MVC and postural task.

In order to investigate the effects of ankle and hip muscle fatigue on postural control symme-

try, we calculated the symmetry index (SI–Eq 2) [56] between preferred and non-preferred

lower limbs for each parameter. An index value of zero indicates that there is no difference

between sides. For all parameters, we used the absolute value of the SI, with higher percentage

values indicating higher asymmetry. We were not interested in understanding which lower

limb caused the asymmetry, but whether the asymmetry increased or not after muscle fatigue.

SI ¼
preferred limb � non� preferred limb
preferred limbþ non� preferred limb

� 100 ð2Þ

Prior to calculation of the SI, the participant’s foot preference was determined through the test

of kicking a ball, with the lower limb used for balance during the test considered the preferred

limb for postural control [57].

The data were tested using the Mauchly’s sphericity test and the variance equality Levene’s

test. The SI of force, CoP, and EMG parameters were compared through two-way ANOVAs

(fatigue x joint), with repeated measures for both factors. Tukey Post hoc tests were used to

find the differences among levels. Partial eta-square was calculated and interpreted as in

Experiment 1.

Results of Experiment 2

The ANOVAs indicated a main effect of fatigue and joint (Fig 6). The participants showed a

large increase in SI of force (F(1,38) = 6.90, p<0.01, η2 = 0.15), moderate increases in SI of RF

RMS (F(1,38) = 3.81, p<0.05, η2 = 0.09) and GM median frequency (F(1,38) = 3.87, p<0.05, η2 =

0.09), a large decrease in SI of AP and ML velocity (F(1,38) = 20.18, p<0.001, η2 = 0.34 and

F(1,38) = 6.27, p<0.01, η2 = 0.14, respectively), and moderate decreases in SI of ML displace-

ment (F(1,38) = 5.52, p<0.02, η2 = 0.12), RF median frequency (F(1,38) = 4.23, p<0.04, η2 =

0.10), and TA-GM co-contraction (F(1,38) = 5.12, p<0.02, η2 = 0.11) under muscle fatigue. The

hip muscle fatigue condition (main effect of joint) showed large increases in SI of force (F(1,38)

= 15.62, p<0.001, η2 = 0.29) and TA median frequency (F(1,38) = 7.04, p<0.01, η2 = 0.15), and

a moderate increase in SI of GM RMS (F(1,38) = 4.32, p<0.04, η2 = 0.10) compared to the ankle

muscle fatigue condition.

Statistical analysis also indicated a fatigue�joint interaction for force (F(1,38) = 5.39, p<0.02,

η2 = 0.12), AP mean velocity (F(1,38) = 3.79, p<0.05, η2 = 0.09), and TA RMS (F(1,38) = 6.09,

p<0.01, η2 = 0.13). Tukey’s post hoc revealed, after muscle fatigue, a moderate increase in SI of

force (p<0.001) for the hip muscle fatigue condition compared to the ankle muscle fatigue
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Fig 6. Means and standard deviations of symmetry index (%) of Force, CoP, and EMG parameters according to the conditions

before (black bars) and after (white bars) muscle fatigue protocol. A–MVC Force; B–CoP Displacement; C–CoP Mean velocity; D–

CoP RMS; E–CoP Median frequency; F–CoP Area; G–EMG RMS; H–EMG Median frequency; I–EMG Co-contraction index; MVC–

maximum voluntary isometric contractions; CoP–center of pressure; EMG–electromyography; AP–anterior-posterior; ML–medial-

lateral; RMS–root mean square; TA–tibialis anterior; GM–gastrocnemius medialis; RF–rectus femoris; BF–biceps femoris; �–main effect

of fatigue; ¥–main effect of joint; Ɨ–fatigue x joint interaction.

https://doi.org/10.1371/journal.pone.0247395.g006
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condition. Furthermore, under ankle muscle fatigue, a moderate decrease in SI of AP mean

velocity (p<0.008) was observed, while under the hip muscle fatigue condition, moderate
increases in SI of force (p<0.001) and TA RMS (p<0.03) were observed after muscle fatigue

compared to before muscle fatigue.

Discussion of Experiment 2

The second experiment investigated the effects of ankle and hip muscle fatigue on postural

control symmetry. Our hypothesis was that muscle fatigue, independent of the joint fatigue

protocol, would increase postural control asymmetry, which was corroborated by our findings.

However, although we found an increase in force asymmetry in MVC in the hip muscle fatigue

protocol, our results indicated that ankle and hip muscle fatigue increased postural control

asymmetry similarly. The fatigue�joint interaction did not show muscle fatigue joint-depen-

dence for postural control asymmetry, which was against our hypothesis that postural control

asymmetry would be more evidenced after hip muscle fatigue. There were only punctual dif-

ferences in the postural control asymmetry between the muscle fatigue protocols (ankle muscle

fatigue decreased SI of AP mean velocity and hip muscle fatigue condition increased SI of TA

median frequency). In the next paragraphs we suggest interpretations for the similarly

increased postural control asymmetry after both ankle and hip muscle fatigue.

Postural control asymmetry is not muscle fatigue joint-dependent, but muscle fatigue

increases postural control asymmetry. This finding could be explained by the increase in force

asymmetry, which has been indicated as a component associated with posture and walking

asymmetry in different populations [47, 58]. However, as this only occurred after the hip mus-

cle fatigue protocol, it is not possible to affirm that the postural control asymmetry presented

after both ankle and hip muscle fatigue protocols was due to force asymmetry. Another possi-

ble explanation is that due to muscle fatigue effects on postural control (see Study 1), the

young adults adopted a conservative strategy using the most reliable limb to control posture

after muscle fatigue, reducing the sway of one leg and allowing the other leg to find a way to

adjust the balance, which increases postural control asymmetry. Although the symmetry in

postural control plays a key role from a biomechanical point of view in maintaining body sta-

bility, facilitating balance control [25, 27, 28], it is possible that to compensate complex condi-

tions, such as during muscle fatigue, it would not be a bad idea to specialize one leg for weight

support and the other to control sway to avoid unbalance, injuries, and falls [13]. In a previous

study performed by our group, non-faller people with PD compensated for the motor asym-

metries caused by disease by increasing the contribution of the least-affected limb to control a

complex standing task (i.e., tandem posture), which did not happen in faller individuals [59].

This seems to be an effective and protective strategy to avoid falls during complex conditions.

Muscle fatigue appears to require a similar strategy, using functional behavior to compensate

the deleterious effects of muscle fatigue on posture (e.g., impaired somatosensory pathway and

central and peripheral effects). Thus, it seems to be a good strategy to "specialize" one leg to

control balance and another to support weight in a fatigued condition. However, this strategy

would not be appropriate in the long term since previous studies have indicated injuries due to

unilateral overuse during sports practice [60, 61].

General discussion and conclusion

The effects of bilateral ankle and hip muscle fatigue were investigated on both postural strate-

gies and postural control symmetry in young adults during an upright standing task. Our find-

ings allowed us to conclude that ankle and hip muscle fatigue increased body sway, but the

strategy to mitigate the muscle fatigue effects on postural control was not muscle fatigue joint-
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dependent, as the ankle strategy was used in both fatigue conditions to control posture. In

addition, we can conclude that the fatigue task increased postural control asymmetry, regard-

less of the region that was fatigued (hip or ankle). These results can contribute to sports and

health professionals (pathologies). Since different fatigued regions produce the same effects on

postural control asymmetry and do not change the postural strategy, coaches could use these

results to create programs or strategies to reduce fatigue effects on asymmetry. For example,

increasing the contribuition of the preferred-leg to maintain balance while accomplishing a

bipedal task (for example, free throw in basketball), leading to an increase in performance. In

the same line, the findings could be applied in rehabilitation programs with the objective of

increasing balance or preventing falls, increasing the participation of the preferred-leg less

affected by fatigue. However, we suggest further studies investigate whether increasing the

contribution of the preferred-leg after a muscle fatigue protocol in different regions, is a good

and safe strategy.

Fig 7 explains the findings of the two experiments together and provides interpretations of

the strategy used by young adults to deal with the effects of muscle fatigue on postural control.

Bilateral ankle and hip muscle fatigue affected the peripheral and central systems and impaired

proprioception, but no changes were observed in muscle activation, especially the co-contrac-

tion muscular pattern. Therefore, these fatigue effects increased body sway, which can cause

injuries and falls. One possible strategy to deal with these effects is to change the strategy (joint)

that controls posture, for example, under ankle muscle fatigue, individuals adopt the hip muscu-

lar strategy to control posture, increasing the muscular activation of the proximal muscles (hip),

and under hip muscle fatigue, the ankle muscles are used to control posture. However, this

change in strategy did not occur. The adjustments were not muscle fatigue joint-dependent.

The individuals preferred to maintain the same strategy that they used before muscle fatigue.

The participants continued using the ankle strategy, which is a safer and more reliable strategy

to control posture. On the other hand, they increased postural control asymmetry, which was a

preferred strategy to deal with the higher body sway caused by muscle fatigue. This behavior

seems to suggest that postural control was controlled by the reliable limb, reducing the use

(sway) of the other limb. Therefore, the reliable limb adjusted balance, increasing postural con-

trol asymmetry, but reducing the risk of falls (less risky strategy). However, it is important to

consider that asymmetric behavior could be caused by increased body sway, and was not a strat-

egy to deal with muscle fatigue. Thus, muscle fatigue increased postural asymmetry, which is

harmful for posture control [25, 27, 28] and can cause falls and injuries.

Fig 7. Summary of main findings of Experiments 1 and 2, and possible explanations for the strategies used to deal

with postural control asymmetry.

https://doi.org/10.1371/journal.pone.0247395.g007
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The findings of the present study could deepen and advance scientific contributions to

understanding the motor behavior and biomechanics of young adults when they are chal-

lenged to maintain a static bipedal posture after bilateral muscle fatigue. However, the study

has some limitations. The level of physical activity and participants’ experience with the proto-

cols were not measured, which could influence, mainly, the application of force during the

MVC and resistance to the discomfort during the muscular fatigue protocol, postponing the

end of the exercise. However, we tried to reduce these effects by allowing a period of adapta-

tion in the MVC test. Second, during the standing calf raise exercise (ankle muscle fatigue) an

upper body posture must be maintained. Ankle muscle recruitment was greater during exer-

cise, but we cannot guarantee that other muscles were not recruited to perform the task

required. Third, we did not analyze which lower limb was used to control posture (preferred

or non-preferred limb). Although this was not related to our question, it could be an important

aspect to consider in future studies. Fourth, we only analyzed the bipedal quiet stance. More

challenging postural conditions, such as tandem or single leg support, may show different

results and require different joint-strategies to modulate postural control. Finally, the reduc-

tion in force levels after muscle fatigue could be an explanation for the changes in COP vari-

ables. Thus, we suggest that future studies test this hypothesis.
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fatigue and visual behavior on postural sway in young adults. Front Physiol. 2019; 10:643. https://doi.

org/10.3389/fphys.2019.00643 PMID: 31231234

2. Boyas S, Hajj M, Bilodeau M. Influence of ankle plantarflexor fatigue on postural sway, lower limb articu-

lar angles, and postural strategies during unipedal quiet standing. Gait Posture. 2013; 37:547–51.

https://doi.org/10.1016/j.gaitpost.2012.09.014 PMID: 23102672

PLOS ONE Motor strategy and asymmetry of posture after muscle fatigue

PLOS ONE | https://doi.org/10.1371/journal.pone.0247395 February 25, 2021 18 / 21

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0247395.s001
https://doi.org/10.3389/fphys.2019.00643
https://doi.org/10.3389/fphys.2019.00643
http://www.ncbi.nlm.nih.gov/pubmed/31231234
https://doi.org/10.1016/j.gaitpost.2012.09.014
http://www.ncbi.nlm.nih.gov/pubmed/23102672
https://doi.org/10.1371/journal.pone.0247395


3. Vuillerme N, Danion F, Forestier N, Nougier V. Postural sway under muscle vibration and muscle

fatigue in humans. Neurosci Lett. 2002; 333:131–5. https://doi.org/10.1016/s0304-3940(02)00999-0

PMID: 12419498

4. Vuillerme N, Boisgontier M. Changes in the relative contribution of each leg to the control of quiet two-

legged stance following unilateral plantar-flexor muscles fatigue. Eur J Appl Physiol. 2010; 110:207–13.

https://doi.org/10.1007/s00421-010-1449-z PMID: 20390292

5. Enoka RM, Duchateau J. Muscle fatigue: what, why and how it influences muscle function. J Physiol.

2008; 586:11–23. https://doi.org/10.1113/jphysiol.2007.139477 PMID: 17702815

6. Swaen GMH, Amelsvoort LGPM Van. Fatigue as a risk factor for being injured in an occupational acci-

dent: results from the Maastricht Cohort Study. Occup Environ Med. 2003; 60:88–93.

7. Halvani GH, Zare M, Hobobati H. The Fatigue in Workers of Iran Central Iron Ore Comoany in Yazd. Int J

Occup Med Environ Health. 2009; 22:19–26. https://doi.org/10.2478/v10001-009-0009-4 PMID: 19351616

8. Wojcik LA, Nussbaum MA, Lin D, Shibata PA, Madigan ML. Age and gender moderate the effects of

localized muscle fatigue on lower extremity joint torques used during quiet stance. Hum Mov Sci. Else-

vier B.V.; 2011; 30:574–83. https://doi.org/10.1016/j.humov.2010.03.008 PMID: 21269716

9. Bisson EJ, Mcewen D, Lajoie Y, Bilodeau M, Bruye E, Bruye E. Effects of ankle and hip muscle fatigue

on postural sway and attentional demands during unipedal stance. Gait Posture. Elsevier B.V.; 2011;

33:83–7. https://doi.org/10.1016/j.gaitpost.2010.10.001 PMID: 21050763

10. Bizid R, Margnes E, François Y, Louis J, Gerard J, Philippe G. Effects of knee and ankle muscle fatigue

on postural control in the unipedal stance. Eur J Appl Physiol. 2009; 106:375–80. https://doi.org/10.

1007/s00421-009-1029-2 PMID: 19288126

11. Harkins FM, Mattacola CG, Uhl TL, Malone TR, McCrory JL. Effects of 2 Ankle Fatigue Models on the

Duration of Postural Dysfunction. J Athl Train. 2005; 40:191. PMID: 16284640
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