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Abstract

Boolean networks (or: networks of switches) are extremely simple mathematical models of biochemical signaling networks.
Under certain circumstances, Boolean networks, despite their simplicity, are capable of predicting dynamical activation
patterns of gene regulatory networks in living cells. For example, the temporal sequence of cell cycle activation patterns in
yeasts S. pombe and S. cerevisiae are faithfully reproduced by Boolean network models. An interesting question is whether
this simple model class could also predict a more complex cellular phenomenology as, for example, the cell cycle dynamics
under various knockout mutants instead of the wild type dynamics, only. Here we show that a Boolean network model for
the cell cycle control network of yeast S. pombe correctly predicts viability of a large number of known mutants. So far this
had been left to the more detailed differential equation models of the biochemical kinetics of the yeast cell cycle network
and was commonly thought to be out of reach for models as simplistic as Boolean networks. The new results support our
vision that Boolean networks may complement other mathematical models in systems biology to a larger extent than
expected so far, and may fill a gap where simplicity of the model and a preference for an overall dynamical blueprint of
cellular regulation, instead of biochemical details, are in the focus.
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Introduction

Our ignorance of the functioning of the genome, despite

knowing its complete DNA sequence, illustrates the enormous role

of the — far less well characterized — multitude of biochemical

interactions between the genes and within the living cell. The

complex web of biochemical interactions forms a computational

device on which the construction, control, and maintenance of

cells and organisms relies [1]. While deciphering the structure of

these control networks of the living cell is a central goal of modern

biology, probably the most crucial part in decrypting the full

functional role of the genome is the task of reconstructing their

computational dynamics with the help of mathematical models

[2].

Dynamical models using the popular mathematical method of

ordinary differential equations (ODE) provide for prototypical

models that faithfully reproduce the dynamics of small biological

regulatory networks. A prominent example is the small regulatory

sub-network that controls the cell cycle in yeast [3–5]. ODE

models are able to reproduce the complex biochemical kinetics of

the central genes and proteins that make up the cell cycle control

network. As an input, these models are based on the details of the

biochemical interaction kinetics [6–8]. By construction, this results

in a rather complex mathematical model, even for the relatively

small yeast cell cycle network. Considering the task of constructing

much larger regulatory networks in the future, it is a valid question

whether, in practice, the ODE-approach will scale well to much

larger networks of hundreds of nodes, or whether ODE models

could be accompanied by a class of simpler models.

On a route towards simpler models, one indeed finds that ODE

models sometimes capture more dynamical detail than needed for

modeling certain aspects of regulatory networks. For example,

when solely focusing on the sequence of biochemical activation

patterns in a cell, without their exact biochemical timing, the

much simpler discrete dynamical models might be sufficient. In

fact, it has been observed that highly simplified network models

based on Boolean (ON/OFF) states with discrete dynamics (or:

networks of switches) are capable of forecasting the dynamical

sequence of protein activation patterns of small regulatory

networks as, for example, the cell cycle control network of yeast

[9,10].

While such Boolean network models drop the explicit repre-

sentation of real time, their prediction, a temporal activation

pattern sequence, represents entirely measurable properties of the

biological cell as, in this case, the sequence of stages along the cell

cycle [11]. Recently, in a number of systems biology applications,

Boolean networks have been used to predict the dynamics across a

variety of biological processes [12]. Examples range from control

of development [13,14], to signal transduction networks [15], and

therapeutic target identification [16].

In this article, we study the further capabilities of a Boolean

network model reproducing the temporal activation pattern

sequence of a wild type regulatory network, and ask whether it

is capable of predicting the dynamical phenotype of a large set of

mutated networks, as well. ODE models have been shown to

reproduce a considerable number of mutants for the cell cycle

networks of budding yeast, fission yeast, as well as mammalian
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cells [17–19]. While one may expect that the level of detail

contained in ODE models of the yeast networks is necessary in

order to predict network dynamics of mutant phenotypes, also the

much simpler Boolean networks can in principle predict biological

states of mutated regulatory networks. Prominent examples are the

cell-fate determination during Arabidopsis thaliana flower devel-

opment [20,21], as well as the effect of knockouts of transcription

factors on the developmental control patterns in Drosophila

melanogaster embryonal patterning (stripe formation) [22,23].

Other studies include the mammalian cell cycle [24], a neuro-

transmitter signaling pathway [25], and the budding yeast cell

cycle network [26].

In the following, we will focus on fission yeast and study the

problem of predicting the temporal activation patterns of the cell

cycle networks of mutants. Schizosacharomyces pombe (fission yeast) is

a well characterized system, both, experimentally and theoretical-

ly, with advanced differential equation models that are particularly

suited for predicting a large set of mutant phenotypes [4]. Existing

contemporary ODE models [3,5,6,17,27–29] are able to repro-

duce the temporal evolution of protein concentrations along the

cell cycle progression, both, for the wild type cell, as well as for a

number of loss-of-function mutants, and for temperature-sensitive

mutants, and over-expression mutants [30]. On this background,

we here study a dynamical network model simplified to its

extremes, a Boolean network, with particular attention to its ability

for predicting mutant phenotypes in fission yeast. For the fission

yeast wild type, the approach of a Boolean network model of the

cell cycle network has been demonstrated to work well [10].

In the following we will extend this model such that it can be

mutated corresponding to the subset of all known fission yeast

mutants that in principle can be represented by a Boolean

network. In the next section we first derive an extended Boolean

network model based on the known biochemical reactions of the

biological network. We then present its dynamics for the wild-type

as well as for the set of known mutants. In the last section we

discuss the results in comparison to experiment and to the

standard ODE models of the fission yeast cell cycle.

Methods

The fission yeast cell cycle control network
Let us first recapitulate the main biochemical interactions of

fission yeast cell cycle control, in order to subsequently construct a

Boolean network representation. The fission yeast cell cycle

consists of the stages G1 – S – G2 – M. In the G1 phase the cell

grows. G2 is a ‘‘gap’’ between the main events in the cell cycle –

DNA synthesis in the S phase, and separation of chromosomes

followed by division into two cells in the M (mitosis) phase. After

stage M, the cell enters the G1 phase again, thereby completing

the cycle.

The biochemical reactions forming the control network of the

fission yeast cell cycle have been studied in detail over the last

years [17,31–39]. The core circuit is based on the antagonist

interactions of the M-promoting factor, Cdc2/Cdc13, with the

inhibiting proteins Ste9, Slp1, and Rum1. Cdc2 is a cyclin

dependent kinase (Cdk) and can be active only in a complex with

cyclins as, e.g., Cig1, Cig2, Puc1, or Cdc13. Such post

translational control forms a central part of the fission yeast

network [40].

In our model, we consider the complexes Cig1/Cdc2, Cig2/

Cdc2, Puc1/Cdc2, and Cdc2/Cdc13. The concentration of Cdc2

does not change during the cell cycle, however Cdc2 can exist in

two states: (1) Phosphorylated on residue Tyr15, or (2) not

phosphorylated. The phosphorylation of Tyr15 reduces the

activity of Cdc2. For this reason, we will add an extra node to

our Boolean network representation below. A new node

Cdc2_Tyr15 represents the phosphorylated state of Cdc2: This

node is ON if phosphorylation is removed and is OFF otherwise.

The activation of Cdc2_Tyr15 together with Cdc2/Cdc13 is

crucial for the G2-M transition, whereas the activation of only

Cdc2/Cdc13 without Cdc2_Tyr15 corresponds to the G2 phase

[4,17]. Further, there are several helper molecules as kinase Wee1,

phosphate Cdc25, and PP whose concentrations change charac-

teristically along the cell cycle.

A summary of all interactions between key-regulators of the

fission yeast cell cycle network is given in Fig. 1 where two model

versions are shown as will be discussed below. The network

visualizes the interactions where proteins and complexes are

represented by the network nodes, and biochemical reactions are

classified into the two classes activating/inhibiting as represented

by green/red links, respectively. This model is an extended version

of the wild type Boolean network model for the fission yeast cell

cycle [10], with a more detailed implementation of Cdc2

phosphorylation, including more Cdc2 complexes.

The Boolean network model
The Boolean network model of the fission yeast cell cycle

control network is defined by either one of the interaction graphs

of Fig. 1, together with a set of discrete dynamical rules as defined

in the following. Each node i in the network is assigned a binary

value Si(t)[f0,1g, representing whether the corresponding protein

is present (Si(t)~1) or absent (Si(t)~0) (meaning high or low

concentrations and disregarding the intermediate range, as usually

done in this strongly simplified picture of states just being ON or

OFF). Likewise, the interactions are mapped onto discrete values

as interaction strengths of z1={1, or activating/inhibiting links,

as defined in Fig. 1. The update rule for the graph on the left is

defined as follows. The state Si(tz1) of node i in the next discrete

time step tz1 as a function of a given activation state of the

network at time t is defined as

Si(tz1)~

1,
P

j aijSj(t)wh,

0,
P

j aijSj(t)vh,

Si(t)
P

j aijSj(t)~h,

8><
>: ð1Þ

with aij~1 for an activating interaction (green link) from node j to

node i, aij~{1 for an inhibiting (red) link from node j to node i,

and aij~0 for an absent interaction. h is a threshold of activation

of the node i, which is 0 for all nodes, except three cases, Cdc2/

Cdc13, Cdc2_Tyr15, and Slp1, as further explained below. This

rule closely follows the approach in [9,10]. Nodes are updated

synchronously in discrete time steps. Boolean networks with such a

threshold activation rule are sometimes called (Boolean) threshold

networks, and are a particularly simple and elegant subset of the

large class of all possible Boolean networks [41].

Cdc2/Cdc13 has a threshold of h~{0:5, which corresponds to

self-activation of the node: In the complex Cdc2/Cdc13, Cdc2 is

always present, as mentioned above, and Cdc13 is constantly

synthesized (there is no other positive regulation from other nodes

of the system). Further, as the node Cdc2_Tyr15 is phosphorylated

unless the phosphorylation is actively removed, we add a threshold

rule h = 0.5 for this node. The third special rule is a threshold of

h~1 for Slp1. Slp1 is only activated by a highly active complex

Cdc2/Cdc13, which corresponds to simultaneous activation of

Cdc2/Cdc13 and Cdc2_Tyr15. This mechanism works as a

barrier for entering mitosis. Further, as argued in [9], we add ‘‘self-

degradation’’ (yellow loops) for those nodes that are not negatively

Boolean Network Predicts S. pombe Mutants
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Figure 1. Boolean network model of the fission yeast cell cycle regulation. Nodes with states ON/OFF represent the presence of proteins.
Arrows represent interactions between proteins as defined in the interaction matrix aij of the model (with aij~z1 for green/solid arrows and
aij~{1 for red/dashed arrows). The dynamics is defined through a threshold function representing the switching behavior of regulatory proteins.
Left: Network model with threshold function (1) and with self-degrading loops (yellow). Right: Simplified Boolean network model with threshold
function as defined in eqn. (2). Both networks exhibit the same dynamical results discussed in this study. Thresholds for the nodes are chosen as
described in the text. For annotations see Table 1.
doi:10.1371/journal.pone.0071786.g001

Table 1. The rules of interaction of the main elements involved in the fission yeast cell cycle regulation.

Parent node Daughter node Rule of activation (comments) Rule of inhibition (comments)

Start node Start Kinases (SK): Cdc2/Cig1,
Cdc2/Cig2, Cdc2/Puc1

Start node acts as an indicator of cell mass
and activates Start Kinases Cdc2/Cig1,
Cdc2/Cig2, Cdc2/Puc1, +1 [28].

SK Ste9, Rum1 Phosphorylate, thereby inactivate, 21
[4,28].

Cdc2/Cdc13 Cdc25 Cdc25 is phosphorylated thereby activated,
+1 [28].

Wee1, Mik1 Tyr15 Phosphorylate, inactivating, 21 [28].

Rum1 Cdc2/Cdc13 Binds and inhibits activity, 21 [28].

Cdc2/Cdc13 Rum1 Phosphorylates and thereby targets
Rum1 for degradation, 21 [4,28].

Ste9 Cdc2/Cdc13 Labels Cdc13 for degradation, 21 [4,28].

Tyr15, Cdc2/Cdc13 Slp1 Highly activated Cdc2/Cdc13 activates Slp1,
Tyr15 has to be active, too, +1 [17,28].

Slp1 Cdc2/Cdc13 Promotes degradation of Cdc13, thereby
the activity of Cdc2/Cdc13 drops, 21 [28].

Slp1 PP Activates, +1 [28].

PP(Unknown phosphatase) Ste9, Rum1, Wee1, Mik1 Activates Rum1, Ste9, and the tyrosine-
modifying enzymes (Wee1, Mik1) +1 [28].

Cdc25 Tyr15 Cdc25 reverses phosphorylation of Cdc2,
thereby Tyr15 becomes active, +1 [17,28].

Cdc2/Cdc13 Ste9 inhibits, 21 [17].

PP Cdc25 inhibits, 21 [28].

Cdc2/Cdc13 Wee1, Mik1 inhibits, 21 [17].

doi:10.1371/journal.pone.0071786.t001
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regulated by others. This represents the degradation of proteins in

the cell and is implemented as an inhibitory self-link aii~{1.

An even simpler Boolean model has recently been formulated

[42] which reduces eqn. 1 to two alternatives and does not rely on

self-degrading loops:

Si(tz1)~
1,

P
j aijSj(t)wh,

0,
P

j aijSj(t)ƒh:

(
ð2Þ

The corresponding interaction graph is shown in Figure 1 on the

right. In the coupling matrix here the yellow self-degrading loops

are no longer necessary as the nodes now are themselves self-

degrading by default (as motivated by the general biochemical

degradation of all proteins). Instead, the formerly non-self-

degrading nodes each acquire a self-activating coupling aii~z1.

These are nodes Rum1, Ste9, Cdc25, and Wee1, except for the

nodes Cdc2/Cdc13 and Cdc2_Tyr15 as they are already offset

from the self-degrading threshold by their finite values of h. All

dynamical results in this study are identically obtained by both

implementations of the yeast network.

Results

Boolean network model for the wild type
Let us first review the Boolean network dynamics for the fission

yeast wild type cell cycle, and subsequently for different classes of

mutants. The initial conditions of our model are chosen in

correspondence with the biological start conditions, i.e. all nodes

are in the OFF (inactive) state, except for the nodes Start, Ste9,

Rum1, and Wee1 [4]. Updating the networks from this network

state, initiates a sequence of network states (sets of ON/OFF states

of all nodes) which reproduces the biological time sequence of

protein activation during wild-type cell cycle phases G1 - S - G2 -

M - G1 (see also Fig. 2). The last time step corresponds to the G1

stationary state, where the activity of all nodes is the same as at the

first time step, except for the Start node which now remains OFF.

When running the model starting from each one of the

212~4096 possible initial states, we obtain an overview of the state

space of the Boolean network. One observes that each initial state

flows into one of only 15 stationary states (fixed points), as

summarized in Fig. 3. The largest attractor belongs to a fixed point

attracting 77% of all network states. Our first observation is that

this fixed point exactly coincides with the biological G1 stationary

state (see Fig. 3) of the cell. Thus, the biological target state is the

dominant attractor of the network dynamics. As soon as the system

reaches this state with the specific corresponding combination of

active and inactive proteins, it remains there.

Mutations
Three prominent types of mutations which are well applicable

to the yeast cell are temperature-sensitive, loss-of-function, and

over-expression mutations. Temperature-sensitive mutants largely

correspond to reduced activity in protein production, loss-of-

function mutants to zero-activity of certain nodes, and over-

expression mutants to an increased activity of a protein. In

differential equation models, for modeling the temperature-

sensitive mutants the appropriate kinetic constants are reduced

e.g. by a factor of 10% [4,17,28]. Similarly, for loss-of-function

mutants these constants are set to zero, whereas for over-

expression mutants they are increased by a factor of two or more.

Not all of these mutants can be represented in the framework of

a Boolean network model of the cell cycle control network. In

particular there is no straightforward mapping for temperature-

sensitive mutations (in the following denoted by superscript ts),

where the activity of proteins changes slightly. For this reason we

mostly model loss-of-function and over-expression mutations. In

the case of loss-of-function mutations, for example, the mapping is

obvious and involves simply setting the corresponding nodes to the

inactive state permanently. In the following we describe the

dynamical properties and biological interpretation of all mutations

that have been modeled with the Boolean network model.

Wee1D and Cdc25D mutants. The duration of the S and

G2 phases are controlled by down-regulation of Wee1 by Cdc2/

Cdc13. If Wee1 is absent (denoted as Wee1D), then the cell enters

mitosis with a smaller size, but it stays viable [43]. In the Boolean

model, implementation of the Wee1D non-function (or knockout)

mutation is straightforward. The temporal sequence of protein

activation states here is the same as in the wild-type model. The

system has one fixed point which corresponds to the G1 stable

state (Fig. 4.a).

However, if some other antagonist of Cdc2/Cdc13 is also

mutated, as in the mutants Rum1DWee1D or Ste9DWee1D, then

the cell divides too fast and does not have enough time to grow

[28]. With every division, the cells get smaller and smaller until

they are not viable any more. In our model, start kinases Cig1/

Cdc2, Cig2/Cdc2, and Puc1/Cdc2 are not influenced by Rum1

and Ste9 for simplicity. In fact, Cig2 is partly inhibited by Rum1

and possibly by Ste9 [17,28]. For this reason one cannot separate

Wee1D and Rum1DWee1D, Ste9DWee1D mutations in our

Boolean network model. On the other hand, the model reproduces

the triple mutation Rum1DSte9DWee1D (Fig. 4.b). In this case the

system shows oscillations and is not viable. As shown in Fig. 4.b,

step 10 repeats step 4, such that the system goes through the same

sequence of states, periodically.

In order to model the Wee1DCdc25D mutation, one has to take

into account that Cdc25 has a backup enzyme, called Pyp3. Pyp3

Figure 2. Temporal sequence of protein states of the wild-type
cell cycle (time runs from top to bottom). Each column
corresponds to one node in the network, each row represents one
network state at a given time. The colors black/white correspond to the
node’s states ON/OFF (or 1/0), respectively. See Table 2 for annotation.
doi:10.1371/journal.pone.0071786.g002
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is a tyrosine-phosphate with a much lower activity, which means

that Cdc2 is only weakly de-phosphorylated, when Pyp3 is present.

Therefore, the Wee1DCdc25D mutation is modeled as follows:

Node Wee1 is deleted and the link connecting Cdc25 to

Cdc2_Tyr15 is set to a lower value. We choose a lower weight

of 0.75 instead of the usual weight 1.0 (the discrete dynamical

model is insensitive to the exact value of the weight smaller than

1.0 and larger than 0.5). The simulation of this mutant network

lets the cell cycle go through all phases with the temporal pattern

of proteins as in the wild type network except for Wee1 being

inactive in this mutant (Fig. 4.c). This is consistent with

experimental data [28]. The removal of the nodes Cdc25 and

Wee1 corresponds to a triple mutant Wee1DCdc25DPyp3D, when

Tyr15 stays phosphorylated. This mutation is not viable. The cell

cannot enter mitosis, since Tyr15 stays phosphorylated, thereby

preventing Cdc2/Cdc13 to reach high activity. The model

reproduces this as can be seen in Fig. 4.d where Cdc2_Tyr15

stays inactive and the cell cycle does not enter the mitosis

sequence. Another non-viable mutant is Cdc25D caused by the

back-up enzyme Pyp3 being weaker than Wee1. In the model, the

cycle remains in the G2 phase indefinitely (Fig. 4.e) in agreement

with experimental results [28]. The mutant Pyp3D (modeled again

through a lowered weight of the link connecting Cdc25 to

Cdc2_Tyr15) is similar to the wild-type [44] (Fig. 4.f).

Let us now consider modeling overexpression of proteins and

how they could be realized in a Boolean network model. An

overexpression mutant (op) has the activity (or concentration) of

one or more proteins significantly increased. Within the frame-

work of our model, overexpression is interpreted as equivalent to

the effect of a small constant positive input, which corresponds to a

negative threshold h and a self-activating link aii~1 in equation

(1). In particular, moderate overexpression is represented by a

negative threshold h in the model, only, and an additional self-

activating link is set in the case of high overexpression. Here and

further we choose h~{0:5 for all over-expressed mutants

(without loss of generality, as any negative value larger than 21

has the same effect on the discrete threshold function of the node).

Slight overexpression of Wee1 (h~{0:5) suggests that the cell

stays viable [31]. However, if the level of overexpression of Wee1

increases, the model cell cycle is blocked in the G2 phase. This is

in accordance with [43] (Fig. 4.g).

Finally, modeling temperature-sensitive (ts) mutants as in Wee1ts

Cdc25op in the Boolean framework needs a second thought since

Boolean variables in the model do not distinguish between reduced

activity and non-activity. Therefore we substitute mutation Wee1ts

with Wee1D and, for the overexpression (or overproduction)

mutant Cdc25op, reduce the threshold of activation to h~{0:5
and set aii~1. In Fig. 4.h one sees that mitosis happens very

quickly without an appropriate G2 phase, consistent with mitosis

being initiated before the replication of DNA is completed.

Mutations of Cdc2/Cdc13 antagonists: Ste9D, Rum1D,

Slp1D mutants. Fission yeast survives in the absence of Ste9 or

Rum1 [45] and grows normally. The temporal protein evolution

Table 2. Temporal evolution of protein states in the cell cycle network.

Time Phase Comment

1 START Cdc2/Cdc13 dimers are inhibited, antagonists are active.

2 G1 Start kinases (SK) are becoming active.

3 G1/S When Cdc2/Cdc13 and SK dimers switch off Rum1 and Ste9/APC, the cell passes ‘Start’ and DNA replication takes place, so
Cdc2/Cdc13 starts to accumulate.

4 G2 Activity of Cdc2/Cdc13 achieves moderate level, which is enough for entering G2 phase but not mitosis, since Wee1/Mik1
inhibits residue of Cdc2_Tyr15 that does not allow total activation.

5 G2 With moderate activity Cdc2/Cdc13 activates Cdc25.

6 G2/M Cdc25 reverses phosphorylation, removing the inhibiting phosphate group and activating residue of Cdc2_Tyr15.

7 G2/M Cdc2/Cdc13 reaches high activity (Cdc2/Cdc13 and Tyr15 are both active) sufficient to activate Slp1/APC and the cell enters
mitosis.

8 M Slp1 degrades Cdc13 and activates unknown phosphatase.

9 M Antagonists of Cdc2/Cdc13 are reset.

10 G1 Cdc2 becomes inactive as Cdc13 is degraded, cell reaches G1 stationary state.

doi:10.1371/journal.pone.0071786.t002

Figure 3. Attractors of the Boolean network model of the wild-
type fission yeast cell cycle network, as described in Fig. 1. Each
column is associated with a node in the model, each row represents an
attractor state (fixed point of the dynamics). The basin size of each fixed
point is given by the number of different initial states that converge
onto this fixed point.
doi:10.1371/journal.pone.0071786.g003

Boolean Network Predicts S. pombe Mutants
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Figure 4. Mutant phenotypes: Temporal evolution of protein states for each mutant phenotype (time runs from top to bottom).
Each column corresponds to one node in the network, each row represents one network state at a given time. The colors black/white correspond to
the node’s states ON/OFF (or 1/0), respectively (grey for Pyp3). See Table 3 and text for details.

Boolean Network Predicts S. pombe Mutants
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in the Boolean network model is consistent with this fact (Fig. 4.i,j).

The system has one fixed point G1 that is reached after the

evolution through all cell cycle phases G1-S-G2-M. However, the

absence of the other Cdc2/Cdc13 antagonist, Slp1, has a lethal

effect. Recent studies [46] demonstrate that Slp1D is a nonviable

mutation which prevents mitosis. The dynamical behavior of the

model for Slp1D shows that the system reaches a fixed point,

which corresponds to the late G2 phase, right before entering

mitosis. The evolution of the proteins initially coincides with the

wild type pattern sequence, but then freezes at step 6 (Fig. 4.k).

High overexpression of Ste9 is observed to prevent mitosis via

endoreplication, leaving the cell nonviable [43]. Our model is able

to reproduce that Ste9op prevents mitosis [47], however, does not

represent the full phenomenology of endoreplication (Fig. 4.l).

Finally, it is interesting to look at different levels of overexpression

in the other antagonist of Cdc2/Cdc13, Rum1. Experiments find

that a mild level of Rum1 overexpression (4-fold compared to

wild-type), does not interfere with the mitotic cycle. However,

when the level of expression is further increased (8-fold over wild-

type) the cell is blocked in the G2 phase [43]. The Boolean

network model finds a similar pattern: For moderate overexpres-

sion of Rum1 (represented as an activation threshold h~{0:5)

the Boolean network model exhibits wild-type behavior, however,

when the level of expression is further increased (represented as

h~{0:5 plus a self-activating link aii~1), the model dynamics is

blocked in G2 (Fig. 4.m).

Mutations of cyclins: Cig1D, Cig2D, Puc1D, Cdc2D, and

cyclin-dependent kinase Cdc13D. The essential cyclin for the

fission yeast cell cycle is Cdc13. The presence of Cdc13 is vital for

normal progression through the cell cycle [28]. In the absence of

Cdc13, the cell elongates abnormally and undergoes endoreplica-

tion instead of entering the M phase. The model predicts lethality

for the mutant Cdc13D and that the cell cycle does not enter

mitosis. The start kinases Cig1/Cdc2, Cig2/Cdc2, and Puc1/

Cdc2 switch off the Cdc2/Cdc13 antagonists during the G1-S

phases, but in the absence of Cdc13 the cell cycle cannot evolve

further. The system remains on the fourth step of the wild-type cell

cycle evolution (Fig. 4.n).

Start kinases Cig1/Cdc2, Cig2/Cdc2, and Puc1/Cdc2 are

responsible for deactivation of Cdc2/Cdc13 antagonists. Muta-

tions of cyclins of the start kinase only affect the duration of the G1

phase, extending its duration. Thereby mutants Cig1D, Cig2D,

Puc1D, as well as their double mutants and triple mutants

Cig1DCig2D, Cig1DPuc1D, Cig2DPuc1D, and

Cig1DCig2DPuc1D are viable. Due to simplifications of the start

kinase interactions we made in the model, it is able to reproduce

only single and double mutations, but not triple mutations (see

Figs. 4.o,p,q,v,r,s,t). Due to the fact that the time in the Boolean

model is discrete, one cannot distinguish the start kinase mutants

from the (discrete) temporal pattern of the wildtype. In fact, the

temporal evolution is similar to the wildtype. Double mutations

and triple mutations Cig1DWee1ts, Cig2DWee1ts, Cig1DCig 2D
Wee1ts, Puc1DWee1ts, Cig2DRum1, and Ste9DCig2D exhibit

intact cell cycle dynamics in the Boolean network model, as well

(Fig. 4.u,v,w,x,y,z). The model further predicts the double mutant

Cig1D Rum1D to be viable (Fig. 4.1). Experimentally it is known

that the triple mutation Cig1DCig2DRum1D is viable [48] from

which we conclude that the model result is realistic. Also, the

model predicts mutation Puc1D Rum1D to be viable (Fig. 4.2).

The knock-out mutation Cdc2D is known to be lethal [49], and in

the Boolean model is predicted to block the cell cycle in G1

(Fig. 4.3). Our model further suggests that the double mutation

Cdc2DCdc13D is lethal (Fig. 4.4). For the double mutant

Cdc13DCig2D the model cell cycle is blocked in G1 (Fig. 4.5),

in accordance with experiment [43]. The other double mutant

Cdc13DCig1D, as well as the triple mutant Cdc13DCig1DPuc1D
are known to enter endoreplication and are not viable [50].

Similar to Cdc13D the model reproduces lethality without

representing the details of endoreplication (Figs. 4.6, 4.7). Cells

with the triple mutation Cig1DCig2DCdc13D are known to be

arrested before replication [51] as observed in the model as well

(Fig. 4.8). Finally, under moderate overexpression of Cdc13

({1vhv{0:5, where h~{0:5 is the default threshold of

Cdc13), the cell remains viable (Fig. 4.9). However, a large

increase of Cdc13 activity increases the speed of the cell cycle, the

cell cycle gets too short such that the cells cannot complete DNA

Table 3. Fission Yeast mutant phenotypes represented by
the Boolean network model.

Strain Deleted node(s) Model Real

WT none G1 V

Wee1D Wee1 G1 V

Rum1D Ste9D Wee1D Ste9, Rum1, Wee1 OSC L

Wee1D Cdc25D Wee1; Cdc25 G1 V

Wee1DCdc25DPyp3D Wee1, Cdc25, Pyp3 G2 G2, L

Wee1op h = 20.5,aii = 1 G2 G2, L

Cdc25D Cdc25 G2 G2, L

Pyp3D Pyp3 G1 V

Wee1tsCdc25op Wee1,h = 20.5,aii = 1 G1 (2G2) L

Ste9D Ste9 G1 V

Rum1D Rum1 G1 V

Rum1op h = 20.5,aii = 1 G2 G2, L

Ste9op h = 20.5,aii = 1 G2 ER, L

Slp1D Slp1 G2-M M, L

Cdc13D Cdc13 G1-S ER, L

Cig1D Cig1 G1 V

Cig2D Cig2 G1 V

Puc1D Puc1 G1 V

Cig1DCig2D Cig1, Cig2 G1 V

Cig1DPuc1D Cig1, Puc1 G1 V

Cig2DPuc1D Cig2, Puc1 G1 V

Cig1DWee1ts Cig1, Wee1 G1 V

Cig1DCig2D Wee1ts Cig1, Cig2, Wee1 G1 V

Cig2DWee1ts Cig2, Wee1 G1 V

Puc1DWee1ts Puc1, Wee1 G1 V

Cig2DRum1D Cig2, Rum1 G1 V

Ste9DCig2D Ste9, Cig2 G1 V

Cdc2D Cdc2 G1-S L

Cdc13DCig1D Cdc13, Cig1 G1-S ER, L

Cdc13DCig2D Cdc13, Cig2 G1-S G1, L

Cdc13DCig1DPuc1D Cdc13, Cig1, Puc1 G1-S ER, L

Cdc13op 21,h,20.5 G1 V

Cdc13DCig2DCig1D Cdc13, Cig2, Cig1 G1-S L

The wild type (WT) is listed for comparison. For each mutant, the modeling
details are given (deleted nodes, thresholds),as well as the dynamical outcome
(fixed point or OSC for oscillation). For comparison, the experimental viability/
lethality (V/L) of the real fission yeast cell for the respective mutations is given.
For further details see text and Fig. 4.
doi:10.1371/journal.pone.0071786.t003
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replication, which creates a cut phenotype. Such a phenomenol-

ogy is beyond what a Boolean network model can represent in

detail, as the model explicitly simplifies the time axis.

Discussion

Let us briefly discuss the dynamics of the Boolean network

model and how it compares to ODE models of mutated yeast.

Prediction of mutants
Two types of mutants turned out to be particularly suited for

translation into the Boolean network model framework. The loss-

of-function mutations were implemented by deleting the corre-

sponding node(s). All loss-of-function mutations were reproduced

in the model except a small number, i.e. Rum1D Wee1D, Ste9D
Rum1D, Ste9D Wee1D, Cig1D Cig2D Puc1D. We note that these

belong to a sector where the Boolean network model makes

dramatic simplifications in the interactions between some proteins.

For overexpressed mutations an additional constant positive

input, and for highly overexpressed mutations a self-activating link

have been added to the activation rule. Also here, the successfully

reproduced overexpressed mutants do not cover all known

mutants, e.g. Cdc25op is not reproduced. Here, the discrete

representation limits the model by the mapping of intermediate

activation states to Boolean 0/1 states.

In spite of the considerable simplification of the discrete

representations of continuous protein concentrations as well as

of continuous interaction strengths, the Boolean network model

correctly classifies viability/lethality of 32 mutants, which corre-

sponds to about three quarters of all known mutants for the given

set of involved proteins. The remaining set of mutants containing

Wee1ts, Cdc25ts, Wee1ts Cdc25ts, Ste9DRum1DWee1ts, Slp1ts,

Pyp3op, Cig2op, Cdc25op, Rum1DWee1ts, and Ste9DWee1ts is not

reproducible and shows the clear limitations of the Boolean

discretization in the model. Representation of temperature-

sensitive and over-expression mutants does not find a detailed

implementation in this framework.

In particular, one cannot represent temperature-sensitive

mutants properly, for example, as 10% reduced activity. Further,

the mutant Wee1DRum1D does not find its expression in a

Boolean-discrete-time-step framework, since this mutant’s effect is

an accelerated division speed. The mutations Ste9DRum1D and

Cig1DCig2DPuc1D are not reproducible due to the particular

simplifications of the interaction structure in the model. On the

other hand the model reproduces a number of mutants which

were not modeled before: Cig1DPuc1D, Cig2DPuc1D, Cdc2D,

Cig1DCig2DCdc13D, Cdc13DPuc1DCig1D.

As an overall picture, the Boolean network model appears to

represent a blueprint of the cell cycle control dynamics which not

only covers the wild type protein patterns sequence, but also the

dynamical activation patterns of a considerable number of

mutants. The fact that this variety of phenomenology is

represented solely on the basis of the interaction topology

underlines the general observation of the particular importance

of network structure in regulatory networks [5,22].

Comparison to ODE model prediction of mutants
It is interesting to compare the minimalistic Boolean model with

existing ODE models for the fission yeast cell cycle

[3,6,17,27,28,43]. Firstly, it is important to remark that at the

time of writing there is no general ODE model for the fission yeast

cell cycle that would cover all known details of the process at the

same time. During the last decade, a series of different

mathematical models were constructed where each of them

concentrates on certain aspects of the process. Existing ODE

models are tested against a steadily increasing number of mutants

for fission yeast, from a set of 22 mutations earlier [30], and

extending a current standard set of 42 mutants (with more target

proteins) even further by exploring other mutation types [43].

Going through different versions of models one notices many

similarities between the ODE models and our Boolean model.

Firstly, starting with initial conditions as in [3,17,27,28], the

system evolves through the same sequence of states. The second

evidence is the robustness of the models to the initial conditions:

Our Boolean model has a dominant attractor, attracting most of

the trajectories starting from different initial conditions [17]. The

third evidence is the similarity in dynamical properties of

mutations. In particular, the following mutations: Rum1D, Ste9D,

, Wee1D, Cig1D, Cig2D, Puc1D, Cig1DCig2D, Cig2DSte9D,

Wee1DCdc25D, Cig1DWee1ts, Cig1DCig2DWee1ts, Cig2DWee1ts,

Cig2DRum1D, Pyp3D are predicted to be viable in both

approaches [3,17,27,28], which is confirmed by experimental

data. Non-viable mutations, such as Cdc13D, Cdc13DCig1D,

Cdc13DCig2D, Rum1DSte9DWee1D, Cdc25D, Slp1D, Ste9op,

Wee1opCdc25D, Wee1DCdc25DPyp3D are blocked in the same

phases in both model approaches. It is interesting to note that the

mutant Rum1DSte9DWee1ts is predicted to be not viable in ODE

models [30] since cells are considered to be too small to be viable.

In the Boolean network model one observes a similar result: The

discrete dynamical model ends up in a limit cycle which

corresponds to the situation where a cell passes through phases

too quickly without waiting for a cell mass signal. Finally, in

addition to these previously modeled mutants, some of the

mutations reproduced by the Boolean model above have not

been modeled with the ODE approach so far.

Conclusion

As a main result, our current Boolean network model

reproduces the major results of the ODE models concerning the

viability of various fission yeast mutants, except for the temper-

ature-sensitive and some overexpression mutations which cannot

be translated to the Boolean network formalism. Further our

model reproduces the main general observations of the ODE

model as the robustness to initial conditions and the sequence of

dynamical states for the majority of the mutations. Remarkably,

these results are obtained despite the lack of continuous time in the

Boolean model: We explicitly drop the prediction of real time in

the model, and solely consider the discrete temporal sequences of

activation states of proteins.

Why does the Boolean network model approach work so well,

despite the significant simplifications as compared to ODE

models? The relationship between continuous and Boolean models

has been discussed in detail [52], and in particular it has been

shown that a Boolean network can be constructed from an existing

ODE model in a mathematically well defined manner and with

well defined limits on its validity [53]. From another perspective,

there are indications that often biological molecular networks are

so robustly designed [54–56] that timing is not a critical factor,

and one can drop accurate reproduction of time for the sequence

of states as, e.g. demonstrated for S. cerevisiae [57]. Finally, for

mutants of S. cerevisiae, a Boolean network study [26] traces

robustness against mutations to specific sub-networks of the

budding yeast cell cycle network. Here, the exact timing of events

and the order of the nodes’ updates does not have a large impact

on the fundamental behavior of the system, s.t. the synchronous

update scheme is justified as a suitable approximation. In short, it

seems that, with these biological systems, we are modeling
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enormously robust dynamical networks which, vice versa, allow for

enormous simplifications in their dynamical models.
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