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Traditional algorithms have the following drawbacks: (1) they only focus on a certain aspect of genetic data or local feature data of
osteosarcoma patients, and the extracted feature information is not considered as a whole; (2) they do not equalize the sample data
between categories; (3) the generalization ability of the model is weak, and it is difficult to perform the task of classifying the
survival status of osteosarcoma patients better. In this context, this paper designs a survival status prediction model for os-
teosarcoma patients based on E-CNN-SVM and multisource data fusion, taking into full consideration the characteristics of the
small number of samples, high dimensionality, and interclass imbalance of osteosarcoma patients’ genetic data. ,e model fuses
four gene sequencing data highly correlated with bone tumors using the random forest algorithm in a dimensionality reduction
and then equalizes the data using a hybrid sampling method combining the SMOTE algorithm and the TomekLink algorithm;
secondly, the CNNmodel with the incentive module is used to further extract features from the data for more accurate extraction
of characteristic information; finally, the data are passed to the SVM model to further improve the stability and classification
performance of the model.,emodel has been demonstrated to bemore effective in improving the accuracy of the classification of
patients with osteosarcoma.

1. Introduction

Cancer [1], also known as malignant tumors by the medical
profession, is the result of abnormal cell growth. ,ere are
more than 100 types of cancer. Although the types and
clinical characteristics of these cancers vary, they have the
following commonalities: (1) they are detected late, and
patients who are in the middle or late stages when diagnosed
account for the majority of the overall cancer diagnosis; (2)
the current cancer treatment methods include multiple
excision of the malignant tumor, radiotherapy, and che-
motherapy. ,is process will bring great pain to the patient.
Osteosarcoma [2], as a type of cancer, has a low incidence
rate of only 3 per million, or 2 per 1,000 of the total number
of all cancers. However, the degree of malignancy is quite
high and the patients are mostly children and adolescents
[3]. ,e cell turnover and growth rate of these people are
faster than others, so the cancer cells will grow faster too and
the possibility of cure is lower. Early symptoms of

osteosarcoma are skeletal pain [4] and unexplained frac-
tures, so they are misdiagnosed as growing pains caused by a
body that is growing too fast, delaying the best chance of
treatment, which in later stages can develop into severe pain
and abnormalities in most organs of the body.

With the development of modern biomedicine, a very
close link between osteosarcoma and genes has been dis-
covered through a large number of investigations and
studies [5], which makes it possible to treat patients with
osteosarcoma precisely based on genetic data. Copy number
variation [6] data refer to the reordering of the genome from
its original base and can occur in small gene fragments
ranging from 1 kb to large gene fragments of several MB.
Single nucleotide polymorphisms (SNPs), deletions, inser-
tions and duplications of gene fragments, and variation at
multiple loci are the reasons why copy number variation
occurs. Its mechanism is the mispairing of two highly ho-
mologous DNA sequences on the genome during meiosis or
mitosis, resulting in the appearance of a sequence deletion or
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duplication.,e article “,e impact of copy number variants
on clinical staging and drug resistance mechanisms in os-
teosarcoma multiforme” suggests that copy number varia-
tion is one of several genetic abnormalities that manifest in
osteosarcoma. DNA methylation [7] refers to the process of
making gene expression different from the original result
without modifying the original sequence order of the DNA.
Under the influence of DNAmethyltransferase, the base pair
located in the DNA sequence changes the connection mode
of S-adenosylmethionine from a double covalent bond to a
single methyl group. ,e article titled “Research Progress on
the Relationship between DNA Methylation and Osteo-
sarcoma” shows that the methylation of various genes is
closely related to the staging, diagnosis, metastasis, and
prognosis of osteosarcoma. Compared to DNA sequencing
data, RNA sequencing [8] data are more sensitive and ac-
curate in detecting fusion genes, which are one of the driving
genes for osteosarcoma. In summary, copy number variation
data, DNA methylation data, RNA expression data, etc., are
all very closely related to osteosarcoma. ,eir combined
analysis is of great importance for the early diagnosis of
osteosarcoma, the analysis of the severity of the disease, the
establishment of prognostic models, and the assistance of
doctors in accurate treatment.

With the development of next-generation gene-se-
quencing technology [9], the accuracy of the sequencing
results has been greatly improved and the types of sequenced
genes have become more comprehensive. ,e use of ma-
chine learning methods to establish a survival model and a
prognosis model for patients with osteosarcoma can be used
as a means of adjuvant therapy to help doctors formulate a
more effective and targeted diagnosis and treatment plans
and ultimately achieve the purpose of precise treatment [10].
However, the development of gene-sequencing technology
also brings some problems to model training. ,e data
dimension is much higher than before. However, there are
not many genes that are highly related to diseases. ,is
problem can be described as a dimensional disaster. How to
select the genetic data highly related to this disease from the
high-dimensional genetic data are a challenge in the current
biomedical field. Manual operations and processing based
on statistical methods will miss some key genes, and the final
result will lead to an inaccurate analysis of the survival status
of cancer patients.

With the development of artificial intelligence tech-
niques [11] in the past decades, machine learning [12] as a
branch of artificial intelligence has been extremely widely
used in many fields, such as image processing, natural
language processing, assisted medical diagnosis, and web
recommendation systems. ,e use of machine learning
techniques to analyze gene expression data has become one
of the most important tools to achieve the goal of precision
medicine. However, machine learning faces two challenges
in processing gene expression data from osteosarcoma pa-
tients: (1) the high dimensionality of the data, which reaches
over twenty-four thousand dimensions, is much larger than
the number of samples. ,e redundant and unimportant
gene features are removed and suppressed to motivate the
important features, which are of considerable importance

for predicting the survival status of patients. (2) ,e amount
of data is small, with less than eighty samples of data. In this
context, if the model is too complex it will produce an
overfitting phenomenon, showing a high classification ac-
curacy in the training set but a low accuracy in the test set.
(3) ,e amount of data between samples of different cate-
gories is extremely unbalanced [13], which ultimately leads
to falsely high accuracy, low recall, and serious errors in
identifying categories with a small number of samples.

Data dimensionality reduction [14] means eliminating
unimportant features and retaining important features to
improve data quality and enhance model classification. It
can be divided into two main categories: feature selection
and feature extraction. ,e former is based on prior
knowledge, calculation algorithm results and statistical al-
gorithm results, etc., to filter from original features, and
select features that have a great impact on the results. For
example, IL1B, IL1RN, IL8, IL10, IL17, and other genes have
been confirmed to be highly correlated with gastric cancer
[15]. When reducing the dimensionality of gastric cancer
gene data, these gene features can be directly selected as the
features after dimensionality reduction.,e latter method of
data dimensionality reduction is different from the former
method. Feature extraction needs to change the feature space
of the original data and combine different features according
to the relationship between the features to obtain the features
after dimensionality reduction. ,e main methods are
principal component analysis [16] (hereinafter referred to as
PCA) and so on. ,e PCA algorithm is a linear, global,
unsupervised dimensionality reduction algorithm that is
implemented by projecting the original data into a new
coordinate system, followed by a projection into a k-di-
mensional space, with k being the number of features that
ultimately need to be retained.,e variance in the projection
direction is used as a criterion, the larger the variance, the
higher the dispersion range. Due to the characteristics of its
algorithm, the number of features will be strictly smaller
than the number of samples after the dimensionality re-
duction of the samples using the PCA algorithm. ,e
number of samples is too small, which means that the PCA
algorithm cannot obtain an effective projection space, which
affects the dimensionality reduction effect and finally makes
it difficult for the trained model to show strong classification
ability. It can be seen that the rare disease data set repre-
sented by osteosarcoma is not suitable for dimensionality
reduction using the spatial projection algorithm represented
by the PCA algorithm. In this paper, the random forest
algorithm is used to first reduce the dimensionality of copy
number abnormal data, DNA methylation data, RNA gene
sequencing data, and RNA homolog sequencing data in-
dividually and then fuse the data according to equal weights.

In recent years, with the development of convolutional
neural network [17] (referred to as CNN), many problems
that cannot be solved by human computing power alone can
be solved with the help of CNN. CNN is a network inspired
by the structure of the human neural network. Convolu-
tional neural networks have a wide range of applications
including but not limited to computer vision, natural lan-
guage processing, medical diagnosis, and other fields.
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Compared with the traditional neural network, the differ-
ence is that the convolutional neural network has a con-
volution layer and a downsampling layer, which can
automatically perform feature extraction and transfer the
feature-extracted data to the corresponding classifier for
classification processing. However, CNN has certain limi-
tations. It uses the convolution kernel to perform convo-
lution calculation on the data, which can only obtain the
local receptive field and does not consider the relationship
between features from a global perspective. Inspired by
SENet [18], the algorithm used in this paper adds an ex-
citation module to the convolutional neural network.
Recalculating the weights of different channel features,
suppresses the influence of unimportant features and en-
hances the role of important features. By fully comparing the
characteristics of different algorithms and the characteristics
of the osteosarcoma gene dataset, this paper will use E-CNN
to further extract the features after dimension reduction.

As a kind of machine learning, a support vector machine
[19] (SVM for short) has better performance in small sample
binary classification and stronger generalization ability
compared with other machine learning algorithms. Different
from the working principle of the CNN algorithm, SVM is
aimed to find an optimal hyperplane between different
categories through geometric calculation and uses the hy-
perplane as the boundary between the categories to complete
the classification work. In addition, SVM can also map the
data to a higher-dimensional space through kernel functions
such as radial basis functions (RBF) and then solve the
classification problem of linear inseparable data. As a
classifier, SVM has a strong ability to perform binary
classification of datasets with small data volumes and low
dimensionality. ,e osteosarcoma gene sequencing data has
a small amount of data, but its dimensionality is relatively
high. ,e output data after initial feature selection by
random forest [20], followed by deeper feature extraction
using a pretrained E-CNNmodel, satisfies the characteristics
of small data volume and low dimensionality described in
the previous section. ,erefore, this paper uses SVM to
replace the Sigmoid activation function of the convolutional
neural network as the final classifier, which can further
improve the generalization ability and stability of the model.

Ho et al. proposed a model combining principal com-
ponent analysis (PCA) and convolutional neural network
(CNN) to predict the survival status of patients with gastric
cancer by analyzing their RNA-seq data [21]; Liu et al. used a
combination of a stacked autoencoder and a convolutional
neural network model to expand the data using a stacked
autoencoder, followed by the analysis of the patient’s RNA-
seq data using a CNN to classify the type of cancer [22];
Rukhsar et al. [23] used to convert the one-dimensional
RNA-seq data into two-dimensional image data, perform
zero-completion operations on the edge data and then ex-
pand the data using flip, rotate, etc. ,en, commonly used
networks for processing images, such as ResNet, were used
to process the converted image data and thus achieve the
function of classifying the survival status of cancer patients.

Copy number variation, DNA methylation data, RNA
gene sequencing data, and RNA homologue sequencing data

all have varying degrees of impact on the prognosis of cancer
patients, but the algorithms described previously only use
RNA-seq data for classification studies and do not combine
these data for analysis; secondly, these algorithms only use
CNN or ResNet, which can only obtain local receptive field
and do not consider the relationship between different
channels and are prone to overfitting; then secondly, due to
the computing mechanism of the PCA algorithm they use,
the dimensionality of the data after dimensionality reduction
is required to be strictly smaller than that of the sample data,
which will inevitably lead to some key genetic data being
eliminated. In addition to this, there is an imbalance of data
between the different categories of the medical genetic
dataset, and these algorithms do not equalize the dataset,
which can lead to inflated and unreliable final results.

In this context, this paper proposes a survival status
classification model for osteosarcoma patients based on
E-CNN-SVM and multisource data fusion. In this paper, an
extensive literature review was conducted to fully investigate
the impact of copy number variation data, DNAmethylation
data, RNA gene sequencing data, and RNA homologue
sequencing data on osteosarcoma patients, and the four
types of data were each reduced in dimension using a feature
selection algorithm called a random forest, and then the data
were fused with equal weights in the form of data concat-
enation. Embedding an excitation module in the CNN
model to calculate weights based on the importance of
features before they are passed to the fully connected layer,
to enhance the role of important and weaken the role of
unimportant features. In terms of binary classification, SVM
shows extremely strong classification performance for
samples with a small sample size and low dimensionality. In
this paper, we combine both E-CNN and SVM. SVM is
trained with data after E-CNN feature extraction to further
improve the classification ability and generalization ability of
the model.

2. Data Acquisition

In this article, 65 patients with osteosarcoma were down-
loaded from the TargetOS database, a globally recognized
and authoritative cancer database. ,ese 65 cases include (1)
clinical data on osteosarcoma patients over 3 years, whether
the patient died, whether the disease recurred, and whether
the cancer cells metastasized. (2) Copy number variation
data for osteosarcoma patients, the number of its dimen-
sions per patient is 60,447. (3) DNA methylation data for
osteosarcoma patients. ,e number of its dimensions per
patient is 385,292. (4) RNA gene sequencing data for os-
teosarcoma patients, the number of its dimensions per
patient is 59,956. (5) RNA homozygous sequencing data for
osteosarcoma patients, the number of its dimensions per
patient is 201759. ,e clinical characteristics of the 65 pa-
tients are shown in Table 1.

3. Related Work

,e algorithmic model devised in this paper fully considers
the characteristics of the high-dimensional, unbalanced and

Computational Intelligence and Neuroscience 3



small number of gene sequence data sets of osteosarcoma
patients, and fully investigates copy number variation (CNV
for short), DNA methylation, RNA gene sequence (RNA-
Seq-Gene for short), RNA isoform sequence (RNA-Seq-Ios
for short) data characteristics, and their respective impact on
the survival status of patients with osteosarcoma.

,e flowchart of the algorithm is shown in Figure 1 and
Table 2. Firstly, the random forest algorithm was used to
reduce the dimensionality of the four different aspects of the
gene sequencing dataset described in the previous section,
followed by fusion of the data with equal weights and then
normalization. In addition, the data are balanced by the
combination of SMOTE algorithm and the TomekLink al-
gorithm. ,e SMOTE algorithm uses the upsampling
method to expand the samples of the category with a smaller
number of samples so that the number of samples of the two
categories is consistent; secondly, the TomekLink algorithm
is used to clean overlapping samples and edge samples
between classes to prevent overfitting during model training.
,e preprocessed data were divided into a training set and a
test set in the ratio of 8 : 2. Due to the small amount of data,
the validation set is not divided separately. ,e five-fold
cross-validation method is used to divide the training data
into five equal parts, and one of the data is used as the
validation set in turn, and the remaining 4 data are used as
the training set.

After initial dimensionality reduction, normalization,
and partitioning of the data into test and validation sets, the
data are secondly subjected to further feature extraction
using a convolutional neural network incorporating an
excitation module to further improve the quality of the data.
Inspired by the SENet neural network, weights are calculated
for each feature using the excitation module before the data
are fed into the fully connected layer, multiplying the
weights with the features and secondly adding them to the
unweighted features. Feature weighting fusion through the
stimulus module suppresses the effect of unimportant fea-
tures and enhances the effect of important features. In this
paper, we first use the processed data to train the E-CNN
model for multiple rounds to optimize themodel parameters

and save the E-CNN model with the best classification re-
sults. When training the E-CNN model, the model is prone
to overfitting due to the small number of osteosarcoma
samples. In this paper, the early stop algorithm is used to
avoid this problem during training, and the model pa-
rameters with the smallest rounds of the validation set error
function value are saved as the final model parameters when
parameter iterations are performed. After the E-CNNmodel
is trained, deeper feature extraction is performed on the data
using its input layer to the fully connected layer. ,e data
that has been feature extracted by the E-CNN model is
passed into the SVM to train the SVM model, followed by
classification using the trained SVM model.

3.1. Random Forest. Random Forest is one of many high-
performance machine learning algorithms. Because of its
high classification accuracy, not easy to overfit, strong an-
tinoise ability, fast training speed, and high tolerance to
outliers in data sequences, it has a wide range of applications
in economics, geography, and medicine.,e Random Forest
algorithm is an integrated learning algorithm consisting of
several decision trees, based on the Bootstrap sampling
method, which selects M batches of data from unprocessed
source data multiple times, randomly and with putbacks,
and uses theseM batches to buildM decision trees. A single
decision tree is built as an embodiment of the greedy al-
gorithm. First, the impurity of each feature is calculated
using the Gini coefficient (as shown in (1)) or the infor-
mation entropy (as shown in (2)) as an evaluationmetric, the
lower the impurity, the more suitable the feature is as a
branch node in the decision tree. Each time, the node with
the lowest impurity is selected from the unselected features,
and the above-given operation is repeated several times in
the remaining nodes until the Gini coefficient is less than a
threshold or there are no features to continue building the
decision tree.

Gini � 1 − 􏽘
N

k�1
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2
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�������
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− 4ac

􏽱

. (1)

Here, Pk is the proportion of the k-th category of samples
to the total number of samples N.

H(D) � − 􏽘
c

k�1
pklog2

pk. (2)

Here, D is the data set, c is the total number of categories,
pk is the number of samples in a category, and k is a
proportion of the total number of samples.

For classification, the random forest uses each batch of
data to train a classification decision tree and takes the
output of theM classification trees with the largest weight as
the classification result of the random forest. For the re-
gression task, the random forest uses each batch of data to
train a regression tree, and the output of theseM regression
trees is summed and divided by M as the final output of the
entire random forest. Compared with a single model or one
of the parametric models, the classification and prediction

Table 1: Clinical characteristics of these patients.

Clinical features
Number of cases 65
Age at illness (years) 15.09± 4.89
Gender
Male 36
Women 29

Race
White people 39
Black people 10
Asian 7
Unknown 9

Primary site
Lower limbs 59
Pelvis 2
Upper limb 4

Survival time (days) 1339.31± 982.08
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capabilities of the random forest are significantly improved,
overcoming the problems of overfitting and low accuracy of
a single decision tree, as shown in Figure 2.

Currently, the most widely used algorithm for dimen-
sionality reduction is the PCA algorithm, but due to the
limitations of the algorithm, the number of features retained
after dimensionality reduction must be strictly smaller than
the number of samples. ,erefore, when the PCA algorithm
reduces the dimensionality of the data with a small number
of samples, although some noises are removed, some im-
portant features are also removed at the same time. It can be
seen that the small sample data set represented by osteo-
sarcoma is not suitable for using this algorithm as a di-
mensionality reduction algorithm. When performing
classification and regression tasks, the random forest will
determine the importance of each feature based on its
contribution to the building of these decision trees. ,e
features with the highest contribution are selected and
retained after feature extraction. Because of the properties, it
exhibits in dimensionality reduction, the random forest
algorithm is used as the dimensionality reduction algorithm
in this paper.

3.2. SMOTE+TomekLink. Machine learning is a data-based
discipline. When performing classification tasks, where the
amount of sample data varies significantly between cate-
gories, the classification performance of the trained model

can be severely affected, resulting in its false accuracy and
low recall. ,ere are two methods for resolving data im-
balance: oversampling and undersampling, with the
SMOTE algorithm [24] belonging to the former and the
TomekLink [25] algorithm to the latter. ,e algorithm flow
of the SMOTE algorithm is shown in Figure 3. ,e SMOTE
algorithm is used to generate new samples for classes with
relatively small sample sizes and put them back into the
dataset. In this way, the classes with smaller sample sizes are
expanded, and thus the data is balanced between the
samples of different classes. ,e algorithmic process is as
follows:

(1) Using the Euclidean distance as a criterion, draw m
samples from a relatively small number of categories,
and denote these m samples as X1, X2, X3, X4,􏼈

X5, . . . . . . Xm−1, Xm}

(2) Based on the idea of the nearest neighbor node al-
gorithm, for each node Xi ∈, X1, X2, X3, X4,􏼈

X5, . . . . . . Xm−1, Xm}, compute the k nearest
neighbor nodes of each sample Xi, denoted as Xi(pg)

(3) Select several samples from Xik, denote them as
Xi(pg) and generate a random number c, where c> 0
and c< 1, to synthesize a new sample according to
the following equation:

Xnew � Xi + rand(0, 1)∗ Xi(pg) − Xi􏼐 􏼑. (3)

DNA 
MethylationCNV RNA-Seq-Gene RNA-Seq-Iosform

Random Forest-1 Random Forest-2 Random Forest-3 Random Forest-4

Feature Integeration

SMOTE+TomekLink

E-CNN

SVM

Classification Result

Data Processing

Figure 1: ,e flow chart of the E-CNN-SVM and multisource algorithm.

Table 2: ,e steps of the E-CNN-SVM and multisource algorithm.

Step 1 ,e copy number variation data, DNA methylation data, RNA gene sequencing data, and RNA homologue sequencing data are
each reduced in dimension using the random forest algorithm

Step 2 Equal weighted fusion of these four types of data
Step 3 Combine the SMOTE algorithm with the TomekLink algorithm to clean and equalize the data
Step 4 Pretrain the E-CNN model and save the optimal model
Step 5 Feature extraction of data using the input layer to the fully connected layer of the E-CNN model
Step 6 Use the processed data to train the SVM model and use the trained model for classification
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(4) Place the newly synthesized new sample Xnew into
the original dataset

However, using SMOTE as an oversampling technique
to equalize the data can lead to the following problems: (1)
SMOTE only focuses on the category with a small number of
samples but does not take into account the relationship
between the two categories, which can lead to the new
composite samples crossing the category boundaries. (2),e
new samples are generated by merging the samples at the
original category boundary as the center, which will blur the
category boundary and reduce the quality of the data and
eventually lead to the classification model not being able to
calculate an appropriate hyperplane. In this paper, we use
TomekLinks, an undersampling method, to solve these
problems caused by the use of a single SMOTE. ,e idea of
the TomekLink algorithm is as follows: select some sample
pairs (Xi, Xj), where Xi is the category with a larger number
of samples and Xj is the category with a smaller number of

samples, and note that, the distance between the two samples
is d(Xi, Xj), if there is no Xk, satisfying
d(Xi, Xk)< d(Xi, Xj), then (Xi, Xj) is a pair of TomekLinks
pair. When performing data cleaning, both pairs are re-
moved from the sample data.

3.3. E-CNN

3.3.1. Introduction to CNN. A convolutional neural network
(CNN) is a feed-forward neural network that simulates the
way human nerves work and was designed by HUB et al.
CNN evolved from multilayer perceptrons (MLP for short).
Compared with MLPs, CNNs have features such as weight
sharing and local sampling. In recent years, CNN has been
used extensively in the fields of image, sound, and medicine.
,e core parts of the CNN network involved in this article
are described as follows:

(1) Convolutional Layer.,e convolution layer, the most
important part of the entire CNN, uses convolutional
kernels (also known as filters) to perform convolu-
tional calculations on the data, a process that in-
volves the extraction of features from the input data.
,e weights of each kernel do not change during the
convolutional computation, which is the weight-
sharing property of CNN. ,e result of the con-
volutional computation is then output to the next
layer through a nonlinear activation function. In this
paper, the ReLu activation function is used.

(2) Dropout Layer. During the training of a neural
network, overfitting can occur due to the depth of the
network or the small amount of data. ,e result is
locally optimal, but not for the whole. ,e result is
that the model has poor classification performance
and does not perform well in the classification task.
,e Dropout layer randomly discards some weights

Original Dataset

Sample Dataset 1 Sample Dataset 2 Sample Dataset 3 Sample Dataset n

Decision Tree 1 Decision Tree 2 Decision Tree 3 Decision Tree n

Majority Voting

Result

……

……

Figure 2: ,e random forest construction process.

Class 1 sample

Class 2 sample

Search for a sample
of its proximity

Figure 3: Schematic diagram of the SMOTE algorithm for con-
structing new nodes.
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in each training batch according to preset parame-
ters, which can effectively avoid overfitting and
improve the robustness of the model.

(3) Fully C onnected Layer. Each nerve in the fully
connected layer is connected to a neuron in the
previous layer, and in this way, the features output
from the previous layer are aggregated.

In this paper, a shallow convolutional neural network
was designed, which mainly consisted of an input layer,
two convolutional layers, two Dropout layers, and two
fully connected layers, taking into full consideration the
characteristics of the small number and high dimen-
sionality of the osteosarcoma gene data after equal weight
fusion. ,e CNNmodel designed in this paper is shown in
Figure 4(a).

3.3.2. Introduction to Squeeze-and-Excitation Network.
,e CNN algorithm has the advantages of weight sharing
and automatic feature extraction, but it uses convolutional
kernels to obtain only local perceptual fields and does not
take into account the correlation between the overall fea-
tures. ,e core module of SENet is the Squeeze-and-Exci-
tation (SE) module, which uses the degree of influence of a
feature on the result as a criterion to recalculate the weights
of different channel features to strengthen the effect of
features with high influence and weaken the effect of features
with low influence. ,is module is not a complete network
structure, but a module for processing data that can be
embedded in other network structures. ,e SE module al-
gorithm flow is as follows:

(1) Squeeze (Sequence): aggregates data within the same
channel to form a multidimensional statistic con-
taining only interchannel correlations. ,is is
achieved by global average pooling (GAP). For ex-
ample, the original data U has dimension H × W and
is compressed along its spatial dimension to give the
statistic Z ∈ Rc, by which the i-th element of the
compressed Zi can be obtained.

Zi � Fsq ui( 􏼁 �
1

H × W
􏽘

H

p�1
􏽐
W

q�1
ui(p, q), (4)

where ui(p, q) are the p row and q column elements
passed into the SE module.

(2) Excitation: the excitation process is achieved through
two fully connected layers. ,e role of the first fully
connected layer is to compress the vector from X

dimensional to X/C dimensional, followed by a call
to the ReLu activation function; the role of the
second fully connected layer is to restore the vector
to X dimensions, followed by a call to the Sigmoid
activation function, whose calculation process is
shown in the following equation:

s � Fex(z, W) � z(g(z, W)) � z W2δ W1z( 􏼁( 􏼁. (5)

,e sigmoid activation function is denoted as z(·),
the ReLu activation function expression is denoted as
δ(·), the parameters of the two fully connected layers
are denoted as W1 ∈ R(C/r)×C and W2 ∈ RC×(C/r), the
value of r is determined by the model performance
requirements and the computational complexity,
and the generated s are the weights of the channels.

(3) Scale: the weights S represent the importance of each
feature through the excitation process. ,e final
output Xnew is obtained by multiplying the weights S

and the unweighted data U after convolution, as
shown in equations (6) and (7).

Xc � Fscale uc, sc( 􏼁 � scuc, (6)

Xnew � X1new, X2new, . . . , Xinew, . . . , Xcnew􏼂 􏼃. (7)

After the SE module calculation, the weight relationship
between the channels after the CNN convolution calculation
can be obtained. By multiplying the unweighted data with
the weights, the performance of the features with high
importance is amplified and the performance of the un-
important features is suppressed. ,e result is a model that
can be effectively enhanced without adding much com-
puting power.

3.3.3. Introduction to the E-CNN Model. ,e main appli-
cation of SENet is in the field of image classification, where
the image data needs to be flattened before recalculating the
individual feature weights, for example by compressing the
original spatial dimension of H × W to 1 × 1 × C. ,e se-
quencing data of the osteosarcoma gene after equal-weight
fusion is itself flattened data, so there is no need to compress
the original data before performing the stimulation opera-
tion. Inspired by the SE module, an E-CNN neural network
model was designed to further improve the classification
performance of the model by considering the relationship
between each gene feature as a whole and efficiently
extracting features from the sequencing data. ,e E-CNN
neural network and CNN neural network are shown in
Figure 4.

3.4. SVM. Support Vector Machine (SVM) is a high-per-
formance supervised machine learning algorithmwith stable
classification performance, high interpretability, and gen-
eralization ability. ,e SVM works as follows: let the data set
be T, the hyperplane be M, and the minimum geometric
distance between T and M be r. When the value r is
maximum, then this hyperplane is the optimal hyperplane,
and the optimal hyperplane is used as the criterion for
classification.

Because of its good results in small sample binary
classification, the RBF kernel-based SVM is used as a
classifier in this paper. ,e parameter setting of the SVM
affects the heaviest classification performance, and the
penalty factor C directly affects the choice of the
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classification boundary.,e RBF kernel function is shown in
the following equation:

K x, xi( 􏼁 � e
− x− xi‖ ‖

2/2δ( 􏼁
. (8)

In equation (8), δ is the width of the RBF; ‖x − xi‖ is the
distance between the selected point and the centroid.

4. Analysis of Experimental Results

4.1. Experimental Environment. All experiments in this
article are run on a computer with Intel Xeon(R) CPU E5-
2640 v4@2.40GHz∗ 40 and 64-bit Linux operating system.
,e compilation software was PyCharm (PyCharm Com-
munity Edition 2020.2.2 x64).

4.2. Model Parameter Settings. ,e parameters of the
E-CNN-SVM model proposed in this paper are shown in
Table 3.

4.3. Evaluation Indicators. In the binary classification
problem, as shown in Table 4, if the original category of
data is death, the number of data correctly predicted to be
in the category of death is labeled TP and the number of

data incorrectly predicted to be in the category of survival is
denoted FN; if the original category of data is survival, the
number of data correctly predicted to be in the category of
survival is denoted TN and the number of data incorrectly
predicted to be in the category of death is denoted FP. To
show the advantages of the algorithm in this paper, it will be
compared with other algorithms in terms of accuracy
(ACC), recall (Recall), F1 score(F1), and variance
(variance).

Accuracy is a measure of the classifier’s classification
performance; the higher the accuracy, the better the clas-
sification performance of the classifier, and is calculated as
shown in the following equation:

ACC �
TP + TN

FP + FN + FP + FN
. (9)

,e recall is how many positive samples are correctly
identified and shows the find-all rate of the classifier. ,e
higher the recall, the more accurately the classifier identifies
positive example samples, calculated as shown in the fol-
lowing equation:

Recall �
TP

TP + FN
. (10)

Convolution Layer_1
filters:128 kernel_size=1

Gene data after equal weight fusion

Relu

Dropout
Rate:0.3

Convolution Layer_2
filters:64 kernel_size=1

Relu

Dropout
Rate:0.3

FullyConnected Layer
units=:2

Classification Result

(a)

Convolution Layer_1
filters:128 kernel_size=1

Gene data after equal weight fusion

Relu

Dropout
Rate:0.3

Convolution Layer_2
filters:64 kernel_size=1

Relu

Dropout
Rate:0.3

Fully Connected Layer
units=:2

Classification Result

Extraction (C/r)

C

Channel Weight

Output after channel weight 
scaling

Scaled

(b)

Figure 4: ,e schematic diagram of CNN & E-CNN. (a) ,e schematic diagram of the CNN model. (b) ,e schematic diagram of the
E-CNN model.
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,e precision rate is the number of samples correctly
detected as dead as a proportion of all samples predicted as
dead by the model. ,e F1 score takes into account both the
precision and recall of the classifier, with the precision rate
calculated as shown in equation (11) and the F1 score cal-
culated as shown in equation (12).

Precision �
TP

TP + FP
, (11)

F1 � 2 ×
Precision × Recall
Precision + Recall

. (12)

,e variance represents the stability of the model; a
smaller value of variance means a more stable model;
conversely, a less stable model. ,e variance calculation
formula is shown in the following equation:

Variance �
1
n

􏽘

n

i�1
x − xi( 􏼁

2
. (13)

In equation (13), n is the number of experiments, x is the
average of the accuracy of the n rounds of experiments, and
xi is the accuracy of the i-th round of experiments.

4.4. Comparison of Evaluation Results. All experiments
performed in this paper used a subset of the same osteo-
sarcoma gene sequencing dataset, and the data were pro-
cessed consistently. Firstly, the random forest algorithm is
used for feature selection to reduce the dimensionality of the
data, and secondly, the SMOTE algorithm is combined with
the TomekLink algorithm to equalize the amount of data
between the different categories and to clean the edge data. A
random selection of 20% of the data was used as the test set,
followed by a five-fold cross-validation approach using the
remaining data, with four of the data rotated as the training
set and one as the validation set, to avoid overfitting during
the training process.

To validate the performance of the proposed E-CNN-
SVM multisource data fusion-based survival status classi-
fication model for osteosarcoma patients in this paper, the
experiments are designed from the following two perspec-
tives as well as comparative experiments: (1) under the same
algorithm, the classification results of the model trained with
single-source data are compared with those of the model
trained with multisource fused data. (2) ,e algorithm
adopted in this paper is compared with the rest of the al-
gorithms under the condition that the models are all trained
using multisource fused data.

4.4.1. Data Source Comparison Experiments.
E-CNN-SVM, E-CNN, and CNN were used as the experi-
mental models for this subsection. First, the models were
trained and tested using four single sources of data: copy
number variation data, DNA methylation data, RNA gene
sequencing data, and RNA homologous isoform sequencing
data, respectively. Secondly, the data fused with equal
weights from these 4 data were used for training and testing.
,e test results of the same model trained with different
source data were compared. ,e experimental results of the
E-CNN-SVM model are shown in Table 5, the experimental
results of the E-CNN model are shown in Table 6, and the
experimental results of the CNNmodel are shown in Table 7.

From the experimental results in Tables 5–7, it can be
seen that the multi-source fusion data integrated copy
number variation data, DNA methylation data, and RNA
gene sequencing data related to osteosarcoma, resulting in
an improvement of the individual models in all directions.
,e accuracy, recall, F1 score, and variance of the same
model after training with multiple sources of data were all
better than those after training with single-source data.

4.4.2. Model Comparison Experiments. ,e results of the
data source comparison experiments in the previous
section have shown that the ability of the models trained
using multiple sources of fused data is better than that of
the models trained using single-source data. ,erefore, in
the model comparison experiments, the models were
trained using multisource fused data. To illustrate the
effectiveness and feasibility of the E-CNN-SVM model
used in this paper, it was chosen to be compared with the
existing paper models E-CNN model, CNN model, SVM

Table 3: ,e E-CNN-SVM model parameters.

CNN
First convolutional layer Filters: 128 kernel_size: 1
First dropout layer Rate: 0.3
Second convolutional layer Filters: 64 kernel_size: 1
Second dropout layer Rate: 0.3
Motivation module Compression ratio: 4
Fully connected layer Units: 2

SVM
Penalty factor 0.9
Cache_size 3000
Kernel rbf

Table 4: Confusion matrix.

Patient survival status Classification
predicted as death

Category prediction
for survival

Death TP FN
Survival FP TN
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model, XGBoost model, and CNN-LSTM model. ,e
experimental results are shown in Table 8.

From the experimental data in Table 8, we can learn that
the E-CNN-SVM model proposed in this paper obtains a
better result in terms of accuracy, recall, F1 score, and
variance. Its performance is much higher than the com-
parison model in this paper, showing the high perfor-
mance, robustness, and stability of the E-CNN-SVM
model rejected in this paper.

5. Conclusion

(1) An E-CNN-SVM classification algorithm based on
multisource feature homofusion is proposed. ,e
copy number abnormal data, DNAmethylation data,
RNA gene sequencing data, and RNA homologue
sequencing data of osteosarcoma patients were
weighted and fused to predict the survival status of
patients for classification. ,e accuracy, recall, and
F1 score of the predictive classification reached
100%, which is significantly more accurate than
other methods for predicting the survival status of

osteosarcoma patients and is extremely important
for achieving precise treatment of osteosarcoma
patients.

(2) ,e features of each channel are weighted by the
calculation of the stimulus module before being fed
into the fully connected layer of the CNN model,
which can significantly improve the feature extrac-
tion capability of the CNN model.

(3) ,e equal-weight fused data is again subjected to
deeper feature extraction with the parameter-opti-
mized E-CNN model and then fed into SVM for
classification, which has higher accuracy than simply
using E-CNN and SVM.

(4) Although the algorithm in this paper exhibits strong
properties, its generalization capability cannot be
validated due to the relatively small dataset, which is
a pain point in the whole field of medical analysis.
,e dataset will certainly be expanded from different
aspects in the future to enhance the generalization
ability of the model.

Table 5: E-CNN-SVM experimental data.

Number Model Data type Accuracy (%) Recall (%) F1 score (%) Variance
1 E-CNN-SVM Multisource 100 100 100 0
2 E-CNN-SVM Copy number variation 100 100 100 0
3 E-CNN-SVM DNA methylation 100 100 100 0
4 E-CNN-SVM RNA-seq-gene 100 100 100 0
5 E-CNN-SVM RNA-seq-Ios 92 75 86 0

Table 6: E-CNN experimental data.

Number Model Data type Accuracy (%) Recall rate (%) F1 score (%) Variance
1 E-CNN Multisource 97 97 96 0.0015
2 E-CNN Copy number variation 79 69 69 0.0036
3 E-CNN DNA methylation 86 76 77 0.0031
4 E-CNN RNA-seq-gene 82 71 78 0.0105
5 E-CNN RNA-seq-Ios 88 88 84 0.0012

Table 7: CNN experimental data.

Number Model Data type Accuracy (%) Recall rate (%) F1 score (%) Variance
1 CNN Multisource 86 97 81 0.0031
2 CNN Copy number variation 75 69 66 0.0036
3 CNN DNA methylation 80 74 74 0.0041
4 CNN RNA-seq-gene 79 71 73 0.0036
5 CNN RNA-seq-Ios 83 75 80 0.0054

Table 8: Model comparison experimental data.

Number Model Data type Accuracy (%) Recall rate (%) F1 score (%) Variance
1 E-CNN-SVM Multisource 100 100 100 0.0000
2 E-CNN Multisource 97 97 96 0.0015
3 CNN Multisource 86 97 81 0.0031
4 SVM Multisource 76 35 51 0.0081
5 XGBoost Multisource 76 66 64 0.0065
6 CNN-LSTM Multisource 59 0 0 0.0000
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