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Abstract

How does the organization of phenotypes relate to their propensity to vary? How do evolutionary changes in this
organization affect large-scale phenotypic evolution? Over the last decade, studies of morphological integration and
modularity have renewed our understanding of the organizational and variational properties of complex phenotypes. Much
effort has been made to unravel the connections among the genetic, developmental, and functional contexts leading to
differential integration among morphological traits and individuation of variational modules. Yet, their macroevolutionary
consequences on the dynamics of morphological disparity–the large-scale variety of organismal designs–are still largely
unknown. Here, I investigate the relationship between morphological integration and morphological disparity throughout
the entire evolutionary history of crinoids (echinoderms). Quantitative analyses of interspecific patterns of variation and
covariation among characters describing the stem, cup, arm, and tegmen of the crinoid body do not show any significant
concordance between the temporal trajectories of disparity and overall integration. Nevertheless, the results reveal marked
differences in the patterns of integration for Palaeozoic and post-Palaeozoic crinoids. Post-Palaeozoic crinoids have a higher
degree of integration and occupy a different region of the space of integration patterns, corresponding to more
heterogeneously structured matrices of correlation among traits. Particularly, increased covariation is observed between
subsets of characters from the dorsal cup and from the arms. These analyses show that morphological disparity is not
dependent on the overall degree of evolutionary integration but rather on the way integration is distributed among traits.
Hence, temporal changes in disparity dynamics are likely constrained by reorganizations of the modularity of the crinoid
morphology and not by changes in the variability of individual traits. The differences in integration patterns explain the
more stereotyped morphologies of post-Palaeozoic crinoids and, from a broader macroevolutionary perspective, call for a
greater attention to the distributional heterogeneities of constraints in morphospace.
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Introduction

Heterogeneous patterning of morphospaces (quantitative state

space representations of taxa relative to an underlying set of

possibilities for morphological variation) has been frequently

documented in clade-wide temporal studies, and is now widely

acknowledged as a prominent feature of phenotypic macroevolu-

tion [1–7]. These heterogeneities are expressed in the spread and

spacing of taxa in morphospace, as revealed by statistical measures

of morphological disparity [8,9]. Morphospace and disparity

patterns may variously be the expression of functional factors,

developmental constraints, historical contingency and/or stochas-

ticity influencing the waxing and waning of taxa over the

evolutionary dynamics of clades [10].

Although morphological disparity analyses have been under-

taken primarily as a means to globally characterize patterns of

stability and change of realized morphospace during the long-term

history of clades (the magnitude of disparity), disparity arguably

also has an underlying, non-trivial structure. This structure

potentially reflects aspects of the hierarchical organization of

phenotypes into quasi-independent units of evolutionary transfor-

mation, i.e., evolutionary modules [11–14]. This near-decompos-

ability of morphological phenotypes, as can be observed or

inferred when quantifying morphological changes within evolving

lineages, underlines patterns of differential integration within and

among suites of phenotypic traits influenced by pleiotropic effects,

developmental pathways and functional factors [15,16].

In a macroevolutionary context, how phenotypic integration

and modularity may actually be related to morphological disparity

is an important but still largely unexplored question [17,18]. For

instance, might changes in morphological disparity characteristi-

cally result from the interplay of parcellation and integration of

phenotypic organization (decrease or loss of correlation within

primarily integrated set of traits leading to increased modularity

and vice-versa)? Or might they result instead from intrinsic

changes in the variational potential of a relatively constant number

of modules? When are integration and disparity likely to correlate?

Analogously, might disparity be operationally used as a meaning-

ful proxy for modularity?
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Here, I address some of these questions by quantifying the

temporal trajectories of clade-wide measures of morphological

integration in the Class Crinoidea (Echinodermata) over the

Phanerozoic. The evolutionary history of crinoids is marked by

two distinct radiations, occurring firstly in the early Palaeozoic

(mainly Ordovician, ,500–435 Myr ago) and secondly in the

Triassic-Early Jurassic, as part of the recovery from the end-

Permian mass extinction (,251 Myr ago). Both radiations are

characterized by rapid morphological diversifications at relatively

low taxonomic diversity. Nevertheless, Foote [19] showed that

post-Palaeozoic crinoids were morphologically less disparate than

their Palaeozoic counterparts and also occupied a different, non-

overlapping region of the morphospace. This distinct and more

limited array of morphological designs perhaps suggests a different

set of ecological opportunities [20] or internal constraints on the

evolvability of crinoids. This case study, spanning more than 400

millions years of morphological evolution, enables one to portray

macroevolutionary patterns of morphological integration and to

contrast them with disparity profiles.

Given the temporal scale, the taxonomic level and the degree of

morphological resolution, the temporal changes in the overall

degree of integration do not focus on patterns comparable to those

that are generally described at low taxonomic levels and

concerned with small-scale aspects of organismal organization

and variation. Rather, the evolutionary dynamics of integration

quantified here is more closely related to the dimensionality of the

crinoid morphospace itself, reflecting the highest levels of the

hierarchical embedding of evolutionary modules within the crinoid

body plan.

Materials and Methods

The morphological dataset used in the present study has been

compiled and regularly augmented by Foote [19,21–25]. Its

quality and adequacy for documenting evolutionary patterns in

crinoids have been evaluated through numerous sensitivity

analyses testing for potential biases induced by character selection

and weighting, missing data, taxon sampling protocols, unequal

time interval duration, morphospace dimensionality and disparity

measures [19,21]. The use of a different character-coding scheme

applied to early Palaeozoic crinoids has also been tested and it

provided results consistent with previous accounts [26]. The

dataset includes 1032 species representing one species per genus

per time interval. Each species is described by 90 discrete

morphological characters offering a comprehensive coverage of

the stem, cup, arm, and tegmen parts of the crinoid body (14, 40,

28, and 8 characters, respectively). See Foote [19] for further

details on character definition and coding (data available in

Appendix S1).

I followed two complementary approaches in order to allow the

use of different measures of morphological disparity and integra-

tion. The first approach treats discrete characters directly and is

hereafter referred to as the discrete character space approach; the

second approach consists in extracting a dissimilarity matrix from

the discrete character space using the mean character difference as

the measure of morphological dissimilarity between two species

[27] and then carrying out a principal coordinate analysis (PCoA)

of this dissimilarity matrix. The first ten principal coordinates

provide a fair representation of among-species dissimilarities and

define the principal coordinate space explored in subsequent

analyses.

With these two approaches, morphological disparity is mea-

sured as the mean pairwise dissimilarity and as the sum of

univariate variances respectively, which are both standard indices

of disparity relatively insensitive to sample size [28]. For discrete

characters, I measured integration as the relative mean mutual

compatibility. Two characters are said to be compatible if their

state combinations do not necessarily imply homoplasy (e.g., for

binary characters, not all four possible character state combina-

tions 00, 01, 10 and 11 are found, so they can be mapped onto a

tree without requiring convergence or reversal) [29]. In phyloge-

netics, compatibility analysis can be used to avoid overweighted

correlated suites when selecting characters. For each time interval,

I constructed a matrix of mutual compatibility, where the mutual

compatibility of two characters i and j is defined as the total

number of characters compatible with both i and j [30]. I then

calculated the mean mutual compatibility and divided it by the

maximum possible number of mutual compatibilities (i.e., total

number of characters minus two). Hence, this measure of

integration ranges from zero to one, respectively corresponding

to low and high levels of correlation among characters.

For the continuous variables obtained via PCoA, I used the

relative standard deviation of the eigenvalues of the correlation

matrix proposed by Pavlicev et al [31] as a measure of

morphological integration. This index also ranges from zero to

one. If morphological integration is important, only a few

dimensions are necessary to summarize most of the observed

variation and the standard deviation of eigenvalues will be high

because of the marked differences among them. Conversely, if

morphological traits are weakly integrated, the standard deviation

will be low because all eigenvalues will be roughly similar. These

integration indices are therefore unrelated to the magnitude of

disparity but instead describe its structure, that is, the dimension-

ality of the distribution of taxa in the morphospace.

The temporal partitioning of the morphospace into successive

time intervals often leads to the extraction of matrices with more

variables than individuals from the total morphological dataset.

This ‘‘small n, large p’’ problem makes the sample correlation

matrix an unreliable estimator of the population correlation

matrix. Indeed, when the number of individuals becomes too small

compared to the number of variables, the sample correlation

matrix loses its full-rank and positive definiteness, thereby biasing

the distribution of its eigenvalues and, in the present context, the

measures of morphological integration. In addition, it has been

shown analytically that the lower bound of the range of the

standard deviation of eigenvalues for finite sample correlation

matrices varies as (1/n)1/2 [32]. If not accounted for, this sample

size effect can thus mislead the interpretation of temporal changes

in integration, because the range of the index will vary as a

function of taxonomic diversity. In order to circumvent these

problems, I derived estimates of correlation matrices from a

shrinkage procedure using the R package corpcor [33]. This

approach allows one to obtain accurate, well-conditioned, and

positive definite estimates of correlation matrices even for small

sample sizes [34]. Based on simulations of random matrices of

uncorrelated variables, I found that it also maintains the lower

bound of Pavlicev et al.’s index close to zero down to sample sizes

of about 15. Therefore, I chose to discard six time intervals with

sample sizes lower than 15 to avoid any spurious estimates of

integration: Early Ordovician, Late Permian, Triassic (two

intervals) and Cenozoic (two intervals). The remaining time

intervals have an average p/n ratio of 2.73 with a maximum of 6

(second time interval of the Cretaceous).

Comparison between morphological disparity and integration

cannot be made directly because of the potential effect of trends

and serial correlation inherent to most time series. To circumvent

these effects, I used the generalized differencing approach [35],

which consists of first detrending the time series by regressing their

Morphological Integration and Disparity
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values against numerical time and then correcting for serial

correlation by taking first differences (differences between adjacent

values) modulated by the serial correlation coefficient (lag-1

coefficient). Correlation analyses between integration and disparity

are performed on their generalized differences.

Finally, to trace the evolution of patterns of integration in

greater details, I also used the metric recently proposed by

Mitteroecker and Bookstein [36], the square root of the summed

squared log relative eigenvalues, which provides a measure of

distance between two covariance (or correlation) matrices. I

computed all pairwise distances between the shrinkage estimates of

correlation matrices corresponding to each time interval and then

performed a principal coordinate analysis of the distance matrix

obtained. This method enables to visualize the temporal trajectory

of patterns of integration in the space of correlation matrices.

Assessing patterns of correlation and compatibility among

characters can be hindered by the fact that species are not

independent entities but parts of a hierarchically structured

phylogeny resulting from branching evolution [37]. Unfortunately,

in the absence of detailed phylogenetic hypothesis, it is not possible

to correct for the non-independence of species by applying

phylogenetic comparative methods. Nevertheless, in order to

evaluate the potential effect of phylogenetic autocorrelation on

estimates of integration, I applied the permutation-compatibility

Figure 1. The temporal trajectories of taxonomic diversity, morphological disparity and morphological integration of Phanerozoic
crinoids. (A) Number of genera known and number of species sampled per genus per stratigraphic interval. (B) Disparity measured as the sum of
univariate variances; integration measured as the relative standard deviation of the eigenvalues of the correlation matrix. (C) Disparity measured as
the mean character dissimilarity; integration measured as mean mutual compatibility. Error bars are bootstrapped standard errors. Because low
sample sizes prevent from deriving reliable estimates of correlation matrices (see text), integration values are not presented for Early Ordovician, Late
Permian, Triassic, and Cenozoic data. Whether based on the analysis of discrete or continuous variables, variations in the overall degree of integration
do not appear to be associated with concomitant changes in disparity.
doi:10.1371/journal.pone.0063913.g001

Morphological Integration and Disparity
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test for hierarchic structure in discrete character matrix [38]. This

test compares the observed number of compatible character pairs

with the null distribution obtained by permuting the original

character matrix. If the observed compatibility is within the range

of permuted matrices, then there is no (or little) phylogenetic signal

in the data, and the observed patterns of integration are more

likely to reflect secondary signals of correlated character changes.

Even though characters provide ecological and functional

information about crinoid morphology, some also enable taxo-

nomic distinctions within and among higher taxa [21]. To further

ensure the robustness of the conclusions, all the above analyses

have been run for the total morphological dataset, but also on a

subset of 27 characters that are not taxonomically relevant (i.e.,

not used for diagnosing subclasses and orders; characters 1–2, 4–

15, 21, 30, 47–48, 55, 57, 60, 62, 64, 69–71, 77), and should

therefore not bear a strong phylogenetic signal. All statistical

analyses were programmed and carried out in R (functions

available in Appendix S2).

Results

Figure 1 provides the curves of taxonomic diversity, morpho-

logical disparity and morphological integration for crinoids over

the Phanerozoic, so as to examine the relative behaviours of these

metrics, each emphasizing different aspects of biodiversity

dynamics. Two complementary approaches are used in order to

draw estimates of disparity and integration from both continuous

and discrete character variables (Fig. 1A and 1B). As reported

previously [19], morphological disparity shows marked variations

over the period studied, most of them being decoupled from the

rises and drops in taxonomic diversity. Contrastingly, indices of

morphological integration measured as the relative standard

deviation of eigenvalues and as the relative mean mutual

compatibility appear to be fairly stable. Most increases and

decreases in the overall degree of integration are not significant

and do not appear associated with similar changes in the level of

disparity. However, post-Palaeozoic crinoids on average display a

higher degree of morphological integration than Palaeozoic

crinoids for both measures of integration (P,0.01 in both cases

with a Mann-Whitney U test).

I further investigate the relationships between degree of

correlation among traits and level of morphological variety by

calculating the correlation between the generalized differences of

integration and disparity estimates (Fig. 2). Only the correlation

between the mean mutual compatibility and the mean pairwise

dissimilarity is significant (Spearmann’s r = 20.449, P = 0.042;

Fig. 2A). Nevertheless, a permutation-compatibility test [38]

detects a significant hierarchic structure in the dataset (as a whole

and within individual time intervals), suggesting a phylogenetic

signal potentially biasing estimates of integration (phylogenetic

autocorrelation). I reran the same analysis on a subset of 27

characters of putatively low phylogenetic significance ([21] and see

methods) and for which the permutation-compatibility test does

not reveal significant underlying phylogenetic signal (Fig. 2B).

Whether based on continuous or discrete character approaches,

no significant correlation is observed between changes in disparity

and integration (time series available in Appendix S3).

Finally, I computed the pairwise distances among the trait

correlation matrices associated with each geologic time interval so

as to ordinate and visualize patterns of integration within the space

of correlation matrices (Fig. 3). The temporal trajectory of

correlation matrices follows a non-random pathway in this space,

reflecting progressive but non-regular changes in patterns of

integration across the Phanerozoic. The most striking feature of

the distribution of these integration patterns is the clear separation

of Palaeozoic and post-Palaeozoic patterns along the first principal

coordinate of the space. The location of most Palaeozoic patterns

in the vicinity of the identity matrix is indicative of homogeneously

structured correlation matrices (i.e., all off-diagonal elements are of

comparable magnitude), whereas post-Palaeozoic matrices tend to

be more heterogeneously structured (unequal values of off-

diagonal elements delineating blocks of variables; Fig. 4). The

average distance among post-Palaeozoic patterns is significantly

greater than that of Palaeozoic patterns (P,0.001; Mann-Whitney

U test) despite the roughly equivalent duration separating

successive intervals. This suggests greater magnitudes of transition

between successive patterns of integration in post-Palaeozoic

Figure 2. Correlation between temporal changes in disparity
and integration. Spearmann’s rank correlation between level of
morphological disparity and degree of morphological integration. (A)
Generalized differences of morphological integration versus disparity
for the PCoA-based approach (black circles; r = 20.118, P = 0.609) and
the discrete character approach (open circles; r = 20.449, P = 0.042)
when all characters are considered. (B) Generalized differences of
morphological integration versus disparity for the PCoA-based ap-
proach (black circles; r = 20.340, P = 0.131) and the discrete character
approach (open circles; r = 0.118, P = 0.609) when only taxonomically
non-significant characters are considered (see text). In general, the
amount of morphological disparity displayed by crinoids is not
significantly correlated with the overall degree of integration among
morphological traits.
doi:10.1371/journal.pone.0063913.g002
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crinoids. Similar results are obtained when the space of correlation

matrices is built from the set of taxonomically non-significant

characters or from a drastic culling of data preserving only

characters with less than five percent of missing data.

Discussion

The present work examined large-scale patterns of evolutionary

integration among morphological traits in crinoids and tested if

and how changes in these patterns were associated with

concomitant changes in the level of morphological disparity

expressed by the clade. The analyses reveal relatively stable

measures of the overall degree of integration despite marked

temporal variations in taxonomic diversity and morphological

disparity. Correlation analyses accounting for and limiting the

effect of phylogenetic autocorrelation did not detect a significant

one-to-one relationship between integration and disparity. Never-

theless, significant differences in the degree and pattern of

integration are observed between Palaeozoic and post-Palaeozoic

crinoids. Post-Palaeozoic crinoids have a higher overall degree of

Figure 3. The temporal trajectory of integration patterns of Phanerozoic crinoids. The plot shows the first three principal coordinates of
the space of correlation matrices. Each point corresponds to the correlation matrix of crinoids within a given geologic time interval (The correlation
between pairwise Euclidean distances in the space of the first three principal coordinates and the actual distances between correlation matrices is
0.85). The grey line represents the temporal trajectory of correlation matrices from the Ordovician (O2) to the end of the Cretaceous (K4), and the
asterisk gives the location of the identity matrix (i.e., a matrix with no integration among traits). Dotted lines are 68% confidence ellipses based on
bootstrap resampling. Labels: O2 = Llanvirnian to lower Caradocian, O3 = remainder of Ordovician, LS = Lower Silurian, MS = Middle Silurian,
US = Upper Silurian, LD = Lower Devonian, MD = Middle Devonian, UD = Upper Devonian, T = Tournaisian (Carboniferous, Mississippian),
Sr = Serpukhovian (Carboniferous, Mississippian), B = Bashkirian (Carboniferous, Pennsylvanian), M = Moscovian (Carboniferous, Pennsylvanian),
St = Stephanian (Carboniferous, Pennsylvanian), P1 = Asselian-Sakmarian (Permian), P2 = Artinskian-Kungurian (Permian), LJ = Lower Jurassic,
MJ = Middle Jurassic, UJ = Upper Jurassic, K1 = Neocomian (Cretaceous), K2 = Barremian-Aptian (Cretaceous), K3 = Albian-Turonian (Cretaceous),
K4 = Senonian (Cretaceous). The first principal coordinate separates Palaeozoic from post-Palaeozoic forms. The distribution of most Palaeozoic
correlation matrices near the identity matrix emphasizes their homogeneous structure (roughly similar pairwise correlation among traits), whereas
post-Palaeozoic correlation matrices display individuated blocks of correlated traits.
doi:10.1371/journal.pone.0063913.g003

Morphological Integration and Disparity
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integration and occupy a different region of the space of

correlation matrices. Their location indicates heterogeneously

structured correlation matrices with larger blocks of correlated

traits, which could explain the less disparate and more stereotyped

post-Palaeozoic morphologies reported previously [19].

Hence, if the amount of morphological disparity does not

appear to be conditional upon any given degree of overall

integration, the results suggest that disparity is related to the

modular nature of the correlation matrix, that is, to its pattern of

organization into evolutionarily quasi-independent blocks of

integrated traits. With regards to the two competing hypotheses

presented in the introduction, the temporal trajectory of morpho-

logical disparity in crinoids would then be tied to changes in the

pattern of correlation among traits rather than to changes in their

individual variability.

In a study comparing the disparity levels of ecological and non-

ecological (developmental) characters before and after mass

extinctions, Ciampaglio [20] concluded that crinoid disparity

patterns were mainly driven by the increasing structuring of

ecological guilds rather than by developmental constraints.

Nevertheless, his model of developmental constraints was focusing

on upper limits for the level of disparity and not on biases in the

spatial deployment of taxa in morphospace. Yet, developmental

integration of traits and their dedication to specific functions

generate evolutionary patterns of association and covariation

among them, which shape the distribution of taxa in morphospace

and the potential for evolutionary change [39]. The propensity of

modular phenotypes to vary depends on the match between their

developmental and functional modularity (i.e., the alignment of

the genotype-phenotype map with the phenotype-fitness map;

[40]). Specifically, if the pattern of developmental integration

among traits coincides with their association to perform adaptive

functions, evolvability is enhanced. Post-Palaeozoic crinoids

derived from one family of Palaeozoic cladids [41] and their

evolution has been characterized by an increased frequency of

traits required for passive and active motility [42]. This has been

interpreted as a response to increased interactions with benthic

predators such as cidaroid sea-urchins [42,43]. It is possible that

these changes in predatory pressures may be responsible for the

redeployment of traits into novel or modified functional complexes

(increased aggregation of traits here). Then, the differences in

evolutionary modularity documented between Palaeozoic and

post-Palaeozoic crinoids potentially indicate a modification of the

match between developmental and functional integration and the

restricted range for trait covariation could explain the lower

propensity to vary of post-Palaeozoic crinoids. Nevertheless, it is

important to stress that current statistical indices of disparity are

measures of observed macroevolutionary variation and therefore

do not necessarily reflect the full potential to vary.

In summary, morphological disparity should be seen as more

than a mere summary statistic of the amount of morphospace

occupied. On the one hand, disparity reflects the building-up of

the genealogical hierarchy over long timescales, with for instance

the changing taxonomic composition of clades and the signature of

mass and background extinctions. On the other hand, the

behaviour of morphological disparity in face of these macroevo-

lutionary phenomena is tied to the dimensionality of phenotypic

variation constrained by the apportionment of variability among

units of evolutionary transformation. Hence, the distribution and

dynamics of taxa in morphospace should provide insights into the

architecture of phenotypes and the constraints on their evolva-

bility. This challenges the frequent conceptualization of morpho-

space as a homogeneous state-space. Such an interpretation of

morphospace is unlikely to hold at the level of macroevolutionary

phenotypic variation where development imposes a strong

structure on the evolutionary accessibility of phenotypes (e.g.

[44–46]). To different locations in morphospace are attached

different sets of constraints and opportunities for phenotypic

change in terms of probability, magnitude and directionality of

evolutionary transitions. The morphospace is said to be structured

[47], that is, patterns of phenotypic change are constrained by the

location in the morphospace. This can be critical when comparing

and interpreting the evolutionary dynamics of lineages originating

in different regions of the morphospace. It does not mean that

natural selection does not play any role at this scale, but rather that

selection plays with a non-randomly distributed set of develop-

mentally possible options in the vicinity of the evolving lineage

[1,48]. Further work is required to assess the relative role of

selective pressures and developmental constraints in shaping

Figure 4. Matrices of mutual compatibility for Palaeozoic and
post-Palaeozoic crinoids. These two matrices exemplify the
differences in patterns of integration between (A) Palaeozoic (Middle
Devonian, MD) and (B) post-Palaeozoic crinoids (Upper-Jurassic, UJ). The
choice for these two time intervals has been driven by their location in
the space of correlation matrix (separation along PCo1; see Figure 3)
and the comparability of their sets of applicable characters (number
and distribution over the whole character matrix). The gray-scale
correlates with the strength of mutual compatibility (,correlation): the
darker the gray, the higher the compatibility. The comparison of these
two matrices shows the overall stronger integration among characters
within the post-Palaeozoic matrix and its heterogeneous structure with
larger blocks of compatible characters (e.g., stem and dorsal cup
characters, arm and dorsal cup characters).
doi:10.1371/journal.pone.0063913.g004

Morphological Integration and Disparity
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patterns of diversification in the crinoid morphospace, for instance

by conducting similar analyses at different temporal scales and

taxonomic levels, in combination with an improved knowledge of

crinoid development (e.g., [49,50]). Even if developmental data

are not directly obtainable for some groups and might imply

hypotheses from comparisons with extant relatives, a greater

attention to the organizational and variational properties of

morphological phenotypes is necessary when constructing, explor-

ing, and interpreting morphospaces. This is an important step to

refine our understanding of the evolutionary history of higher taxa

and of the processes driving macroevolutionary change.

Supporting Information

Appendix S1 Crinoid data (Foote 1999). The file includes

details of the stratigraphic intervals used, a description of the 90

discrete morphological characters, and the coding of these

characters for the crinoid species retained in the analyses. See

M. Foote, 1999. Paleobiology Memoir 1:1–115 (supplement to

Paleobiology vol. 25, number 2) for additional details (doi:

10.1666/0094-8373(1999)25[1:MDITER]2.0.CO;2.).

(TXT)

Appendix S2 R functions. The file includes the R functions for

running disparity and integration analyses as described in the main

text. Crinoid data are available in Appendix S1, R can be

downloaded from http://www.r-project.org/. The shrinkage

estimators of correlation matrices were obtained using the R

package corpcor (http://strimmerlab.org/software/corpcor/). For

additional details or questions: s.gerber@bath.ac.uk.

(DOCX)

Appendix S3 Time series for morphological disparity
and integration. The file provides the numerical values of the

temporal trajectories of disparity and integration throughout the

Phanerozoic as displayed in Figure 1. It also includes the results

when only the subset of taxonomically non-significant characters is

used (see main text).

(XLS)
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