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A B S T R A C T   

Given that agriculture is both a carbon source and sink, the sustainability goals of carbon peaking 
and neutrality place high demands on the green and low-carbon agricultural development in 
China, and the exploration of a realistic path for a sustainable agricultural development is ur-
gently needed. Under the above ‘dual carbon’ target, this study focused on the key issue of how to 
improve China’s agricultural eco-efficiency (AEE) and constructed an innovative AEE indicator 
system that can reflect carbon constraint and coordinated agricultural economic development, 
resource use and ecological environment. The super-efficient slack-based measured Data Envel-
opment Analysis (SBM-DEA) method, which considers undesirable outputs, was applied to re- 
measure the AEE of 30 provinces and cities in China from 2001 to 2020, and its spatial and 
temporal evolution was analysed in conjunction with kernel density estimation. The Tobit 
regression model was used to explore various influencing factors by region. The results show that 
the AEE re-measurements, which take into account the ’dual carbon’ requirement, are signifi-
cantly better than the traditional AEE. From 2001 to 2020, China had an overall V-shaped 
fluctuation curve AEE, with a small decline and several inter-annual fluctuations, and exhibited a 
large potential to rise. China’s AEE showed a spatially uneven regional development at different 
stages of distribution and evident multi-polar differentiation. Inter-provincial differences were 
observed in China’s AEE, and the vicious circle of low-level green and low-carbon agricultural 
development was difficult to break. Urbanisation had a significant positive effect on national and 
eastern AEE but a significant negative effect on central AEE. The agricultural carbon offset rate 
had a significant effect on AEE nationally and in the three regions. Thus, the introduction of ‘dual 
carbon’ target effectively drove the development of AEE. Agricultural industry structure inhibited 
the improvement of AEE nationally and in the western region. Agricultural economic develop-
ment hindered the national AEE improvement but promoted that of the central region, where 
China showed an environment Kuznets curve. Hopefully, this study can provide data support and 
theoretical reference for the green and low-carbon agricultural development and help achieve the 
‘dual carbon’ target.   
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1. Introduction 

Since the 21st century, China’s comprehensive agricultural production capacity has increased significantly, with grain production 
achieving ‘eighteen consecutive bumper crops’ from 2003 to 2021. In addition, the excessive use of various resource factors in 
agricultural production has caused a great deal of agricultural surface pollution, such as those of soil, water, and greenhouse gas (GHG) 
in the form of CO2 [1,2]. The country has reached ‘red-level’ agro-ecological environment and ‘bottom-line’ agricultural products, 
issues that are gradually becoming a ‘short board’ for China’s economic development. As agricultural pollution increases, and in-
ternational calls for sustainable development rise, the promotion of ecological development in agriculture is gaining increasing 
attention and Chinese agriculture is gradually coming to a critical point in its return to its essential functions, transformation and 
upgrading. 

The proposal of ‘dual carbon’ goal is a new opportunity to achieve sustainable development in agriculture. At the 75th session of the 
United Nations General Assembly in 2020, President Xi Jinping, on behalf of the Chinese government, announced the aims to achieve 
carbon peaking and neutrality by 2030 and 2060 (‘dual carbon’ target), respectively. In September 2021, the Chinese government 
issued the ‘Opinions of the State Council of the Central Committee of the Communist Party of China on the Complete and Accurate 
Implementation of the New Development Concept to Do a Good Job in Carbon Dumping and Carbon Neutral Work’ to accelerate green 
development and promote carbon sequestration and efficiency in agriculture. In June 2022, the Implementation Programme for 
Emission Reduction and Carbon Sequestration in Agriculture and Rural Areas, jointly issued by the Ministry of Agriculture and Rural 
Affairs and the National Development and Reform Commission, pointed out that the implementation of major actions to reduce 
pollution and carbon emissions and enhance carbon sinks should be taken as the starting point for realising a green and low-carbon 
transformation of the agricultural and rural production and living styles. China’s Central Committee Document No. 1 in 2023 focuses 
on the development of ecological low-carbon agriculture. The ‘dual carbon’ target was introduced to address global climate change and 
China’s sustainable development [3]. It also pointed to a new direction for agricultural development and put forward new 
requirements. 

Unlike industries such as manufacturing and energy, agriculture has both attributes of a carbon source and sink. According to the 
Third National Communication on Climate Change of the People’s Republic of China submitted in 2019, GHG emissions from the 
agricultural sector account for nearly 8.3% of the total in China, making it the largest source of non-CO2 GHG emissions. However, 
when considering the indirect carbon emissions from the associated industries involved in agricultural resources, such as pesticides 
and fertilisers, this figure is notably an underestimate. In addition, agriculture itself has a strong capacity to sequester carbon and 
increase sinks, which can effectively mitigate carbon emissions [4]. Thus, agriculture can contribute to carbon neutrality by reducing 
carbon emissions and increasing carbon sinks to offset emissions that are more difficult to reduce. 

From the above realities, green development of agriculture is highly consistent with carbon emission reduction, an important 
element in promoting ecological civilisation and a grip to achieving peak carbon and carbon neutrality. Finding a mechanism to reduce 
emissions and increase sinks, the environmental and economic benefits of sustainable development of agriculture have become a 
pressing issue in China. Therefore, a practical analytical framework for assessing the level of agroecological development under the 
‘dual carbon’ target must be determined. AEE is a useful evaluation indicator for the coordinated advancement of agricultural eco-
nomics, resource usage, and ecological environment since it can precisely assess the amount of green, ecological, and sustainable 
growth of agriculture [5]. 

In view of such goal, this study applied the highly efficient slack-based measured data envelopment analysis (SBM-DEA) model to 
determine the AEE of 30 provinces in China (Hong Kong, Taiwan, Macau and Tibet were excluded due to incomplete data) based on the 
‘dual carbon’ objective and the perspective of integrated management of agro-ecological environment in 2001–2020. Compare the 
superiority of the re-measurement results and analyse the spatial and temporal characteristics of AEE in China as a whole, in regions 
and in provinces. By using the Tobit model, the key factors affecting AEE in China and the eastern, central and western regions are 
analysed. This research provides scientific basis and suggestions for AEE enhancement and high-quality agricultural development 
under the new situation. 

This study has three main contributions. Firstly, the introduction of the ‘dual carbon’ target not only puts forward new re-
quirements for China’s agricultural green development and ecological civilisation construction but also makes AEE research under the 
‘dual carbon’ target a new issue in this new phase. Based on existing literature and policy context, this study constructed a theoretical 
model for AEE assessment that is consistent with China’s national context. The study rethinks how Chinese agriculture can take the 
‘dual carbon’ target as an opportunity to develop a green and low-carbon method under multiple unfavourable conditions. Secondly, it 
innovatively incorporates agricultural carbon emissions and sequestration as carbon constraints and agricultural surface pollution as 
environmental constraints into the AEE evaluation index. Given the in-depth identification of the ‘carbon peaking’ and ‘carbon 
neutrality’ ecological concepts, the various production factors of agricultural ecosystems and requirements of sustainable development 
strategies, a set of AEE indicators has been constructed to objectively reflect the new role of agriculture in the context of ‘dual carbon’ 
requirements and fully measure the economic and resource efficiency of agriculture and the coordinated advancement of agricultural 
economy, resource use and ecological environment. A comparative analysis of ’dual carbon’ AEE and traditional AEE is also presented. 
Thirdly, the influencing elements of AEE at the national and regional levels were further tested using the Tobit model. Several key 
factors that have been neglected in traditional AEE studies were examined, and the agricultural carbon offset rate (ACOR) was selected 
to analyse the effect on the proposed ‘carbon peaking’ and ‘carbon neutrality’ on AEE. 

L. Yang et al.                                                                                                                                                                                                           



Heliyon 10 (2024) e24944

3

2. Literature review 

2.1. Meaning and application of AEE 

Compared with single indicators of environmental resources or emissions, eco-efficiency more comprehensively and accurately 
reflects the overall performance of ecological governance and the meaning of ecological civilisation construction [6,7]. To accurately 
assess of the true value of agro-ecosystems, eco-efficiency has been extended to agriculture and has become an important indicator of 
ecological civilisation and green and sustainable agricultural development [8]. Based on previous research and an understanding of the 
concept of eco-efficiency [9], we take AEE to mean that, in order to produce more and better-quality products and services with the 
least amount of resource consumption, environmental pollution, and carbon emissions while staying within the carrying capacity of 
the agro-ecosystem. AEE adhered to the essential eco-efficiency connotation and embodied the ecological and economic dimensions of 
sustainable agricultural development. In addition, the aims are to bring forth more agricultural carbon sinks, to harmonise the link 
between agricultural inputs and outputs, economic and environmental benefits and to promote green, low-carbon, sustainable agri-
cultural development. 

Studies on AEE have been applied mainly at the national [10,11], provincial [12], specific regional [13], city [14,15] and com-
munity levels [16]. The DEA has become the most common evaluation method for AEE due to its capability to determine the efficiency 
of multi-input and multi-output systems and effectively handle non-parametric boundaries [17,18]. Although DEA methods were used 
to evaluate AEE in many studies, the results were inconsistent [19]. [19] used SBM and Theil index to assess the level and spatial 
pattern of AEE development in 31 Chinese provinces from 2003 to 2013 [20]. [20]applied a SBM model, which considers undesired 
outputs, to assess AEE in 27 EU countries in 2008–2017 and argued that the DEA model that considers undesired outputs produces 
results that are closer to reality than models that do not. The SBM model, which considers non-desired outputs, has gradually become 
the mainstream model for measuring AEE due to its capability to incorporate negative externality outputs and effectively address the 
input–output slack. 

Scholars have begun to pay more attention to the scientific rigor and logic of the selection of input-output indicators as a result of 
the DEA model’s application to AEE, and two lines of thought have been introduced. Firstly, factors of production (e.g. land, labour, 
machinery, water, fertiliser, pesticide, agricultural film) are used as input variables that involve indicators, such as total area of crop 
sown, agricultural workers, total power of agricultural machinery, agricultural fertiliser application; pesticide and agricultural film 
use. The output indicators are the expected outputs, including the total output values of agriculture, forestry, animal husbandry and 
fishery and the entire sector [21,22]. Secondly, the choice of input variables is similar to the first category, but the selection of output 
indicators distinguishes between desired and undesired outputs, with desired outputs involving variables, such as gross agricultural 

Fig. 1. The theoretical and analytical framework for AEE research in China under the ‘dual carbon’ target.  
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output, gross agricultural, forestry and fishery products, value of ecosystem services and food production [23,24], and undesired 
outputs involving variables, for instance, surface source pollution and carbon emissions [25–27]. Given the significant difference 
between AEE results considering and not considering non-desired outputs, the former is more realistic [28]; the second idea of in-
dicator selection is receiving increasing attention from scholars. 

The analysis of AEE drivers enables the scientific and effective exploration of AEE improvement paths [29]. The most applied 
methods are the Tobit model, grey correlation analysis, geographic probe model, augmented regression tree method, panel regression 
method, etc. The selection of variables affecting AEE has been explored by scholars from different perspectives [30]. [30] screened the 
influencing factors of AEE in terms of agriculture industry structure (AIS) using Chinese province panel data from 1978 to 2017, 
infrastructure conditions, development potential and input intensity, and then carried out an empirical analysis by using ordinary least 
squares as well as fixed and random effects model. Using panel data from 31 Chinese provinces from 2009 to 2018 [31], [31] examined 
the impact of environmental regulation on AEE using two-way fixed effects with endogeneity treatment and robustness testing. By 
using a two-stage double-bootstrap DEA technique [32], [32] experimentally evaluated the impact of climate change on AEE in China. 
Applying data from China for 2009–2018 [33], [33] used a Tobit model to analyse the effects of urbanization composite index and 
indicators on AEE in 30 Chinese provinces and cities. 

2.2. Review and theoretical framework 

The reviewed literature indicates the benefits of AEE research, but four areas can still be improved. Firstly, the issue of AEE 
improvement from the perspective of ‘dual carbon’ targets is an extension of AEE in the field of low-carbon economy, which has 
received less attention in previous literature. Secondly, the existing AEE input–output indicator system is lacking in breadth and 
precision, as the ecological concept of carbon neutrality is not fully reflected in AEE studies. The choice of environmental constraint 
indicators in the existing literature is mostly based on agricultural surface pollution and the findings of several scholars on agricultural 
carbon emissions, whereas relatively limited results combine the two and consider agricultural carbon sequestration. Thirdly, iden-
tifying the drivers of AEE (direction and magnitude) has been one of the most important research topics in AEE research and the most 
debated area of research. In the process of analysing the drivers of AEE, scholars have obtained numerous results from different 
perspectives through various models, but few have considered factors such as the ACOR. As a result, the proposed ‘carbon peaking’ and 
‘carbon neutrality’ shows no effect on China’s AEE. Fourthly, research that systematically examines the above elements within the 
same framework is lacking. 

This study attempted to make the following extensions. Firstly, a theoretical model for AEE assessment was constructed to meet 
China’s national conditions (Fig. 1). The model takes into account the country’s ‘carbon peaking’ and ‘carbon neutrality’ targets and 
the Chinese strategic requirements for low-carbon, green, sustainable and high-quality agricultural development of related natural, 
economic and resource subsystems. The three sub-systems were considered as a whole. Only by taking a holistic approach and 
simultaneously coordinating the relationship between resource use, value growth and environmental protection can we truly optimise 
agro-ecosystems in the new context. Secondly, according to the multi-input and output characteristics of the DEA model and with 
reference to existing literature and data, agricultural carbon emissions and sequestration were used to express the hard requirements of 
the ‘dual carbon’ target. In addition, based on AEE connotations, we innovatively include agricultural carbon emissions, carbon 
sequestration and surface pollution as environmental elements in the model with full consideration of the major national policies and 
programmes. Comparative analysis of remeasured AEE and traditional AEE. Thirdly, the impact of major national policies and regional 
heterogeneity on AEE was fully considered, ACOR was included as one of the affecting elements, and empirical analysis was done to 
determine the extent and direction of various influencing factors on AEE throughout China as well as in the eastern, central, and 
western areas. 

3. Methodology and data collection 

3.1. Methodology 

3.1.1. Measurement of AEE: Super-efficiency SBM-DEA with undesirable output 
The DEA method of non-referential productivity measurement was first put forth by Ref. [34]. By examining the boundaries be-

tween input and output variables, DEA determines the relative effectiveness of decision units and generates efficiency. Traditional DEA 
models can be categorized into two groups: radial models such as CCR [34] and BCC [35] and non-radial models such as SBM [36]. 
Undesirable by-products, such as wastewater, exhaust gases, and CO2, are continually produced throughout the actual production 
process and have an impact on efficiency. Desirable production should grow while undesired output should decrease to maximize 
economic efficiency. To deal with the latter [37], further extended the SBM while [38] constructed a super DEA model, which 
effectively remedied this problem by allowing efficiency comparisons between DMUs. Therefore, following previous studies, the 
super-efficient SBM-DEA model, which takes into account undesired outputs, was applied to re-measure the AEE of Chinese provinces 
in light of the ‘dual carbon’ target. 

Assume a production system that has n decision units, each of which has m input units that create desirable (S1) and undesired 
outputs (S2) in the form of three input-output vectors: inputs, desired (S1), and undesired (S2) [39]. The three input–output vectors can 
be represented as x ∈ Rm, yg ∈ RS1 , yb ∈ RS2 , where the matrices X, Yg and Yb are: 

X = [x1, x2,⋯xn] ∈Rm×n, Yg =
[
yg

1, yg
2,⋯yg

n

]
∈RS1×n,Yb =

[
yb

1, yb
2,⋯yb

n

]
∈ RS2×n.
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Assuming that X > 0, Yg > 0 and Yb > 0, the range of production options is found: 

P=
{(

x, yg, yb)⃒⃒x≥Xθ, yg ≥ Ygθ, yb ≤Ybθ, θ≥ 0
}
, (1)  

in Eq. (1), actual desired output is lower than the ideal desired output at the frontier and the actual non-desired output is higher [40, 
41]. Given the set of production possibilities, the SBM model based on Tone’s SBM model that adds the undesirable output into the 
evaluation decision unit (x0,yg

0, yb
0) is shown in Eq. (2): 

ρ=min
1 − 1

m

∑m

i=1

S−i
xi0

1 + 1
S1+S2

(
∑S1

r=1

Sg
r

yg
r0
+
∑S2

r=1

Sb
r

yb
r0

), s.t.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

x0 = Xθ + S−

yg
0 = Ygθ − Sg

yb
0 = Ybθ − Sb

S− ≥ 0, Sg ≥ 0, Sb ≥ 0, θ ≥ 0

(2)  

where S = (S− , Sg, Sb) represents the slack in inputs, desired outputs and undesired outputs. The objective function value of ρ is the 
efficiency of the decision unit that ranges between [0,1]. For a given decision unit (x0,yg

0,yb
0), it is valid if and only if ρ = 1, S− = Sg =

Sb = 0. If 0 ≤ ρ < 1, the evaluated unit is inefficient, and the inputs and outputs need improvements. Being non-linear, the model is 
not conducive to efficiency calculation. The non-linear equations are made linear by means of the Charnes–Cooper transformation, the 
equivalent form of which is given in Eq. (3): 

T =mint −
1
m

∑m

i=1

S−
i

xi0
, s.t.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{

1 = t +
1

S1 + S2

(
∑s1

r=1

Sg
r

yg
r0
+
∑s2

r=1

Sgb
r

ygb
r0

)

x0t = Xμ + S−

yg
0t = Ygμ − Sg

yb
0t = Ybμ − Sb

S− ≥ 0, Sg ≥ 0, Sb ≥ 0, μ ≥ 0, t > 0

. (3) 

The super-efficiency model’s basic idea is to exclude DMUs when evaluating efficiency. The inefficient DMU is evaluated with the 
same production frontier and therefore provides the same efficiency value as in the traditional DEA model. However, with the same 
efficiency value, the effective DMU has a proportional increase in inputs that is noted as the value of the super-efficiency evaluation. 
Given that the production frontier is shifted back, compared to the conventional DEA model, the efficiency value is greater. Eq. (4) 
shows the super-efficient SBM-DEA model as follows: 

ρ∗ =min

1
m

∑m

i=1

xi
xi0

1
S1+S2

(
∑S1

r=1

yg
r

yg
r0
+
∑S2

r=1

yb
r

yb
r0

), s.t.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x ≥
∑n

j=1,∕=k

θjxj

yg ≤
∑n

j=1,∕=k

θjyg
j

yb ≥
∑n

j=1,∕=k

θjyb
j

x ≥ x0, yg ≤ yg
0, y

b ≥ yb
0, yg ≥ 0, θ ≥ 0

(4)  

where the objective function value of ρ∗ is the efficiency value of the decision unit and can be larger than 1. Similar to Eq. (3), further 
variables are specified. The above models assume a constant size. 

3.1.2. Study of the dynamic distribution of AEE: kernel density estimation 
An essential non-parametric method for describing the pattern of random variable distribution is known as kernel density esti-

mation. It can be used to estimate the trend of sample location changes and has the advantage of having no assumptions about data 
distribution; only the sample data are used as a reference, which has strong robustness, to study its distribution characteristics [42]. We 
investigated the dynamic evolution of the distribution of absolute differences in AEE across the nation and in three regions using kernel 
density estimation, focusing on presenting the location, dynamics, extension and polarisation of the AEE distribution. It was assumed 
that random variable X’s density function would be: 

f (x)=
1

Nh
∑N

i=1
K
(

Xi − x
h

)

(5)  

Eq. (5) is the basic model for nuclear density analysis. N represents the number of provinces, Xi is the AEE of each province, x indicates 
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the mean AEE of each province, K(•) indicates the kernel density, and h indicates the window width. 

3.1.3. Analysis of factors influencing AEE: Tobit model 
The AEE obtained through the DEA model is influenced by other factors in addition to the selected input–output indicators. Further 

analysis can be carried out to measure the direction and strength of the factors affecting AEE under the ‘dual carbon’ target. The AEE of 
the DMU is evaluated as the dependent variable and the influencing factors are evaluated as independent variables in a regression 
model we develop using the super-efficiency SBM-DEA model. The coefficients of independent variables were used to determine the 
direction and strength of the influencing factors on AEE. With 0 as the lowest bound, the AEE as measured by the DEA model is unlikely 
to be negative. Therefore, the Tobit model was used to address this restricted dependent variable to avoid the least squares method 
from yielding consistent estimates [43]. We constructed the basic Tobit model as shown in Eq. (6): 

Ykt =

{
Y∗

kt = α + βXkt + εkt,Y∗
kt > 0

0, Y∗
kt ≤ 0

, (6)  

where Ykt is the truncated dependent variable of decision unit k in period t, that is, the AEE of the K th province in time t, Y∗ is the latent 
variable of decision unit k in t, and Xkt is the independent variable used as an influencing factor of the AEE. 

3.2. Variables and data sources 

3.2.1. AEE input and output indicators 
Promotions for agro-ecological development center on the plantation industry. Based on the DEA model’s multi-input and multi- 

output properties, this work narrowly defined agriculture (plantation) as the research object, improved the traditional AEE indicator 
system based on its connotation, requirements of agricultural carbon reduction and sink increase and characteristics of agro-ecological 
systems; constructed an AEE evaluation indicator system that considers the strategic ‘dual carbon’ target (Table 1). Table 2 presents the 
descriptive analysis results. 

Input indicators were divided into seven main categories: employed persons in agriculture, discounted by employed persons in the 
primary sector x (total agricultural output value/total agricultural, forestry, animal husbandry and fishery output value); total area 
sown to crops that shows the actual area cultivated in agricultural production; the total power of agricultural machinery, which reflects 
modernisation; effective irrigated area, where agricultural water is mainly used as a proxy; amount of fertiliser applied, amount of 
pesticides and agricultural film used; and the amount of agricultural diesel used, which is the main source of pollution in agricultural 
production. 

Output indicators were separated into two groups: desired and undesirable. For the desired output to total agricultural output 
value, the data were adjusted to that at constant prices in 2001 to exclude the effect of price changes. Agricultural carbon sequestration 
involves constructing an agricultural carbon sink accounting system represented by major crops (rice, maize, soybean, tobacco and 
other major cash crops) and estimating it based on different types of carbon sequestration factors (referring to those prepared by the 
Department of Afforestation and Greening Management of the State Forestry Administration of China). 

Undesired outputs: Agricultural carbon emissions, which were selected agricultural inputs (pesticides, fertilisers, agricultural films 
and diesel fuel), tilled land, rice cultivation and agricultural irrigation were estimated by multiplying the corresponding emission 
factors by the corresponding indicators. The comprehensive index of agricultural surface source pollution was determined using the 
entropy method to combine four types of indicators, namely, nitrogen (phosphorus) loss from fertilisers, phosphorus loss, pesticide 
residues and agricultural film residues. Nitrogen (phosphorus) loss equal to the amount of its applied fertiliser is multiplied by the 
fertiliser loss factor; pesticide and agricultural film residues are equal to their use. Geographical discrepancies were thoroughly taken 
into consideration by referring the pertinent coefficients to the First China Pollution Census Agricultural Coefficients Manual. 

Table 1 
AEE evaluation index system under the ‘Dual Carbon’ targets.  

First indicators Secondary indicators Variable and description 

Inputs Labour input Agricultural employees 
Land input Total planting area of crops 
Machinery input Total power of agricultural machinery 
Water input Effective irrigation area 
Diesel input Agricultural diesel use 
Fertiliser input Application amount of agricultural chemical fertiliser 
Pesticide input Pesticide usage 
Agricultural film input Consumption of agricultural film 

Desirable outputs Economic benefits Total agricultural output value 
Agricultural carbon sink Agricultural carbon absorption 

Undesirable outputs Agricultural carbon emission Agricultural carbon emissions 
Pollution emission Comprehensive index of agricultural non-point source pollution 

Carry-over Asset investment Rural fixed asset investment  

L. Yang et al.                                                                                                                                                                                                           
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3.2.2. Influencing factors of AEE 
Numerous factors influence AEE. In this study, we mainly referred to previous literature such as [3,44]; thought on data acces-

sibility and the realistic situation and finally selected UR, agricultural disaster rate (ADR), agricultural carbon offset rate (ACOR), 
agricultural industry structure (AIS) and economic development level of agriculture (EDLA). An empirical analysis of the influences of 
these six factors on AEE was performed. 

UR. UR affects agricultural resource inputs that in turn affect its output and pollution, and thereby AEE. As the UR increases, urban 
civilisation gradually spreads to the countryside, and farmers’ ecological awareness gradually increases. On the one hand, UR can 
promote agricultural and rural economic development, as argued by Ref. [45]. [46] reported similarly that UR could boost the revenue 
of farmers. While on the other hand, UR may have a negative effect on agricultural and rural development. UR is expressed in terms of 
urban population/year-end resident population. 

ADR. The degree of agricultural damage is a critical external environmental factor affecting AEE environment. The more severe the 
agricultural disaster, the greater the loss of agricultural factor inputs, which in turn may negatively affect AEE [47]. ADR is expressed 
as the area of affected crops/total planted area. 

ACOR. The carbon peak and neutral targets have clearly set directions and goals for China’s agricultural green development. The 
‘dual control’ of total energy usage and intensity is now the main driver for green and low-carbon agricultural economic trans-
formation [48], and it is necessary to effectively increase clean energy inputs, reduce the intensity of carbon emissions and increase 
efficiency in energy use. In related research, the impact of ACOR on AEE has been disregarded. The ACOR is expressed as agricultural 
carbon sequestration/agricultural carbon emissions. 

AIS. Agriculture is the most basic industry in China’s national economic development. Agriculture is essential for stable social 

Table 2 
Descriptive statistics of the data.  

Variable Unit Average Maximum Minimum Standard 

Agricultural employees 104 people 504.927 2202.374 11.434 384.275 
Total planting area of crops 103 hm2 5333.403 14910.100 92.000 3629.218 
Total power of agricultural machinery 104 kW 2897.151 13353.020 93.970 2722.257 
Effective irrigation area 103 hm2 2029.645 6177.590 109.243 1536.303 
Agricultural diesel use 104 ton 64.724 487.030 1.700 64.804 
Application amount of agricultural chemical fertiliser 104 ton(net amount) 177.398 716.090 6.100 137.843 
Pesticide usage 104tons 5.271 17.346 0.123 4.202 
Consumption of agricultural film 104 tons 7.130 34.352 0.064 6.396 
Total agricultural output value 108 CNY 739.083 3177.069 26.131 564.871 
Agricultural carbon absorption 104 tons 2302.027 8692.019 37.826 1853.170 
Agricultural carbon emissions 104 tons 2545.645 6047.393 58.612 1815.736 
Comprehensive index of agricultural non-point source pollution / 0.212 0.674 0.007 0.145 
Rural fixed asset investment 108 CNY 1035.739 8828.537 6.318 1144.337  

Fig. 2. Study area. (Note: Fig. 2 is generated based on the standard map GS (2019)1829 from the Ministry of Natural Resources of China’s standard 
map service website, with no changes to the base map boundaries.). 
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development, and the only way for the nation to achieve a strong basic guarantee is through the efficient and sustained development of 
agricultural production. Changes in the AIS can also represent regional economic development to a certain extent [49]. The AIS is 
expressed in terms of total output value in agriculture and in the combined agricultural, forestry and fishery. 

EDLA. Agricultural economic development is the foundation for upgrading AEE. The EKC hypothesis suggests that, in the long term, 
economic growth and resources have an inverted U-shaped relationship with environmental pressures; that is, during economic 
growth, resource and environmental pressures first show an upward trend, and as GDP per capita increases, an inflection point is 
reached, resource and environmental pressures shift to a downward trend, and eventually, the link between the two is broken (or 
decoupled). If the hypothesis holds, sustained, positive economic growth will eventually alleviate resource and environmental pres-
sures [50]. In this study, the value of agriculture, forestry, livestock and fisheries/year-end resident population was selected to indicate 
the EDLA. 

3.2.3. Data sources 
This study uses a sample of 30 provinces (cities and districts) in China. Tibet, Hong Kong, Macau and Taiwan were excluded due to 

insufficient information. The time span was 2001–2020, which denotes the period from the 10th to the 13th Five-Year Plan (Five-Year 
Plans are an important part of China’s national economic long-term strategy). The basic data were derived from the China Statistical 
Yearbook, China Agricultural Yearbook, China Rural Statistical Yearbook, China Population and Employment Statistical Yearbook and 
provincial and municipal statistical yearbooks or bulletins. Individual missing data are supplemented by linear and mean interpolation 
methods. The regional division of eastern, central and western areas was determined according to the regulations of the China Statistics 
Bureau (Fig. 2). 

4. Re-measurement results of AEE under the ‘dual carbon’ target 

4.1. Re-measuring AEE versus traditional AEE 

The results of the traditional AEE are compared with those of the ’dual carbon’ AEE (Fig. 3), taking into account the fact that 
different constraints can lead to different results. There has been less focus in the literature on the multiple effects of agriculture in 
reducing carbon and increasing sinks and synergistically managing pollutant emissions. In order to verify the most realistic results of 
China’s AEE under the " dual carbon" target, we compare the results of this paper’s re-measurement with the results of traditional AEE 
measurements. The traditional AEE does not take into account both total agricultural output value and agricultural carbon absorption 
in the desired output, agricultural carbon emissions and comprehensive index of agricultural non-point source pollution in the 

Fig. 3. Comparison of the results of a traditional AEE with those considering a ’dual carbon’ AEE.  
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undesired output [28,30,51]. Therefore, the traditional AEE measured in this paper has only total agricultural output value as the 
desired output and only agricultural carbon emissions as the non-desired output. 

It is easy to see that considering ’dual carbon’ AEE is significantly higher than traditional AEE. It can be seen that, on the one hand, 
the requirement to reduce carbon emissions and increase carbon sinks in the " dual carbon" target has had a positive impact on China’s 
agro-ecological governance. On the other hand, against the backdrop of the serious situation facing the agro-ecological environment, 
the timely introduction of "dual carbon" has also provided useful guidance on how to maintain a co-ordinated approach to resource 
consumption, ecological protection and economic development in the process of agricultural economic development. It is not difficult 
to explain that the impact of a good national policy on the development of an industry is significant [52]. As a major strategic decision 
in line with China’s national conditions, "Dual Carbon" will certainly be able to effectively promote the development of the 
agro-ecological industry. The dual identity of agriculture as a "carbon-reducing and sink-boosting" industry also makes the develop-
ment of eco-agriculture more in line with historical and economic trends, thus contributing to the development of green and 
low-carbon agriculture. 

4.2. Timing characterisation of AEE 

This study measured the AEEs of 30 provinces (cities and districts) and the eastern, central and western regions of China according 
to the super-efficiency SBM-DEA model for the period of 2001–2020. Figs. 4 and 5 show the AEE by year and the trends at national and 
regional levels from the 10th Five-Year Plan to the 13th Five-Year Plan. At the national level, China’s AEE in 2001–2020 was within 
0.90–1.03. In most years, China’s AEE was less than 1 and did not reach the production frontier, which implies potential areas of 
improvement given the country’s current production inputs and environmental constraints. From 2001 to 2006, China’s AEE declined 
gradually by 6.56 % and reached its lowest point in the past 20 years in 2006. From 2007 to 2020, China’s AEE ‘rebounded’, but the 
increase was relatively small (4.44 %). Fig. 4 shows that China’s AEE peaked during the period of the 10th Five-Year Plan and was very 
close to or above 1 until that of the 13th Five-Year Plan. Since the 10th Five-Year Plan, the Party Central Committee and the State 
Council have introduced policies to promote green, low-carbon and cycle development of agriculture and ‘two types of agriculture’. 
Subsequently, China’s AEE has been slowly increasing since the 11th Five-Year Plan. The policies and ‘two types of agriculture’ have 
provided ‘reassuring pills’ and ‘strong incentives’ for the development of agricultural production. However, the overall downward 
trend still reminds us that the harmonious development of the national agricultural economic development, ecological protection and 
emission reduction and exchange is still long and difficult. 

In contrast to previous literature that used agricultural economic output as an index to describe AEE, the present study included 
agricultural carbon sinks, carbon emissions and agricultural surface source pollution as environmental constraints, and the resulting 
measurement findings varied from those of traditional models. The main result is that China’s AEE as a whole showed a decreasing 
trend. On the one hand, according to Northam’s stage of UR development theory, this condition was due to China’s rapid UR during the 
study period, and its expansion gave priority to encroaching on relatively flat agricultural land with good soil conditions, which 
resulted in high pressure on the quantity and quality of arable land. While on the other hand, promoting pesticide and fertiliser 
reduction and efficiency requires considerable time [53], and the low-carbon agricultural technology remains inadequate and has a 
‘dual role’ in enhancing agricultural carbon reduction and sequestration. 

For the central, western and eastern regions, the first two showed varying degrees of decrease during the research period. Three 
stages were observed in general: From 2001 to 2005, the eastern and central regions alternated in second position, with the western 
region having the greatest AEE. From 2006 to 2010, the AEE ranking was Western > Eastern > Central. By 2011–2020, the AEE 

Fig. 4. Trends in AEE by period at the national and regional (east, central and west) levels (2001–2020).  
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ranking was Eastern > Western > Central. From different periods, the AEE of the western region decreased during the 10th until the 
13th Five-Year Plan but remained stable, above the national average and reached the effective state. 

Such finding can be explained as follows. The western region’s economic growth was less advanced than that of the east and central 
regions; most of its areas were located in the food balance zone, which on the one hand had a slightly lower intensity of agricultural 
production activities compared with the east and central regions. This condition resulted in relatively less agricultural carbon emis-
sions and surface pollution and on the other hand benefited from the Western Development Strategy, which has been continuously 
promoted since 1999 and enabled the western region to attain agricultural economic development. In addition, the ecological and 
environmental conditions have reached a new level. The eastern region was the only one of the three regions to show an overall 
increase in AEE, with the lowest AEE value in the Tenth Five-Year Plan period being close to 1. Thus, the eastern region has been 
successful in balancing agricultural economic growth and environmental protection, which is closely related to its in-depth imple-
mentation of strategies for building an ecological civilisation and developing the agricultural economy and its recycling, which 
promoted energy saving, emission reduction and income generation. 

The central region displayed a "central collapse" and had the lowest AEE year-round, with the lowest point observed in the 11th 
Five-Year Plan. The national, eastern and western regions show a large gap that gradually widened over time. This result was probably 
due to most of the central regions being located in functional food production areas, where agricultural production activities are 
relatively more intensive and require more manpower, fertilisers, pesticides and machinery, which led to more agricultural carbon 
emissions and surface pollution and weakened the carbon sink effect of agro-ecosystems. 

4.3. Dynamic evolutionary trends of AEE 

Kernel density estimates can be applied to analyse the dynamic evolution of the AEE distribution at the national and regional levels, 
and the overall pattern of the horizontal distribution of AEE can be portrayed. By comparing different periods, the dynamic charac-
teristics of the AEE distribution can be captured, see Fig. 6(a–d). 

In terms of wave peaks, the AEE kernel densities in the national and western regions showed a multi-peaked state, increasing in a 
zigzag manner, and the AEE exhibited multipolar differentiation. In the eastern region, the AEE kernel density curve changed to a 
‘multi-peak-bimodal’ state, which indicates that the AEE was multipolar or bipolar. The wave crests in the central region presented 
‘multi-peak-bimodal-multi-peak’ variations and a tendency to weaken and then deepening of the bipolar or multipolar differentiation. 
The two peaks of the central region’s nuclear density curve gradually decreased in height and increased in distance, which indicates 
that the polarisation of the AEE in this region gradually weakened. Overall, a widespread polarisation of AEE occurred across the 
country and the three regions and the balanced development of agro-ecological governance in the provinces within each region needs 
to be strengthened in the future. 

In terms of the locations, the curve centre of the national nuclear density shows minimal changes, with an overall leftward shift. The 
overall AEE of the country declined as a whole between 2001 and 2020. For the eastern region, the nuclear density curve shifted to the 
left and then to the right, which thereby reflects a decreasing and increasing development trend of the regional AEE. The nuclear 

Fig. 5. Trends in AEE at the national and regional (east, central and west) levels during the 10th–13th Five-Year Plan period. (10th to 13th Five- 
Year Plans: 2001–2005; 2006–2010; 2011–2015; 2016–2020). 
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density curve for the central region showed a left-right-left shift, which implies that the AEE had a ‘decreasing-rising-decreasing’ trend 
over time. For the western region, the nuclear density curve shifted to the left, which reflects a decrease in AEE during the study period. 
Therefore, enhancing the development of AEE in the central and western regions will require focus in the future. 

In terms of distribution extensibility, a certain amount of left trailing was observed in all study areas, which means that several 
provinces had substantially lower AEE than others. The AEE kernel density curves for the national and western regions showed an 
overall trend of ‘convergence’; that is, the likelihood of extreme values of AEE decreased. For the eastern and central regions, the kernel 
density curves exhibited a widening trend, with the spatial gap between the two regions gradually widening. In the future, more 
attention can be paid to narrowing the spatial gap between different provinces within the region. 

In terms of distribution patterns, the kernel density curves for the national, eastern and western regions were relatively similar, 
with the wave height showing an upward trend from 2001 to 2020 while the wave width narrowed. This result indicates the decreased 
absolute difference in AEE among the national, eastern and western regions. The evolution of the kernel density curve for the central 
region can be broadly divided into two phases; the wave height mainly increased and the width of the single peak narrowed from 2001 
to 2011 and vice versa from 2012 to 2020. This finding indicates a decreasing and then the increasing trend of AEE differences in the 
central region. Therefore, further reduction of the absolute inter- and intra-regional AEE differences is an important part of enhancing 
the regional AEE rate. 

4.4. Provincial variation analysis of AEE 

Further comparisons were made for the periods 2001–2020 and 2001–2005 (10th Five-Year Plan), 2006–2010 (11th Five-Year 
Plan), 2011–2015 (12th Five-Year Plan) and 2016–2020 (13th Five-Year Plan) (Table 3). The top 10 provinces in terms of average 
AEE value from 2001 to 2020 were Guizhou, Guangxi, Shaanxi, Jilin, Xinjiang, Guangdong, Hainan, Jiangsu, Beijing and Shanghai, all 

Fig. 6. Dynamic AEE evolution at national and regional (east, central and west) levels.  
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of which had an average AEE value of over 1 and played the role of ‘leader’. A total of 50 % of these provinces are located in the eastern 
region, and 40 % are in the western region. Hunan, Yunnan, Hebei, Shandong, Qinghai, Fujian, Anhui, Gansu, Hubei and Shanxi are in 
the bottom 10, with average AEE values not reaching the efficiency frontier and ‘catching up’ and with a more even regional 
distribution. 

Comparing the average AEE ranking of provinces between the 10th and the 13th Five-Year Plans, we discovered that about 35% of 
the provinces have increased in ranking mainly due to the following reasons. The large area under crop cultivation, a large variety of 
farm-related inputs and relatively intensive production methods, although also accompanied by high carbon emissions output, have 
played a significant role in carbon sinks, such as Liaoning and Heilongjiang. Agricultural production conditions, crop cultivation 
methods and waste treatment processes have also been increasingly improved owing to increased policy support and technological 
backwardness [54], thus effectively improving AEE, such as in Jiangsu and Zhejiang. 

About 40% of the provinces have dropped in rankings possibly because of their relatively fragile ecological environment, severe soil 
erosion and a development model that is more dependent on resources and the environment, which led to increased polluting 
emissions from agricultural production, such as Qinghai and Guizhou. Such a condition may also be due to the limited focus of 
development on cultivation in these regions and little incentive to explore low-carbon agricultural technologies, such as in Shanghai 
and Beijing. The remaining provinces, on the other hand, showed less variation in ranking. This finding corresponds to the small 
decline in the overall AEE national trend in Fig. 3. Altogether, several provinces in China still have to reconcile low-carbon and high- 

Table 3 
Top 30 provincial AEE averages and their rankings.  

Region DMU 2001–2020 2001–2005 The 10th 
Five-Year Plan 

2006–2010 The 11th 
Five-Year Plan 

2011–2015 The 12th 
Five-Year Plan 

2016–2020 The 13th 
Five-Year Plan 

Efficiency Rank Efficiency Rank Efficiency Rank Efficiency Rank Efficiency Rank 

Eastern Shanghai 1.096 10 1.131 6 1.103 9 1.088 10 1.061 13 
Shandong 0.808 24 0.610 26 0.642 24 0.960 23 1.015 22 
Tianjin 1.083 11 1.060 13 1.012 20 1.034 18 1.218 1 
Beijing 1.138 9 1.155 5 1.146 4 1.147 6 1.103 11 
Jiangsu 1.158 8 1.042 17 1.142 7 1.243 1 1.202 2 
Hebei 0.811 23 0.564 29 0.627 26 1.020 20 1.031 21 
Hainan 1.168 7 1.256 3 1.143 5 1.127 8 1.142 7 
Zhejiang 1.025 20 1.023 21 1.016 19 1.016 22 1.042 15 
Fujian 0.692 26 0.487 30 0.634 25 0.712 25 0.917 23 
Guangdong 1.122 6 1.121 8 1.113 8 1.116 9 1.139 8 
Liaoning 1.036 18 1.023 21 1.008 21 1.044 13 1.069 12 

Central Shanxi 0.528 30 0.578 28 0.465 30 0.506 28 0.559 29 
Jilin 1.209 4 1.481 1 1.070 10 1.134 7 1.144 6 
Anhui 0.649 27 0.814 23 0.568 28 0.583 27 0.615 28 
Jiangxi 1.037 17 1.042 17 1.028 17 1.037 16 1.039 17 
Henan 1.047 14 1.038 19 1.043 12 1.055 12 1.050 14 
Hubei 0.609 29 0.608 27 0.592 27 0.586 26 0.647 27 
Hunan 0.972 21 1.060 13 1.031 16 1.036 17 0.750 26 
Heilongjiang 1.075 12 1.029 20 1.052 11 1.087 11 1.130 9 

Western Yunnan 0.876 22 0.748 24 0.945 23 0.932 24 0.862 24 
Sichuan 1.048 13 1.073 11 1.034 14 1.044 13 1.040 16 
Gansu 0.630 28 0.641 25 0.538 29 0.498 29 0.828 25 
Ningxia 1.038 16 1.050 16 1.034 14 1.032 19 1.036 19 
Qinghai 0.733 25 1.055 15 1.027 18 0.450 30 0.399 30 
Chongqing 1.029 19 1.066 12 0.967 22 1.043 15 1.038 18 
Xinjiang 1.173 5 1.122 7 1.181 3 1.190 3 1.197 3 
Inner Mongolia 1.045 15 1.080 10 1.043 12 1.020 20 1.036 19 
Guangxi 1.234 2 1.254 4 1.275 2 1.241 2 1.165 5 
Guizhou 1.254 1 1.327 2 1.311 1 1.187 4 1.185 4 
Shaanxi 1.125 3 1.084 9 1.143 5 1.158 5 1.113 10 

National 1.017 / 0.987 / 0.964 / 0.978 / 0.992 /  

Table 4 
Tobit model regression results.  

Variable Coefficient 

National Eastern Central Western 

UR 1.389**(0.622) 2.718***(0.506) − 2.154***(0.557) 0.853(1.779) 
ADR − 0.183(0.155) 0.170(0.195) − 0.200(0.128) − 0.270(0.321) 
ACOR 0.528***(0.105) 0.603***(0.114) 0.482***(0.111) 0.857**(0.272) 
AIS − 1.540**(0.589) − 0.892(0.751) − 0.941(0.591) − 4.456**(1.410) 
EDLA − 0.195**(0.098) 0.042(0.084) 0.186**(0.082) − 0.165(0.253) 
cons 2.871***(0.679) − 0.379 (0.617) 0.888(0.626) 4.892**(1.637) 

Note: Standard error is in parentheses; ***, **, and * represent significance levels of 1%, 5%, and 10%, respectively. 
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efficiency agricultural activities due to their resource endowment, production environment and own development orientation and the 
need to further adjust their cultivation structure and optimise their production methods. 

5. Analysis of factors influencing AEE 

5.1. Regression results and analysis 

The three areas of Eastern, Central, and Western China differ significantly in terms of the extent of agriculture industry devel-
opment and the impact of indicators, which in turn may have different influences on the AEE of each region. To propose targeted 
measures to improve AEE, this study carried out an empirical analysis using a panel Tobit model at the national and regional levels. 
Table 4 shows the specific effects of each variable. 

UR passed the 5%, 1% and 1% significance tests for the national, eastern and central regions, respectively. For the first two, positive 
regression coefficients of 1.389 and 2.718 were observed, respectively. The regression coefficient for the central region was − 2.154. 
Thus, UR had a positive influence on national and eastern regional AEE and a negative one on central regional AEE. Conversely, in the 
western region, UR revealed a positive but insignificant effect on AEE. This is intimately tied to the question of this region’s quantity 
and quality of human capital. For the national and eastern regions, increased UR implied a large concentration of population in the 
cities and a large proportion of non-farm population, which is environmentally conscious and has a great potential to consume 
agricultural products. This condition provides an impetus for agricultural economic development and thus contributes to the AEE 
development. However, if the population size exceeds the environmental or carrying capacity, environmental pressures increase, and a 
shortage of agricultural employment occurs. Thus, the driving force of UR for AEE will not only gradually diminish but turn into a 
disincentive, as occurred in the central region. 

The effect of the ADR on AEE was insignificant nationally at the national and regional levels. Agriculture, as the industry most 
closely integrated with nature, is inherently characterised by its natural vulnerability to natural hazards. If agricultural products are 
affected, then the desired output will be reduced, which may reduce the AEE by increasing the undesired output while causing a loss of 
factor inputs. However, with the continuous innovation of agricultural science and technology, especially after the ‘dual carbon’ 
target, the number of new technologies and products is increasing, disaster prevention and control mechanism in each region are 
further optimized, and the capability to cope with natural disasters is strengthened. Thus, the impact of ADR on AEE becomes 
insignificant. 

ACOR showed a positive effect on national, eastern and central AEE at the 1% significance level, with regression coefficients of 
0.528, 0.603 and 0.482, respectively. ACOR also presented a positive effect on AEE in the west at the 5% significance level, with a 
regression coefficient of 0.857. These results suggest that an increase in the ACOR will increase the AEE across China in the eastern, 
central and western regions. In a certain sense, ACOR reflects the process of ‘carbon peaking’ and ‘carbon neutralization’ in agriculture. 
The higher the ACOR, the better the carbon sequestration effect of agriculture and the better the net carbon sink effect. Therefore, 
although several regions have a large crop cultivation area, a large variety of farm-related inputs and relatively intensive production 
methods, although accompanied by high carbon emissions output, play a significant carbon sink role and thus support the 
advancement of AEE. 

AIS showed a significant negative effect on AEE for the national and western regions at the 5% significance level with respective 
coefficients of − 1.540 and − 4.456. However, AIS exhibited no significant impact on AEE for the other two regions. AIS presented a 
negative influence on the national and western AEE, i.e. the larger the share of agricultural value added in the agriculture, forestry, 
animal husbandry and fishery in the narrow sense, the lower the national and western AEE. This finding is attributed to increased 
dependence of agriculture on agricultural inputs compared with those of forestry, fisheries and animal husbandry, which generates 
more agricultural surface pollution. In addition, the special properties of agriculture led to more GHG emissions and an imbalance 
between economic development and ecological management in agriculture, which resulted in a lower AEE. However, in the other two 
regions, this effect is inconsequential. 

EDLA showed a negative effect on the national and regional AEE with a regression coefficient of − 0.195 but manifested a sig-
nificant positive effect in the central region with a coefficient of 0.186, both passing at the 5% significance level. Although EDLA had a 
positive and negative effect on AEE in the eastern and western regions, respectively, neither passed the significance level test. Ac-
cording to the environmental Kuznets curve, an uncertain relationship is observed between the different stages of economic devel-
opment and environmental quality. When the EDLA is relatively low, the pursuit of output becomes more urgent. Excessive pursuit of 
output will make people more inclined to adopt a crude development model, and agricultural economic development will not be able 
to keep up with the needs for ecological environmental protection. As a result, the AEE decreases, as in the case of China’s overall 
agricultural development status. When the agricultural economy has reached a certain level of development, on the one hand, the 
economic support becomes stronger, and on the other hand, the negative effect of crude development on agro-ecology becomes 
increasingly evident, all of which drive people to work towards ecological development, which in turn promotes higher AEE, such as in 
the central region. However, this condition has not played a significant role in the other two regions. 

5.2. Robustness tests 

Robustness tests were carried out to further verify the above empirical results. Given the characteristics of the range of values of 
explanatory variables in this paper, instead of adopting a permutation measure for the test, the substitution variable method was 
applied for the robustness test. Drawing from the work of [23] on the use of food crop sown area/total crop sown area to characterise 
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the AIS, this paper used this indicator to replace the original AIS indicator, with other variables remaining unchanged and re-tests 
being conducted at the national and regional levels. Table 5 presents the Tobit regression results. 

At the national level, UR, ACOR and EDLA passed the significance level test at 5%, 10% and 5%, respectively. For the regression 
coefficients of these factors, their direction did not change, except for AIS, but their magnitude changed slightly, which is consistent 
with the main regression results. At the regional level, the eastern and central regions show variations in the direction and significance 
of the regression coefficients for certain variables, but the main findings were generally consistent with those in the previous section. 
Meanwhile, the western region showed no changes in direction and significance of the regression coefficients. Altogether, the results of 
this robust regression did not deviate systematically from those of the benchmark model regression, and the overall results were not 
significantly different. Thus, the empirical results were robust. 

6. Conclusion and policy implications 

6.1. Conclusions and discussion 

This study combined the strategic requirements of China’s ‘dual carbon’ target with the current status of AEE research and 
reconstructed an AEE evaluation index system that is consistent with the country’s national conditions. AEE was re-measured for 30 
Chinese provinces from 2001 to 2020 by using the super-efficiency SBM-DEA model, which considers undesirable outputs. The dy-
namic distribution patterns and evolutionary trends of AEE were also explored at three levels: national as a whole, three major regions 
and provincial perspectives. Aside from that, the influencing factors of AEE were examined by combining the kernel density estimation 
and Tobit model approaches. Through this study, we have drawn several remarkable conclusions.  

(1) The AEE, which takes into account the multiple characteristics of agriculture in terms of carbon reduction, carbon sink and 
pollution reduction, is more in line with the current reality in China than the AEE under the traditional model. According to the 
results of the remeasurement, from 2001 to 2020, China’s AEE declined slightly but with several inter-year fluctuations, and the 
overall curve was ‘V’ shaped. The curve evolution can be broadly categorized into two stages: a fluctuating decline and a 
fluctuating rise. China’s AEE during the period of the 13th Five-Year Plan was significantly better than that of the 10th to 12th 
Five-Year Plans. AEE has gradually ‘rebounded’ since 2006. This finding indicates that China’s efforts to build ‘two types of 
agriculture’ and reduce agricultural surface pollution in the 12th Five-Year Plan period and the zero growth of fertiliser and 
pesticide use during the 13th Five-Year Plan period have contributed to the low carbon cycle development in agriculture. The 
measures that support the transition of agriculture to low-carbon recycling have been beneficial. However, the national AEE did 
not reach the efficiency frontier for a number of years, which indicates that China’s overall AEE has greater potential to increase 
when considering the ecological concepts of ‘carbon peaking’ and ‘carbon neutrality’.  

(2) The national AEE showed a spatially uneven development, with significant regional differences. In 2001–2005, the western 
region had a better AEE than that of the eastern and central regions, which alternated in second place. In 2006–2010, the AEE 
showed a Western > Eastern > Central distribution. By 2011–2020, the distribution of AEE was characterised as Eastern >
Western > Central. The western region had the highest initial AEE but failed to maintain its dominance and was later overtaken 
by the eastern region, which showed an upward trend from the 10th to the 13th Five-Year Plan period. By comparison, the 
central and western regions exhibited a downward trend overall. The possible explanation is that the eastern region is both a 
major grain-producer and grain-seller, and has continued to strengthen its strategic policy of ‘focusing on grain production and 
the synergistic development of agriculture and animal husbandry’, with more emphasis on new agricultural requirements of 
reducing carbon emissions and increasing sinks. Meanwhile, the central region’s AEE was always below the national average 
and the main contributor to the rise in national AEE, which ultimately allowed China to attain green and low-carbon agri-
cultural development. However, such growth rate was relatively slow. 

(3) The dynamic evolutionary characteristics of AEE at the national and regional levels showed differences. Specifically, the na-
tional AEE revealed a multi-polar differentiation during the period under review, with a distinct overall downward trend and a 
reduction in inter-provincial disparities. In all three regions, AEE was multi-polar or bipolar, with inter-provincial differences 
widening in the eastern and central regions, which may be caused by their incoherent pace of agricultural industry restructuring 
and modernisation. However, the inter-provincial gap within the western region narrowed significantly, which may be 

Table 5 
Robustness test results.  

Variable Coefficient 

National Eastern Central Western 

UR 1.446**(0.562) 3.026***(0.545) − 2.371***(0.575) 1.007(1.640) 
ADR − 0.163(0.159) 0.048(0.183) − 0.232*(0.129) − 0.126(0.334) 
ACOR 0.496***(0.112) 0.536***(0.113) 0.469***(0.111) 0.719**(0.278) 
AIS 0.026(0.398) 0.89*(0.472) 1.128**(0.486) − 4.047**(1.815) 
EDLA − 0.176**(0.087) − 0.047(0.093) 0.173**(0.082) − 0.300(0.244) 
cons 1.874***(0.539) − 0.777 (0.490) − 0.156(0.496) 5.910**(2.076) 

Note: Standard error is in parentheses, ***, ** and * represent significance levels of 1%, 5% and 10%, respectively. 
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attributed to the faster progress in harmonising agricultural production activities with the ecological environment in the 
provinces within the western region. All three regions need to focus on reducing the absolute differences in AEE between regions 
and breaking down their barriers in agricultural science and technology innovation and the flow of production factors.  

(4) Significant inter-provincial differences in China’s AEE were observed, and they were consistent with the current uncoordinated 
development of the Chinese economy. Twenty provinces showed average AEE values above 1 for the period 2001–2020, which 
indicates that Chinese agriculture is fully capable of achieving effective improvements in AEE under low-carbon-output con-
ditions. The provinces with higher AEE were not limited to the developed eastern regions but also notably less developed 
provinces in the west, which indicates that economic base and geographical advantages do not directly determine the con-
struction of eco-agriculture but mainly lie in their own attention and efforts. The eco-agricultural development in the central 
region remains bleak. Hainan, Guangdong, Jilin, Xinjiang, Guangxi, Guizhou and Shaanxi maintained their dominant position 
in the top 10 from the 10th to the 13th Five-Year Plan periods. Compared with the 10th Five-Year Plan, about 35 % and 40 % of 
provinces have increased and decreased their AEE rankings, respectively. Compared with provinces with high AEE levels, which 
are more mobile and less sustainable, those with low levels of AEE have a clear ‘poverty trap’, and it is difficult to escape the 
vicious cycle of bad environmental and low-carbon agriculture development. 

(5) The relationship between each impact factor and AEE showed inconsistent significance and different coefficients in the di-
rection of correlation, and locational differences have been detected. UR and ACOR contributed significantly to the improve-
ment of national AEE, with UR showing dominance. The level of agriculture hindered the improvement of national AEE. At the 
regional level, UR showed a limited role in driving AEE in the west but can greatly hinder AEE improvement in the centre while 
significantly aiding it in the east. ACOR had a significant positive effect on AEE in all three study regions. Thus, the strategic 
requirements of ‘peak carbon’ and ‘carbon neutral’ can significantly promote the green and low-carbon agricultural develop-
ment in China. AIS only inhibited the AEE improvement in the western region. Meanwhile, the EDLA showed a positive 
contribution to AEE in the central region, with no significant effect on the other two regions. The different influencing factors 
exhibited different performances on AEE across the country and the three regions, and evident regional differences were 
observed. This finding indicates the need to adjust the imbalance between the regional supply and demand of different resources 
by means of proper allocation. 

6.2. Policy implications 

According to the results, a comprehensive and balanced promotion of AEE from point to point and from part to the whole can be 
achieved in the following ways. Under the spatial unevenness in AEE, the win-win cooperation mechanism between regions can be 
continuously improved. Thus, each region can fully utilise its own advantages in agricultural production resources and avoid ‘factor 
congestion’. While ensuring that the eastern and central regions have their own advantages in green and low-carbon agricultural 
development, they should also consider the AEE development in the central region. It should also take into consideration its own 
development conditions to build a green and low-carbon agricultural industry chain and seek a balanced and coordinated development 
between agricultural economic growth, resource conservation and environmental protection. 

Secondly, based on actual situation, we should implement a region-specific management model for green and low-carbon agri-
cultural development on the premise of ensuring agricultural production, and regions with high AEE, such as Guizhou and Guangdong, 
should play a model role in radiation and establish an agricultural information and data sharing platform in this era of big data. For 
provinces with low AEE, such as Shanxi and Hebei, the use of chemical resources such as pesticides and fertilisers needs control, and 
the scale of production and specialisation of labour should be improved, which is an effective way to achieve ‘overtaking’ in the green 
and low-carbon agricultural development. Provinces such as Jilin and Inner Mongolia, where AEE can still be increased, need to focus 
on increasing the ‘green content’ to improve the ‘gold content’ and can continue to innovate new technologies for resource conser-
vation and efficient resource use, develop high-tech agriculture and rely on technological changes to increase the sustainability of 
green and low-carbon agricultural production. 

Thirdly, we intend to implement multiple measures to promote green and low-carbon agricultural development to achieve carbon 
peaking and neutrality. The ‘visible hand’ and ‘invisible hand’ should be actively used to promote AEE improvement. We need to create 
channels for the inter-provincial flow of green and low-carbon agricultural production factors through reasonable policy design. On the 
other hand, we should actively adjust and optimise the AIS, reduce the cultivation of crops with high resource consumption and 
chemical inputs and increase the cultivation of high-yielding and resistant crops to increase the net carbon effect of agriculture while 
reducing emissions of surface pollution. We will continue the following endeavours: improve the quality of UR; raise the disposable 
income of residents by stabilizing employment, lowering the tax burden, widening their investment channels and strengthening social 
security; enhance the concept of ecological civilization; and promote agriculture quality and efficiency. 

6.3. Outlook 

The research in this paper makes a useful addition to the established literature, but still has some limitations that can be added to 
and extended in the future. Specifically, given data availability, this paper does not focus its research perspective on agriculture in the 
broad sense, but rather on agriculture in the narrow sense, i.e., cultivation. In the future, we may be able to obtain more data by 
conducting extensive research or applying for data disclosure. In addition, the time interval of the study can be extended in future 
studies to incorporate machine learning methods for forecasting in order to comprehensively analyse the dynamics of AEE in China by 
2030 or 2060. 
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