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Abstract: Aggrephagy is defined as the selective degradation of aggregated proteins by autophago-
somes. Protein aggregation in organs and cells has been highlighted as a cause of multiple diseases,
including neurodegenerative diseases, cardiac failure, and renal failure. Aggregates could pose a
hazard for cell survival. Cells exhibit three main mechanisms against the accumulation of aggregates:
protein refolding by upregulation of chaperones, reduction of protein overload by translational
inhibition, and protein degradation by the ubiquitin–proteasome and autophagy–lysosome systems.
Deletion of autophagy-related genes reportedly contributes to intracellular protein aggregation
in vivo. Some proteins recognized in aggregates in preeclamptic placentas include those involved
in neurodegenerative diseases. As aggregates are derived both intracellularly and extracellularly,
special endocytosis for extracellular aggregates also employs the autophagy machinery. In this review,
we discuss how the deficiency of aggrephagy and/or macroautophagy leads to poor placentation,
resulting in preeclampsia or fetal growth restriction.

Keywords: aggrephagy; aggresome; autophagy; endoplasmic reticulum stress; inflammation; pla-
centa; preeclampsia; pregnancy; protein aggregation; transthyretin

1. Introduction

Protein aggregation and accumulation in organs have been highlighted as causes of
multiple diseases, including neurodegenerative diseases, cardiac failure, and renal failure.
Aggregate proteins, which accumulate in intracellular or extracellular portions, disrupt cell
function, resulting in organ failure. In the field of reproduction, the pathological implication
of aggregated proteins has been noted, especially preeclampsia, a major cause of maternal
and perinatal morbidity and mortality. This syndrome affects both the mother’s and child’s
health during pregnancy, as well as in later life. Thus, women with preeclampsia are
more likely to have complications from diabetes, cardiovascular diseases, kidney failure,
and hypertension [1]. Moreover, the offspring of preeclamptic mothers present a higher
risk of developing diabetes, hypertension, hormonal dysregulation, as well as delayed
development and sensorimotor reflex maturation [2]. Female offspring who become
pregnant tend to develop preeclampsia at a 2.6-time higher rate than offspring born from
non-preeclampsia mothers [3], revealing that preeclampsia effects can be observed from
one generation to the next.

Preeclampsia was originally diagnosed as newly emerged hypertension and protein-
uria in pregnant women after 20 weeks of gestation. The placental structure is completed
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after 16 weeks of gestation, and poor placentation and placental abnormalities are related
to the occurrence of preeclampsia. Furthermore, the International Society for the Study
of Hypertension in Pregnancy recently altered preeclampsia diagnostic criteria, includ-
ing some organ failures, placenta, as well as kidney or liver, in the diagnosis [4]. As the
placental size is closely related to fetal size, failure of placental development results in
fetal growth restriction (FGR) and various disorders in the offspring. Multiple factors,
including hypoxia, systemic inflammation, failure of tolerance against the fetal antigen,
failure of autophagy, or an increase in antiangiogenic factors, have been identified as
possible causes of preeclampsia [5]. Among them, the increase in antiangiogenic factors,
soluble Fms-like tyrosine kinase-1 (sFlt1) and soluble endoglin, in the maternal circulation
are the most frequently investigated both in preeclampsia clinically and in basic science.
The ratio of sFlt1 to placental growth factor has been used to predict preterm preeclamp-
sia [6]. Aspirin, known to increase the serum concentration of placental growth factor in
pregnant women [7], prevents the development of preterm preeclampsia in women who
are at a high risk of developing preeclampsia and take aspirin from the first trimester [8].
Administration of sFlt1 and soluble endoglin leads to the development of preeclampsia
in pregnant rats [9]. In contrast to these factors, the newly emerging concept of placental
protein aggregation is now gaining momentum in the pathophysiology of preeclampsia. In
this review, we discuss the role of protein aggregation in preeclampsia.

2. A Two-Stage to a Four-Stage Model for Placental Development

The etiology of preeclampsia has been discussed based on the “two-stage model”
of preeclampsia. This is the most well-known model for preeclampsia development.
Preeclampsia, especially the severe type, is frequently complicated with poor placentation,
which occurs in the first stage, and systemic endothelial dysfunction at the second stage,
and exhibits various symptoms, typically maternal hypertension and proteinuria, in preg-
nant women. During placentation, trophoblasts arise from the trophectoderm, the outer
layer of the blastocyst, and invade the decidualized endometrium under a low nutrient
and hypoxic environment, followed by implantation [10]. Proliferative cytotrophoblasts
(CTBs) form cell columns, stalks of villi, and differentiate into syncytiotrophoblasts (STBs)
on the fetal side, or into extravillous trophoblasts (EVTs) on the uterine side [11].

In human placentas, villi are covered with a multinucleated STB layer, generated
by the fusion of underlying CTBs. The fusion of STBs, also called syncytialization, is
required to transfer fetal requirements, including oxygen, amino acids, and organic ions,
from maternal blood into fetal capillaries. Meanwhile, EVTs invade and reach one-third of
the depth of the myometrium through the endometrium under approximately 2% oxygen
tension [12]. The 2% oxygen concentration is maintained in the placenta until 12 weeks of
gestation by obstructing maternal blood flow with a trophoblastic plug. Subsequently, the
trophoblastic plug comes off from the maternal spiral artery, maternal blood flow enters
the placenta in high volume, and placental oxygen tension steeply soars to approximately
7% oxygen tension. During placental development, the activation of hypoxia-mediated
autophagy supports EVT invasion owing to the energy supply [13]. EVTs are classified
based on the direction of invasion: interstitial EVTs toward the stroma and endovascular
EVTs toward uterine arteries [14]. Endovascular EVTs replace the tunica media of spiral
arteries, where apoptosis is induced by uterine natural killer cells [15]. This is called
vascular remodeling and results in a sufficient supply of blood to the placenta. These two
functions, invasion and vascular remodeling, are fundamental for normal placentation and
could be affected by intracellular and extracellular factors. As interstitial and endovascular
EVTs, which possess paternal antigens, first contact maternal immune cells and stromal
cells, various cytokines and chemokines, known to respond to cell–cell contact, are exposed
to EVTs. Some cytokines or chemokines are involved in EVT dysfunctions, resulting in
poor placentation. Furthermore, failure or delay in trophoblast differentiation could result
in poor placentation. However, the role of protein aggregation in poor placentation needs
to be elucidated.
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Following the two-stage model developed by C.W. Redman, the “four-stage model”
was proposed and has been accepted worldwide [16]. This concept adopts new mater-
nal immunological tolerization against fetal antigens before and after implantation. For
maternal immunological tolerance to occur in humans, a clonal increase of decidual regula-
tory T cells (Treg), which could be expanded against fetal/paternal antigens, is gradually
increased in normal pregnant women depending on the gestational age [17]; conversely,
clonally expanded effector memory CD8+ T cells express programmed death-1 (PD-1),
which delivers inhibitory signals via binding with PD-L1, during normal pregnancy [18].
In women with preeclampsia, increased clonal Treg and PD-1 expression in clonal CD8+ T
cells was reportedly inhibited in decidual lymphocytes. These results indicated the failure
of maternal tolerization in the four-stage model of preeclampsia. It remains unknown
whether functional disruption in trophoblasts by protein aggregation activates maternal
immune reactions or vice versa.

3. Role of Autophagy in Placental Development

Cellular and organismal homeostasis is closely associated with protein quality control,
which is balanced by protein translation, folding, and degradation. This balance could be
impaired by intracellular or extracellular stress. Misfolded proteins, if not correctly refolded,
accumulate in cells, resulting in aggregates posing a threat to cell survival. As autophagy is
involved in protein degradation to maintain cellular homeostasis, this process is initiated
by several stimuli, including hypoxia, starvation, or rapamycin, and torin-1, a more specific
inhibitor of the mammalian target of rapamycin (mTOR), or Tat-Beclin1, a Beclin-1 activa-
tor [19]. During autophagy, an isolation membrane emerges in the cytoplasm and elongates
to surround organelles non-selectively. Then, a double-membrane structure, an autophago-
some, is completed with the closure of the vesicle. Subsequently, autophagosomes fuse
with a lysosome, forming a complex called autolysosomes, and degrade the inner con-
tents by employing lysosomal hydrolases (Figure 1) [20]. This process is involved only in
macroautophagy, while others are micro-autophagy or chaperone-mediated autophagy.
As for the molecular mechanism underlying this pathway, Atg4B, a cysteine protease,
produces microtubule-associated protein 1 light chain 3 (LC3)-I, an inactive form of LC3,
and mediates the conversion of LC3-I to LC3-II, a phosphatidylethanolamine-conjugated
form, and an active form of LC3 [21]. Moreover, Atg4B converts LC3-II to LC3-1. LC3-II and
the Atg5-Atg12-Atg16L1 complex play an important role in the elongation and completion
of the autophagosome [22]. Sequestosome1 (SQSTM1), also known as p62, is a specific
substrate of the autophagy machinery and is involved in autophagosome formation.

To date, two autophagy-deficient trophoblast cell lines have been established, in-
cluding HTR-ATG4BC74A cells and HchEpC1b-ATG4BC74A cells, as well as from EVT cell
lines, HTR8/SVneo and HchEpC1b cells; in contrast, their counterparts include HTR8-
mStrawberry cells and HchEpC1b-mStrawberry cells, respectively [23]. The original
cell lines were stably transfected with pMRX-IRES-puro-mStrawberry-ATG4BC74A, an
ATG4BC74A mutant expression vector that inhibits LC3 conversion, or pMRX-IRES-puro-
mStrawberry, a control vector encoding red fluorescent protein. These autophagy-deficient
cell lines have shown sustained SQSTM1 expression levels, as well as complete deletion
of LC3-II conversion under hypoxia. As stated earlier, invasion and vascular remod-
eling are fundamental functions in EVTs for normal placentation, and these functions
are diminished in autophagy-deficient cells under hypoxia. Thus, hypoxia-mediated au-
tophagy plays a role in normal placentation. To further verify the role of autophagy in
placentation, trophoblast-specific Atg7 conditional knockout (cKO) mice were established.
Atg7flox/flox blastocysts, infected with a lentiviral vector expressing Cre recombinase, are
transduced into the uterus in pseudo-pregnant mice. As lentivirus infection is restricted
to the trophectoderm, but not the inner cell mass, while Atg7 expression is deleted only
in the placenta, but not in the fetus [24]. Atg7 is involved in the process of autophagy
activation by mediating the conjugations of the Atg12-Atg5 complex, as well as those
of LC3 and phosphatidylethanolamine [25]; this resulted in cKO mice that showed the
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failure of autophagy in placentas, accompanied with increased SQSTM1 and decreased
LC3-II in the placenta [24]. As for the phenotype in the cKO mice, blood pressure was
gradually elevated in dams during pregnancy, and placental growth was restricted in
the cKO placentas when compared with the control. Histological analysis revealed that
SQSTM1 was considerably accumulated in the spongiotrophoblast layer, resulting in a
smaller area than that in the control placenta. Furthermore, apoptosis was increased in the
cKO placental layer (Figure 2). As Atg7 protects cells against metabolic stress by inducing
cell cycle arrest mediated via the p53-p21 axis [26], apoptosis mediated by Atg7 deficiency
might restrict placental growth. SQSTM1 specifically binds to aggregated proteins and is
therefore used as a marker of aggregated proteins [27]. Moreover, SQSTM1 accumulates in
trophoblasts in the spongiotrophoblast layer of Atg7 cKO placentas, and similar results
were observed in cKO placentas with ProteoStat® staining, a specific rotor dye for detecting
aggregated proteins [28]. The cKO placentas were implanted into pseudo-pregnant mice,
which present normal autophagic functions. Thus, carrying autophagy-deficient placenta
elicits preeclampsia-like phenotypes in autophagy-normal dams; i.e., autophagy is required
for normal placental development.
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4. Aggrephagy in General

Macroautophagy was originally identified as a physiological process via which au-
tophagosomes degrade some organelles non-selectively, especially under conditions of
starvation, to maintain cellular homeostasis [20]. Currently, several types of “selective”
autophagy processes have been named after the target, including aggrephagy (targeting
protein aggregates), allophagy (targeting allogeneic organelles; i.e., elimination of pater-
nal mitochondrial DNA by autophagy), chromatophagy (targeting chromatin), ER-phagy
(endoplasmic reticulum: ER), ferritinophagy (targeting iron-bound ferritin), lipophagy
(targeting lipid droplets), lysophagy (targeting lysosomes), pexophagy (targeting peroxi-
some), mitophagy (targeting the mitochondria), or xenophagy (targeting pathogens) [29].
Among them, aggrephagy involves the selective degradation of aggregated proteins by
autophagosomes [30]. Misfolded proteins, which are produced by mutations or incomplete
translation, or aberrant proteins, which are damaged by oxidative or other stress, can fail to
form intact protein complexes. Once the proteins are degraded, these dispensable proteins
are assembled and transferred to aggresomes dependent on microtubules for degradation
(Figure 3). As the accumulation of misfolded proteins poses a hazard to cells, molecular
chaperones are involved in repairing misfolding to maintain protein quality control in
cells. However, if the damaged proteins are beyond refolding, misfolded or aggregated
proteins are forwarded to two protein degradation systems: the ubiquitin–proteasome
system and autophagy–lysosome system. Conversely, protein translation is transcrip-
tionally inhibited to prevent the overload of misfolded proteins in cells [31]. Although
protein translation is activated by mTOR, the activation of mTOR is involved in autophagy
inhibition. Ras homolog enriched in the brain (RHEB), which activates mTOR complex
1, inhibits the transportation of protein aggregates to aggresomes by dissociation of the
dynein–aggregate complex [32]. Accordingly, RHEB increases the sensitivity to apoptosis
induced by aggregates.
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The aggregated protein, which is K63-polyubiquitinated, is trapped with HDAC6. The HDAC6 complex is transferred to
the microtubule organizing center (MTOC) via dynein, resulting in aggresome. The autophagic adaptor proteins, SQSTM1
and ALFY, bind to aggresome to attract autophagosome membrane.

The role of autophagy has been well studied in the field of neurodegenerative diseases
such as Alzheimer’s disease (AD), amyloidosis, Parkinson’s disease, and polyglutamine
diseases [33]. In clinical settings, immunohistochemical analysis of SQSTM1 is often used to
detect a deficiency of aggrephagy in tissues [34,35], as loss of SQSTM1 in the mouse model
suppresses protein aggregation induced by autophagy-deficient neurons and livers [36].
The other autophagy receptor proteins, autophagy-linked FYVE protein (ALFY), a neighbor
of BRCA1, and TAX1 binding protein 1, are also included in protein aggregates, substrates
of which are polyubiquitinated with the K63 chain [30]. ALFY enhanced the degradation
of α-synuclein and polyglutamine inclusions with Atg5 [37]. Moreover, ALFY is involved
in aggrephagy but not in starvation-induced autophagy. Histone deacetylase-6 (HDAC6),
which binds to the F-actin cytoskeleton and microtubules for cellular movement, also
plays a central role in transferring polyubiquitinated misfolded proteins to aggresomes
via dynein (Figure 3). HDAC6 deficient-cells were sensitized to apoptosis induced by
misfolded protein accumulation [38]. Although HDAC6 is dispensable for autophagy
activation, HDAC6 is indispensable in basal autophagy via autophagosome–lysosome
fusion, a fundamental process of autophagy, resulting in the enhancement of protein
aggregation via F-actin [39]. The aggresome, composed of insoluble ubiquitinated proteins,
is located at the microtubule organizing center (MTOC), the peri-nuclei envelope (Figure 3).
BAG cochaperone 3 also binds to dynein to transport heat shock protein 70 substrates
to the aggresome [40]. Other players involved in aggrephagy include p97/VCP (valosin-
containing protein), a ubiquitin-associated HSP-independent molecular chaperone, and
ubiquilin-1, a chaperone protein. In fibroblasts derived from patients with diseases such as
inclusion body myopathy, Paget disease of bone, and frontotemporal dementia, mutation
of p97/VCP revealed the impairment of autophagosome maturation like HDAC6 [41], as
well as ER-associated degradation (ERAD) [42]. Similar to p97/VCP1, ubiquilin-1 also
interacts with aggresome formation and ERAD. As decreased ubiquilin-1 levels have been
reported in patients with AD, this protein may be related to the occurrence of late-onset
AD [43].

Another possible role of autophagy in preventing neurodegenerative diseases via
an aggrephagy-related mechanism is LC3-associated endocytosis, which is also called
LANDO [44]. Deposition of amyloid β (Aβ) peptide in the central nervous system activates
the inflammatory pathway, enhancing the progression of AD. LC3-associated endocytosis
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internalized the complex of Aβ and TREM2 (triggering receptor expressed on myeloid cells
2), a receptor of Aβ, via endocytosis in primary microglia derived from Rubicon (RUN
and cysteine-rich domain-containing beclin1 interacting protein) knockout mice. This
reduces Aβ deposition in the brain, as well as pro-inflammatory cytokine production by
decreasing extracellular Aβ deposition. As LC3-associated endocytosis requires the process
of LC3 maturation, Atg4, Atg5, Rubicon, and RavZ are indispensable for LC3-associated
endocytosis, but FIP200 (FAK family kinase-interacting protein of 200 kDa), which is
required for macroautophagy, is dispensable for LC3-associated endocytosis. In terms of
more general extracellular targets, chaperone- and receptor-mediated extracellular protein
degradation (CRED) is involved in reducing extracellular misfolded proteins [45]. Clusterin,
which selectively binds to the misfolded protein as an extracellular chaperone, undertakes
endocytosis via the heparan sulfate receptor, a proteoglycan, on the cell surface, delivering
the cargo to the lysosome. As clusterin binds to Aβ, CRED may play an important role in
the occurrence or progression of AD. Collectively, LC3-associated endocytosis and CRED
might prevent the growth of misfolded proteins, which could be exaggerated by heat shock
stress, oxidative stress, or inflammation in the bloodstream.

5. Aggrephagy in Placentas

Transthyretin (TTR), a protein that binds to thyroxine and retinol, which mainly forms
a homotetramer, constitutes cytotoxic amyloid fibrils when pathological mutated TTR is
produced in the liver, choroid plexus of the brain, and retina. TTR amyloidosis has been
reported in a group of 25 diseases, including AD, owing to TTR deposition in the brain. An
in vitro study showed that even wild-type TTR monomers rapidly assembled and formed
small aggregates, resulting in cell death in tissue culture [46]. In serum samples from
women with preeclampsia, surface-enhanced laser desorption ionization-time-of-flight,
known as SELDI-TOF, revealed that TTR monomers in serum were significantly decreased
during preeclampsia when compared with that in normal pregnant women [47]. The
reduced serum TTR can be attributed to the deposition of TTR in preeclamptic placen-
tas, in which the aggregated TTR exists as nanoparticles [48]. Furthermore, autophagy
plays a role in eliminating nanoparticles in trophoblasts [49]. In addition, the TTR aggre-
gates eluted from preeclampsia sera induced preeclampsia-like features, hypertension,
and proteinuria in interleukin (IL)-10 knockout mice. Aggregated proteins, including Aβ

precursor protein, can be detected in urine samples, as well as in placentas from women
with preeclampsia [50]. Proteome analysis revealed differential protein profiles in the
detergent-insoluble protein fraction between normal pregnancy and preeclampsia placen-
tas [51]. The detergent-insoluble proteins included more endoglin, whose soluble forms are
upregulated in the preeclampsia serum, and less vimentin, which is a structural protein of
the aggresome. Thus, aggregates are present, but aggresome formation might be impaired
in preeclamptic placentas.

A recent study focused on the pregnancy zona protein (PZP), which has an im-
munosuppressive effect and is produced by the placenta or leukocytes [52–54], reportedly
inhibiting protein aggregation, including Aβ [55]. The concentration of PZP in plasma,
also known as a protease inhibitor, peaks at approximately 3 mg/mL maximally, at the
beginning of the 3rd trimester during pregnancy [56]; conversely, that in the non-pregnant
population is approximately < 0.03 mg/mL. As mentioned before, clusterin inhibits protein
aggregation, and haptoglobin and α2-macroglobulin demonstrate functions similar to
clusterin. As PZP is a protein homologous to α2-macroglobulin, and these proteins, except
PZP, are not increase during normal pregnancy [57,58], PZP might mediate endocytosis of
aggregated proteins during pregnancy, like clusterin. In contrast, it has been reported that
serum concentrations of clusterin are significantly upregulated in women with preeclamp-
sia, compared with normal pregnant women, indicating the increase in aggregated proteins
in the serum of women with preeclampsia [59].

For protein aggregates in preeclamptic placentas, SQSTM1 accumulation was ob-
served in the syncytiotrophoblast layer, accompanied by the downregulation of lysosomal
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proteins [28]. Indeed, protein aggregates in sera from women with preeclampsia are con-
siderably captured into HchEpC1b-ATG4BC74A cells, the autophagy-deficient trophoblast
cell line, when compared with their counterparts. Furthermore, this phenomenon was
observed in Atg7 cKO placentas. Thus, aggrephagy deficiency, including macroautophagy
deficiency, contributes to the deposition of protein aggregates in preeclamptic placentas [5].
In terms of the underlying molecular mechanism, downregulation of transcriptional factor
EB (TFEB) is responsible for lysosomal dysfunction-mediated autophagy deficiency [28].
Tfeb, the basic Helix-Loop-Helix-Zipper family member, is well-known to centrally reg-
ulate autophagy and lysosomal biogenesis [46] and is essential for normal placentation.
Deficiency of Tfeb results in embryonic lethality as the vasculature in the labyrinth layer
of the placenta fails to grow owing to the loss of vascular endothelial growth factor [47].
In vitro studies have revealed that TFEB is downregulated by hypoxia in primary tro-
phoblasts, and transactivation of TFEB, which moves into nuclei, is completely abolished
by treatment with bafilomycin A1, an activator of TFEB, in the HchEpC1b-ATG4BC74A

cells. Inhibition of TFEB is retained by the hyperactivation of mTOR. The serum level of
mTOR complex1, which is highly expressed in preeclamptic placentas, might be extremely
useful for predicting hypertension, but not proteinuria, in women with preeclampsia
between 24 and 28 weeks of gestation [60]. This is consistent with the findings of Atg7
cKO placentas, inducing hypertension and poor placentation, but not proteinuria in dams.
TFEB downregulation was observed in two independent placenta-specific Atg7 knockout
mice, cKO placentas, and labyrinth layer-specific Atg7 knockout placentas, accompanied
by increased SQSTM1 and decreased lysosomal biogenesis [61]. Thus, autophagy inhi-
bition, including aggrephagy inhibition, mediates hypertension rather than proteinuria
in women with preeclampsia [62]. Another mechanism for aggrephagy inhibition is the
reduction of p97/VCP, which blocks autophagosome maturation, as mentioned previously.
Reduced p97/VCP can be observed in preeclamptic placentas with ubiquitinated protein
accumulation [63]. It is still unclear whether protein aggregates affect cellular functions
in trophoblast, resulting in preeclampsia. Hereafter, it should be figured out that protein
aggregates in trophoblasts cause preeclampsia.

6. Protein Aggregation and ER Stress in Placentas

ER stress has been identified in placentas presenting FGR, predominantly in FGR
accompanied with preeclampsia, further eliciting placental growth restriction via transla-
tional inhibition [64]. Histological analysis of the human preeclamptic placenta revealed
that cisternae of the ER are more dilated and the amorphous proteinaceous precipitates are
considerably filled, which are signs of ER stress [65]. Repeated exposure to tunicamycin,
an ER stress inducer, increased the expression of DNA damage-inducible transcript 3
(DDIT3, also known as CHOP), inhibiting placental and fetal growth [66]. The placental
structure is aberrant, narrowing the vasculature in the labyrinth layer and decreasing the
influx of maternal blood. The observed increase in DDIT3 expression in placentas with
ER stress is consistent with that of human placentas with preeclampsia accompanied by
FGR. Paradoxically, inositol-requiring enzyme-1 (IRE1), an ER-resident protein, is required
for placental development; IRE-1 is activated in the placenta, but not in the fetus [67]. As
observed in tunicamycin-treated placentas, the vascular structure in the labyrinth layer
was disrupted in IRE1-knockout mice, accompanied by a reduction in vascular endothelial
growth factor-A. Thus, moderate ER stress is required for normal placental development,
low ER stress leads to miscarriage, and excessive stress affects placental growth, resulting
in FGR and/or preeclampsia.

Excessive ER stress induced by chemical ER stress inducers decreased lysosomal
numbers in trophoblast cell lines, resulting in the accumulation of autophagosomes and
a decrease in autolysosomes, a sign of suppressed autophagic flux [68]. Chloroquine,
bafilomycin A1, or wortmannin, known autophagy inhibitors, also increased ER stress, as
confirmed by the increased expression of heat shock protein family A member 5 [68]. Col-
lectively, autophagy inhibition exaggerates ER stress in trophoblast cells and vice versa. As
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mentioned earlier, lysosomes are involved in the degradation of aggregated proteins endo-
cytosed by CRED. The accumulation of intracellular and extracellular aggregated proteins
may be enhanced by ER stress in trophoblasts. Moreover, the lysosome-autophagy system
is involved in the degradation of intracellular and extracellular aggregates in trophoblasts.

Accordingly, IRE1α is highly expressed in placentas from early-onset preeclampsia
pregnancies [69]. As IRE1-deficient Dictyostelium cells indicate collapsed ER cisternae,
tunicamycin-induced ER stress inhibited autophagosome assembly on the ER membrane,
suggesting that IRE1 maintains the ER membrane as a platform for autophagosome as-
sembly [70,71]. Furthermore, ER stress induces protein aggregates, including ubiquitin,
in IRE1-deficient cells. As ER-phagy, which has an inhibitory effect on the accumulation
of aggregation-prone proteins [72], is required for maintaining ER homeostasis, monitor-
ing and controlling ER-phagy can be considered to regulate protein aggregation in the
placenta. Although ER-phagy shares a common molecular mechanism with macroau-
tophagy, the specific molecular mechanism of ER-phagy demonstrates that family with
sequence similarity 134, member B (FAM134B), which preferentially localizes in the ER
membrane, binds to LC3 to attract autophagosomes, and Atlastin2, a dynamin-superfamily
GTPase, enhances the fragmentation of ER marked with FAM134B, which is engulfed
by autophagosomes [73,74]. Thus, macroautophagy could prevent the accumulation of
aggregated proteins along with ER-phagy for protein quality control in human placentas.

7. Conclusions and Future Directions; Immunological Aspects in Aggrephagy for
Pregnant Women

Selective and non-selective degradation of aggregated proteins by autophagy, in-
cluding aggrephagy, is required for maintaining homeostasis in the placenta. Similar
to neurodegenerative diseases, excessive protein aggregates lead to the disruption of
normal functions in trophoblasts, resulting in preeclampsia or FGR. Conversely, the mech-
anism through which misfolded proteins aggregate in cells would differ between the
placenta and central nervous system, as neurodegenerative diseases gradually progress
with age, but pregnancy-related diseases progress in less than a year. This suggests that
a unique mechanism for protein aggregation exists in placentas with preeclampsia and
FGR. From the viewpoint of systemic inflammation observed in women with preeclamp-
sia, this is caused by sterile inflammation because the placenta does not exhibit bacterial
infection. Hypoxia-reoxygenation stress increased ER stress in a choriocarcinoma cell
line, BeWo cells, and severe hypoxia-induced pro-inflammatory cytokine production in
primary trophoblasts via pyroptosis [69,75]. Autophagy deficiency in trophoblasts en-
hanced pyroptosis-mediated production of pro-inflammatory cytokines, as ubiquitinated
inflammasomes, which are earmarked with SQSTM1, were degraded by the autophagy ma-
chinery [76]. Furthermore, autophagy can maintain immunosuppression via Treg cells and
prevents inflammatory cell infiltration into various organs [77]. Endometrial endothelial
cells induce pro-inflammatory cytokines via phagocytosis of apoptotic trophoblast cells [78],
and phagocytosis of dying cells is also mediated by autophagy-related LC3-associated
phagocytosis. LC3-associated phagocytosis is involved in the elimination of dying cells
to prevent excessive pro-inflammatory cytokine production [79]. The other possibility is
that fetuses and placentas, semi-allografts, require immune tolerance from the maternal
immune system. As clonally expanded maternal Treg cells against paternal antigens, which
are maintained until the following pregnancy in the same individual, are likely to inhibit
the occurrence of preeclampsia [80], autophagy might be required for the maintenance of
clonal Treg cells during pregnancy. Moreover, non-degradative functions mediated by the
autophagy machinery are related to homeostasis in the placenta [81]. There remain several
aspects to investigate autophagy in preeclampsia and FGR. Accordingly, new therapies for
placenta-mediated diseases have been developed.
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Aβ amyloid β

AD Alzheimer’s disease
ALFY autophagy-linked FYVE protein
Atg autophagy-related
cKO conditional knockout
CRED chaperone- and receptor-mediated extracellular protein degradation
CTBs cytotrophoblasts
DDIT3 DNA damage-inducible transcript 3
ER endoplasmic reticulum
ERAD endoplasmic reticulum-associated degradation
EVTs extravillous trophoblasts
FAM134B family with sequence similarity 134 member B
FGR fetal growth restriction
HDAC6 histone deacetylase-6
IRE1 inositol-requiring enzyme-1
LC3 microtubule-associated protein 1 light chain 3
MTOC microtubule-organizing center
mTOR mammalian target of rapamycin
SQSTM1 sequestosome 1
PZP pregnancy zona protein
RHEB Ras homolog enriched in the brain
Rubicon RUN and cysteine-rich domain-containing beclin1 interacting protein
SELDI-TOF surface-enhanced laser desorption ionization-time-of-flight
sFlt1 soluble Fms-like tyrosine kinase-1
STBs syncytiotrophoblasts
TFEB transcriptional factor EB
Treg regulatory T cells
TREM2 triggering receptor expressed on myeloid cells 2
TTR Transthyretin
P97/VCP valosin-containing protein
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