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Abstract

Acute myeloid leukemia (AML) is the most common type of acute leukemia in adults. AML is a heterogeneous
malignancy characterized by distinct genetic and epigenetic abnormalities. Recent genome-wide DNA methylation
studies have highlighted an important role of dysregulated methylation signature in AML from biological and clinical
standpoint. In this review, we will outline the recent advances in the methylome study of AML and overview the
impacts of DNA methylation on AML diagnosis, treatment, and prognosis.
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Background
Acute myeloid leukemia (AML) is characterized by
clonal expansion of undifferentiated myeloid precursors,
resulting in impaired hematopoiesis and bone marrow
failure [1]. AML is a predominantly fatal hematopoietic
malignancy with high heterogeneity [2–5]. Genetic het-
erogeneity has been appreciated in AML since early
karyotyping studies [6]. With next-generation sequen-
cing (NGS), genome studies of somatic mutations have
shown a comprehensive landscape of AML and contrib-
uted to the understanding of the pathogenesis and
progression of AML [5, 7–9]. A latest study of 1540
AML patients revealed distinct molecular subgroups that
reflect discrete paths in the evolution of AML, informing
disease classification and prognostic stratification [5]. It
is well established that genetic aberrations play a critical
role on the diagnosis, treatment, and prognosis of AML,
which is fully reflected in the National Comprehensive
Cancer Network (NCCN) guidelines for AML. However,
nearly 50% of AML samples have a normal karyotype and
many patients carry no mutation [10–12]. Meanwhile,
DNA methylation patterns are altered in numerous

cancers and often correlate with clinically relevant infor-
mation such as subtypes, prognosis, and drug response
[13–15]. Indeed, aberrant DNA methylation patterns are a
hallmark of AML [16–18]. Despite the recognized rela-
tionship between DNA methylation and AML, the devel-
opment of methylome assessment is limited by the lack of
rapid, reliable assays that provide validated information.
Recently, the advance of technologies, e.g., DNA methyla-
tion microarrays and next-generation sequencing [19–25],
has made methylome analysis less time-consuming, repro-
ducible, and cost-effective [24, 26], and the genome-wide
coverage has been extended to non-CpG island regions,
e.g., enhancer, exon, intron, and intergenic [21, 24, 25, 27].
With high accuracy and robustness, DNA methylation
analysis has been confirmed to be feasible and reliable in
clinical diagnosis and precision medicine, especially for
highly heterogeneous diseases such as AML [26, 28, 29].
There are now an increasing number of studies reporting
aberrant DNA methylation in AML [30–34], and new
methods for detecting DNA methylation on a genome-
wide scale have significantly widened our knowledge
about aberrant methylation patterns in AML. For
example, distinct DNA methylation patterns are used
to define AML subgroups and a set of aberrantly meth-
ylated genes are identified and linked to the clinical
outcome [9, 30, 35]. Additionally, DNA methylation
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and mutation patterns may occur with distinct kinetics
to affect the biological and clinical features of AML [9].

Distinct DNA methylation patterns identified in AML
AML is a highly heterogeneous disease with fewer muta-
tions than most other adult cancers [7]. This difference
suggests that other mechanisms, e.g., epigenetics or post-
transcriptional regulations to play a pivotal role in
determining the biological behavior of the disease. DNA
methylation is the major mode of epigenetic modification
[36–38], which plays an important role in carcinogenesis
(Fig. 1). Aberrant DNA methylation patterns are a charac-
teristic feature of AML [7, 17, 18]. Several studies have
evaluated genome-wide methylation in AML [7, 9, 30, 39].
The Cancer Genome Atlas Research Network (TCGA)
performed methylation profiling for 192 samples of AML
using Illumina Infinium HumanMethylation450 BeadChip
and identified significant changes in DNA methylation at
160,519 CpG loci, which accounted for 42% of sites tested,
with 67% resulting in hypermethylation and 33% resulting
in hypomethylation [7]. A pairwise AML cohort study
examining the DNA methylation by enhanced reduced
representation bisulfite sequencing (ERBBS) based on
NGS platform suggested that global DNA methylation
allele shifting was a universal feature of AML relative
to normal bone marrow controls [9]. Another detailed
study on the genomic DNA methylation landscape

profiling using HpaII tiny fragment enrichment by
ligation-mediated PCR (HELP) methylation microarrays
revealed the existence of 16 distinct DNA methylation
patterns in AML [30]. Each of these DNA methylation-
defined AML subtypes displayed a unique epigenetic
signature when compared with the normal bone marrow
CD34+ cells. Though 11 of 16 clusters correspond to
AML subtypes defined by the World Health Organization
(WHO) or related to specific genetic and epigenetic le-
sions, 5 new clusters could not be explained based on
known morphologic, cytogenetic, or molecular features.
In fact, each of these AML subtypes displays a distinct
DNA methylation pattern. Although this scenario was
previously proposed, the findings represent an important
progress made possible by the use of large-scale genome-
wide DNA methylation profiling technology.
Cytogenetically normal AML (CN-AML), which con-

stitutes between 40 to 50% of all AML cases [40], is the
most heterogeneous group in AML. Interestingly, a
genome-wide differential methylation study in CN-AML
using Illumina 450 K methylation array found that the
most pronounced changes in DNA methylation occurred
in non-CpG island regions, whereas hypermethylation
enrichment was only represented in CpG islands [41].
It is foreseeable that future research will provide more

clarity and precision to the methylome landscape of
AML.

Fig. 1 DNA methylation and deregulation of the genome in carcinogenesis. Methylation of cytosine within CpG dinucleotides is catalyzed by
DNMTs. S-adenosylmethionine (SAM) donates methyl groups and is converted to S-adenosylhomocysteine (SAH). In normal cells (lower left), CpG
islands are often associated with gene promoters and are resistant to DNA methylation. Gene expression can occur and is highly correlated with
high levels of gene body (genic) methylation. CpG-poor regions (intergenic), except for enhancers, are typically methylated, while CpG-poor
promoters are silenced by DNA methylation unless gene expression is required in specific tissue. In cancer cells (lower right), CpG islands are
prone to DNA hypermethylation, which results in aberrant gene silencing (e.g., of tumor suppressor genes). Concomitant hypomethylation of
intergenic regions and CpG-poor promoters contributes to genomic instability and aberrant gene expression (e.g., of oncogenes), respectively.
Green circle, unmethylated CpG; purple circle, methylated CpG
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DNA methylation in diagnosis classification of AML
Recent genome-wide studies identified DNA methylation
signatures unique for subtypes of AML patients [30],
which could be valuable for diagnosis classification of
AML [7, 9, 30]. Li et al. [9] examined the epigenetic het-
erogeneity by ERRBS in serial diagnosis-relapse pairwise
AML samples and defined three categories of DNA
methylation-shifted loci: loci unique to diagnosis, loci
unique to relapse, or loci present at both diagnosis and
relapse. This analysis segregated AML patients into three
clusters with no significant association with age, white
blood cell count (WBC), or the French–American–British
(FAB) classification, suggesting that DNA methylation
pattern could be an independent diagnosis classification
for AML patients. Furthermore, different cytogenetic and
molecular subtypes were found to exhibit highly dis-
tinct DNA methylation profiles [7, 17, 30, 39, 42],
providing a new perspective for diagnosis classification
of AML. For cases with t(8;21), inv(16) or t(16;16),
t(15;17) or t(v;11q23) translocations, or the presence of
the relevant fusion genes, unique DNA methylation sig-
natures can define these AML subtypes [7, 17, 30, 39].
Accentuated DNA hyper- and hypomethylation were
both identified in t(8;21)-AML1/ETO and inv(16)-
t(16;16)-CBFB-MYH11 by Illumina 450 K, with hypo-
methylation being the predominant feature. However,
almost equally accentuated DNA hyper- and hypome-
thylation was found in t(15,17)-PML-RARa. Unlike
these DNA methylation patterns, a very pronounced DNA
hypomethylation signature was found in t(v;11q23)-MLL
translocations [7, 30, 33]. It is proposed that the under-
lying mechanism of aberrant DNA methylation induction
in these AML was that these fusion genes might recruit
DNA methyltransferases (DNMTs) to their binding site
[43–45]. In addition, secondary epigenetic dysregulation
might also contribute to the aberrant methylation, which
includes the binding of PML-RARa to genomic regions of
epigenetic modifiers such as DNMT3A and/or DNA
methylation disruption of AML1-ETO target genes
[46–48]. In a recent study of 60 acute promyelocytic
leukemia (APL) primary samples at diagnosis, methylation
of DAPK1, miR-34a and -34b/c were tumor-specific in
APL [49]. Hájková et al. reported a novel hypomethylation
pattern specific to CBFB-MYH11 fusion resulting from
inv(16) rearrangement using targeted bisulfite sequencing
in AML patients [42]. They found that average levels of
DNA methylation in assigned regulatory regions of MN1,
SPARC, ST18, and DHRS3 were significantly lower for
inv(16) compared to non-inv(16) AML M4, other AML
subtypes, and healthy controls (p < 0.0001).
Apart from translocations or the relevant fusion genes,

recurrent mutations (e.g., NPM1, CEBPA, RUNX1) in
AML can be defined by DNA methylation differences,
especially for mutations in epigenetic regulator genes

(e.g., DNMT3A, TET2, IDH1/2) [7, 30, 42]. For NPM1
mutations, four DNA methylation clusters were identi-
fied: one hypermethylated and three both hyper- and
hypomethylated identified using HELP [30], the strong
hypomethylation signature identified using Illumia
450 K [7], and the hypermethylation signature identified
using MethylCap-seq [50]. For CEBPA double muta-
tions, the cases could be split to two distinct subtypes
with different methylation signatures: one hypermethy-
lated and one hypomethylated identified using HELP
[30], and the DNA hypermethylated signature identified
using Illumina 450 K [7]. However, discrete hyper- and
hypomethylation signatures were showed for RUNX1
mutations using Illumina 450 K [7].
DNMTs (DNMT1, DNMT3A, and DNMT3B) encode

methyltransferases that catalyze the addition of a methyl
group to the cytosine residue of CpG dinucleotide to
maintain methylation status of hematopoietic stem and
progenitor cells [51, 52]. DNMT3A is the essential DNA
methylation regulator, was thought to have a severe im-
pact on DNA methylation patterns [53, 54]. Mutations
in DNMT3A contribute to dysregulation of DNA methy-
lation may result in global shifts in gene expression in
hematologic malignancies, which frequently leads to
increased self-renewal in blood cells at the expense of
normal differentiation [51, 55, 56]. DNMT3A mutations
are present in preleukemic hematopoietic stem cells
(HSCs), and it is considered an early event in AML [57].
Qu et al. demonstrated that DNMT3A mutations were a
main genetic contributor to the global methylation
pattern, and two CN-AML subtypes were generated ac-
cording to the samples with or without DNMT3A muta-
tions [41]. Additionally, Marcucci et al. noted that only
DNMT3A-R882 mutations were associated with hyper-
methylation [50]. Furthermore, TET2 and IDH1/2 muta-
tions resulted in genome-wide DNA hypermethylation
signature, especially for IDH1/2 mutations [7, 16, 39, 50].
A meta-analysis also supported the diagnostic value of
DNA methylation in leukemia with 41 case-control stud-
ies [58]. In this study, 20 genes were found to be aber-
rantly methylated in the leukemia patients, and CDKN2A,
CDKN2B, and ID4 genes were significantly hypermethy-
lated in AML. Though recent studies have identified the
relationship between DNA methylation abnormalities and
AML variability [17, 30, 39], more details remain to be re-
vealed and many mechanisms remain unclear [17, 59].
Nevertheless, the value of DNA methylation in the diag-
nosis stratification of AML cannot be underappreciated.

DNA methylation in prognostic stratification of AML
Many studies have found that DNA methylation could
predict clinical outcome in AML patients and aberrant
DNA methylation can serve as a biomarker for risk
stratification (Table 1) [9, 16, 31, 33–35]. However, the
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results were inconsistent due to the difference in AML
cohort, genomic regions analyzed, functions of anno-
tated methylated genes, and methods of detection and
analysis. Deneberg et al. [31] reported that global and
gene-specific methylation patterns were independently
associated with the clinical outcome in AML patients.
They analyzed the methylation of CDKN2B, E-cadherin
(CDH) and hypermethylated in cancer 1 (HIC1) pro-
moters, and global DNA methylation in 107 AML pa-
tients by the luminometric methylation assay (LUMA).
They also assessed genome-wide promoter associated
methylation using the Illumina HumanMethylation27
array in 20 patients. Multivariate analysis suggested that
low global DNA methylation was associated with higher
complete response (CR) rate, and increased genome-
wide promoter associated methylation was associated
with better overall survival (OS) and disease-free survival
(DFS). Furthermore, P15 methylation was associated
with better OS and PFS, while CDH and HIC1 methyla-
tion was not associated with clinical outcome [31].
Figueroa et al. analyzed distinct DNA methylation

signatures, identified new AML subtypes, and explored
the potential use of aberrant DNA methylation as a pre-
dictor of important clinical features. With a three-step
approach of model development and validation using a
large data set, they reported a 15-gene methylation clas-
sifier predictive of OS [30]. These results suggested that
DNA methylation classifier could serve as a clinically
useful biomarker. Luskin et al. [35] recently reported a
validated clinical measure of DNA methylation, M score,
generated from expedited HpaII small fragment enrich-
ment by ligation-mediated PCR (xMELP) assays [60, 61]
that represent a binary prognostic classifier for patients
with de novo AML. The M score was robustly associated
with CR and OS in both univariable and multivariable
models in multiple independent AML cohorts, as well as

for AML patients aged ≤60 years with intermediate
cytogenetics [35]. A high M score represented a shorter
2-year OS (24 vs 56%) and a lower CR rate (61 vs 84%)
compared with a low M score. These findings confirmed
the association of M score with clinical outcome, which
has been further validated in an independent cohort of
patients with APL and secondary AML [62]. Remark-
ably, the association of M score with clinical outcome
was stronger than that of many established prognostic
factors, including cytogenetics, FLT3-ITD status, and
other genetic lesions. Additionally, the M score classifier
also defined subgroups with significantly OS within a
traditionally high-risk subgroup with intermediate cyto-
genetics and FLT3-ITD mutation. These results suggest
that DNA methylation can be used for risk stratification,
which might decrease the need for comprehensive gen-
etic testing for risk stratification at diagnosis due to its
better prognostic performance [35].
Similarly, a recent NGS study pointed out that epigen-

etic and genetic heterogeneity occurred with distinct
kinetics in AML. The changes in DNA methylation
burden were independent of the abundance of somatic
mutations in patients, and relapsed AMLs showed
variable changes in DNA methylation burden, which was
antecedent to the genetic evolution. Furthermore, the
variance of CpG methylation patterns (measured as
EPM) were associated with the time to relapse, whereas
the burden of somatic mutations was not. The patients
with high EPM at diagnosis had a shorter time to relapse
compared to the low-EPM cohort (p = 0.0396), which was
most significant for EPM values assessed from promoter-
annotated epigenetically shifted loci (p = 0.0077) [9]. The
study also detected a specific set of 21 promoter-
annotated DNA methylation shifted loci to be associated
with a shorter time to relapse, which could be used as out-
come biomarkers [9]. Using MethylCap-seq, Marcucci et

Table 1 Prognostic genes regulated by DNA methylation identified in AML by genome-wide, large sample studies

Reference DNA methylation detection
methods

AML group Prognostic genes regulated by DNA methylation

Figueroa et al. [16] HELP 344 Newly diagnosed
AML

BLR1 (CXCR5), BTBD3, E2F1, FAM110A, FAM30A, GALNT5, KIAA1305, LCK,
LMCD1, PRMT7, SLC7A6OS, SMG6, SRR, USP50, VWF, ZFP161

Li et al. [9] ERRBS 138 Paried AML
(diagnosis and relapse)

CCDC85C, CHL1, ELAVL2, FAM115A, FAM196A, GPR146, GPR6, HELZ2, ID4,
IL2RA, KCNG3, LOC254559, LOC284801, NPAS2, PCDHAC2, PROB1, SHISA6,
SLC18A3, SOCS2, TRIM67, ZFP42

Marcucci et al. [50] MethylCap-seq 134 CN-AML
(355 CN-AML validated)

AATK, ACAP3, ADCK2, ADCY6, AGPAT9, AHCY, ALOX15B, ANXA6, APBB1,
APOD, AQP11, ARHGAP27, AXL, BRF1, C15orf62, C17orf77, C8orf51, CABLES1,
CARD11, CD34a, CHMP7, CISH, CLDN15, CLEC3B, DDIT4, DHCR24, DHRS12,
EGFL7, ETS1, EVC, F2RL1a, FAM92A1a, FCHO1, FKBP4, FLVCR1, FLVCR1-AS1,
FZD6, GAL3ST3, GCNT2, GIT1, GPR56, H1F0, HCN2, HIVEP3, IQSEC1, KCNK6,
KDM2B, KLHL3, KNCN, LOC646627, MDFI, ME3, MEOX1, MIR126, MIR155HGa,
MVD, NAV1, NBL1, NLRP1, PLK3, PMM1, PRKCZ, PRKG2, RAB36, RGS3, RHOCa,
RHPN1, SCARF1, SCRN1a, SH3TC1, SPRY1, SRC, TBL2, TCEA3, TENC1, UBXN6,
VWA8a, WDR16, WDR86, WRAP53, ZNF623, ZNF70

aSeven genes (CD34, RHOC, SCRN1, F2RL1, FAM92A1, MIR155HG, and VWA8) had not only DNA methylation regions (DMRs) but also expression levels that were
associated with outcome
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al. identified 82 individual genes, the promoter different
methylation regions (DMRs) of which were associated
with OS in a set of older patients with CN-AML [50]. For
80 genes, higher DMR methylation was related to longer
OS. Combined with the expression data, a novel seven-
gene score for clinical prognosis was generated validated
in four independent CN-AML patient sets (n = 355). In
multivariable analyses, patients with low scores had a
more than 80% increase in the odds of achieving CR and
approximately 3.5-fold decrease in the risk of disease re-
lapse or death compared with patients with high scores
[50]. Using targeted bisulfite sequencing, Hájková et al.
[42] revealed that PBX3 differential methylation could
impact on prognosis of AML. They found that the hypo-
methylation of PBX3 regulatory region was involved in
higher relapse rates and shorter relapse-free survival in
AML patients with overexpressed PBX3. However, this
methylation signature was not related to OS.

DNA methylation in therapeutic decision-making of AML
Variable responses to chemotherapy in AML represent a
major treatment challenge, and the ability to predict
therapeutic response is essential for improving the care
of patients with AML. However, clinical and genetic
features incompletely predict outcome, especially for
CN-AML and AML with no mutation [10–12]. In gen-
eral, DNA methylation might only be able to predict the
response of hypomethylating agents [63–65]. For ex-
ample, in a study investigating the impact of global and
gene-specific DNA methylation status (promoters of 5
stem cell-related transcription factor genes SOX2, OCT4,
KLF4, MYC, and NANO) in AML patients treated with
decitabine [65], Zhang et al. showed that patients with a
high level of 5-mC had a poor prognosis after demethyl-
ation therapy, and higher methylation status of the
SOX2 and OCT4 genes was associated with differential
response to demethylation therapy. This study found
that relatively low methylation percentage in one or both
of these two genes was also associated with longer OS
after decitabine-based chemotherapy.
In fact, due to the complex epigenetic regulation mecha-

nisms in AML, DNA methylation contributed to the over-
all biological and clinical features of AML and was also
correlated with conventional chemotherapy [35, 66]. A
decade ago, Grövdal et al. showed a significant effect of
the methylation status of three genes (P15ink4b (P15), E-
cadherin (CDH), and hypermethylated in cancer1 (HIC))
on the outcome of conventional chemotherapy using
bisulfite-denaturing gradient gel electrophoresis (DGGE)
[66]. Luskin et al., as mentioned previously, also assessed
the impact of high-dose (90 mg/m2) or standard-dose
(45 mg/m2) daunorubicin induction chemotherapy on a
cohort AML patients by dividing the patients into low and
high M score subgroups. They found that high-dose

daunorubicin (90 mg/m2) was beneficial for patients with
high M scores but not for those with low M scores. The
different responses suggested that M score may be
correlated with chemoresistance and could be used
for identifying patients that might benefit from high-
dose chemotherapy, which will contribute to thera-
peutic decision-making of AML [35].
In addition, the mutations in genes involved in DNA

methylation (e.g., DNMT3A, IDH1/2, TET2) play an im-
portant role in genome-wide methylation signature in
AML and contribute to the leukemogenesis and progno-
sis [16, 53, 67–69]. The applications of DNMTs and
IDH1/2 inhibitors have been more extensive and im-
proved the outcome of AML via reversing abnormal
DNA methylation and restoring normal hematopoiesis
[52, 56, 70]. Two DNMTs inhibitors, azacitidine and
decitabine, have been approved for MDS and AML due
to the increasing data to support the efficacy of these
hypomethylating agents (HMAs) [71–76]. Especially, the
particular gene mutations, such as those in DNMT3A
and TET2 and methylation signatures, may predict for
responsiveness to treatment with HMAs according to
the studies in MDS [27, 77]. TET2 mutations and/or
DNMT3A mutations were independent predictors of
better response (p = 0.03) and improved PFS (p = 0.04)
[77]. While a 21 selected tile regions revealing the DNA
methylation differences can served as an epigenetic clas-
sifier that accurately predicted decitabine response at the
time of diagnosis [27]. Following this line, it is possible
that defined AML subtypes with certain changes associ-
ated DNA methylation are more responsive to HMAs
than others. With DNA methylation profiling identi-
fied in AML subgroups and the evaluation of DNA
methylation level with clinical outcome, extending the
methylome analysis to comparable studies is of great
interest as these results would have immediate impli-
cations for design of therapeutic regimens, especially
dissect which AML subtypes may benefit from treat-
ment with HMAs [16, 35, 62].
Similar to DNMT3A and TET2 mutations, IDH1/2

mutations also could predict a favorable response with a
significantly higher clinical remission rate during treat-
ment with HMAs, and the odds of achieving response
with an IDH mutation was 14.2 when compared to pa-
tients without an IDH mutation (95%CI, 1.3–150.4) [78].
Furthermore, hypermethylated signature in AML with IDH
mutations could be reversed via IDH inhibition [16, 79].
IDH1/2 inhibitors (e.g., IDH305, AG-220, AG-221) have
been developed and are already being evaluated in clinical
trials (Table 2) [70, 80]. Primary results suggest a promin-
ent effect of these drugs in AML prognosis [81–85]. AG-
120, an oral, first-in-class IDH1 inhibitor, has shown the
efficacy and safety with determined IDH1 clearance as a
single agent in patients with IDH1-mutant hematologic
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malignancies. The overall response rate (ORR) was 38.5%
(30/78) [84]. A phase I study with IDH305 including 21 re-
lapsed/refractory AML subjects enrolled reported similar
results that 7 (33%) patients obtained objective responses
with a favorable safety profile [83]. AG-221 is an oral first
in class inhibitor of the IDH2-mutant protein. Preliminary
results of a phase 1/2 study enrolled relapsed/refractory
AML patients showed that AG-221 was well-tolerated and
-induced responses in heavily pretreated RR-AML. Of the

138 enrolled AML patients, 128 were evaluated for effi-
cacy and the ORR was 41% (52/128) [86]. Therefore,
identification of mutations associated DNA methylation
and evaluation the change of methylation signature
would contribute to individual therapy of AML.

DNA methylation, genetic aberrations, and expression in
AML
Genetic lesions and epigenetic abnormalities have been
shown to play important roles in AML. Although the re-
lationship of DNA methylation, genetic aberrations, and
expression is unclear, it is likely that these parameters
are closely related with each other [7, 30, 64, 87–89].
The TCGA study generated a genomic and epigenomic
landscapes of AML, which would serve as a foundation
for investigations AML pathogenesis, classification, and
risk stratification [7]. A recent study by Papaemmanuil
et al. identified 5234 driver mutations across 76 genes or
genomic regions in 1540 patients with AML. The muta-
tions in genes that encode DNA methylation regulators
(e.g., DNMT3A, IDH1/2, TET2) were often acquired the
earliest and with a high recurrence rate. Particularly,
73% of the largest class in their cohort, NPM1-mutated
AML, also carried mutations in DNA methylation genes

Table 2 Clinical trials with compounds of IDH inhibitors in
patients with hematologic malignancies

Compound Target Phase Registration number Reference

IDH305 IDH1 1 NCT02381886 83

AG120 IDH1 1 NCT02074839 84

AG120 IDH1 1 NCT02073994 82

AG221 IDH2 1/2 NCT01915498 86

AG221 IDH2 1/2 NCT02273739 NA

AG221 IDH2 3 NCT02577406 NA

AG-120/AG-221 IDH1/IDH2 1 NCT02632708 NA

AG-120/AG-221 IDH1/IDH2 1b/2 NCT02677922 NA

NA no data about reference

Fig. 2 Paradigm of integrated DNA methylation, genetic aberrations, and expression of AML leading to precise medicine. The integrated analysis
of DNA methylation, genetic aberrations (gene fusions and mutations), and RNA expression (a) has revealed multiple AML subtypes, summarized
into two groups (with or without recurrent genetic abnormalities) (b). Furthermore, each subtype will be characterized with distinct DNA
methylation patterns (c), which play an important role in clinical implications (d), leading to precision medicine in AML. The clinical implications
of DNA methylation are discussed more detail in the text
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(DNMT3A, IDH1, IDH2R140, and TET2). Besides, they
identified a subgroup of AML with IDH2R172 mutations
[5]. Since these mutations resulted in abnormalities of
genome-wide DNA methylation signature, the relation-
ship between genetic aberrations and DNA methylation
were inseparable in AML [18, 50, 89]. Furthermore,
Taskesen et al. created the three different classification
strategies based on gene expression and DNA methylation
profiles (GEP and DMP) from 344 well-characterized
AML samples [87]. They demonstrated that prediction of
known cytogenetic and molecular abnormalities in AML
could be further improved by integrating GEP and DMP
profiles. Raj et al. also provided insight into the clinical
relevance of prognostic mutations and the mutation-
associated gene DNA methylation promoter and expres-
sion patterns [63]. In a mouse model that has a defined
leukemia stem cell population with a characteristic tran-
scriptional and epigenetic profile, it was confirmed that
TET2 and FLT3 mutations cooperated to induce AML,
and the methylation changes exhibit the cooperation of
disease alleles to target multiple loci. The data also sug-
gested that leukemic transformation by these epigenetic
changes is reversible and therapies that reactivate silenced
genes might improve outcomes for AML patients [88].

Conclusions
DNA methylation is a common theme in acute myeloge-
nous leukemogenesis. With the progress of technologies
in identifying DNA methylation [24–26, 28, 29], espe-
cially the milestones in data integration, sharing, and
analysis strategies, such as the International Human
Epigenome Consortium Data Portal (IHEC Data Portal)
[90], the BLUEPRINT Data Analysis Portal (BDAP) [91],
and the tool for identifying cell type-specific signal in
epigenomic data (eFORGE) [92], DNA methylation will
be more widely used in clinical practice and become
more valuable in diagnosis classification, prognostic
stratification, and therapeutic decision-making of AML.
This will contribute to the development of precision
medicine in AML. Besides, a further understanding of
the relationship among DNA methylation, genetic aber-
rations, and expression might provide unprecedented
insights into the pathogenesis of AML (Fig. 2).
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tyrosine kinase 3 internal tandem duplication; GEP: Gene expression profiles;
HELP: HpaII tiny fragment enrichment by ligation-mediated PCR;
HIC1: Hypermethylated in cancer 1; HMAs: Hypomethylating agents;
HSCs: Hematopoietic stem cells; ID4: Inhibitor of DNA binding 4; IDH1/
2: Isocitrate dehydrogenase (NADP(+)) 1/2; IHEC: Data Portal the International
Human Epigenome Consortium Data Portal; Klf4: Kruppel-like factor 4;
LUMA: Luminometric methylation assay; MLL: Mixed lineage leukemia;
MN1: MN1 proto-oncogene, transcriptional regulator; MYC: v-Myc avian
myelocytomatosis viral oncogene homolog; NCCN: National Comprehensive
Cancer Network; NGS: Next-generation sequencing; NPM1: Nucleophosmin;
OCT4: Organic cation/carnitine transporter4; OS: Overall survival; PBX3: PBX
homeobox 3; PML-RARa: Promyelocytic leukemia and retinoic acid receptor
alpha rearrangements; RUNX1: Runt related transcription factor 1; SOX2: SRY-
box 2; SPARC: Secreted protein acidic and cysteine rich; ST18: ST18, C2H2C-
type zinc finger; TCGA: The Cancer Genome Atlas Research Network;
TET2: Tet methylcytosine dioxygenase 2; WBC: White blood cell; WHO: World
Health Organization; xMELP: Expedited HpaII small fragment enrichment by
ligation-mediated PCR
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