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Abstract: Gel polymer electrolyte (GPE) is widely considered as a promising safe lithium-ion
battery material compared to conventional organic liquid electrolyte, which is linked to a greater
risk of corrosive liquid leakage, spontaneous combustion and explosion. GPE contains polymers,
lithium salts and liquid electrolyte and inorganic nanoparticles are often used as fillers to improve
electrochemical performance. However, such composite polymer electrolytes are usually prepared by
means of blending, which can impact on the compatibility between the polymer and filler. In this
study, the hybrid copolymer poly (organic palygorskite-co-methyl methacrylate) (poly(OPal-MMA))
is synthesized using organic palygorskite (OPal) and MMA as raw materials. The poly(OPal-MMA)
gel electrolyte exhibits an ionic conductivity of 2.94 × 10−3 S/cm at 30 ◦C. The Li/poly(OPal-MMA)
electrolyte/LiFePO4 cell shows a wide electrochemical window (approximately 4.7 V), high discharge
capacity (146.36 mAh/g) and a low capacity-decay rate (0.02%/cycle).

Keywords: lithium polymer battery; poly (organic palygorskite-co-methyl methacrylate); microporous
polymer electrolyte

1. Introduction

Rechargeable lithium batteries (LIBs) have long been regarded as the most promising energy
storage technology for various portable electronics, electric cars and energy storage systems [1,2].
Generally, the use of liquid organic solvents as an electrolyte in lithium batteries raises safety concerns,
owing to the possible leakage of corrosive electrolytes and the risk of spontaneous combustion and
explosion when batteries are subjected to high temperatures and/or violent impacts [3]. Additionally,
liquid electrolytes can react with the lithium anode metal to form “dead lithium”, which limits liquid
electrolyte use in LIBs [4]. In order to obtain stable and secure electrolytes, a great deal of research work
has been done on solid electrolytes, such as solid polymer electrolytes [5]. However, solid electrolytes
have some disadvantages, such as low ionic conductivity (<10−5 S/cm), low permeability and high
interfacial resistance, which restrict their industrial applications.
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Polymer matrices can absorb a large amount of liquid electrolyte solution to form gel polymer
electrolytes (GPEs). GPEs exhibit high ionic conductivity, good interface stability and a long
service life [5–9]. In particular, poly (methyl methacrylate) (PMMA)-based electrolyte is regarded
as a promising material because PMMA has good chemical stability, is a low-cost raw material
and can reduce the interfacial resistance between the polymer electrolyte and the electrodes [10–16].
However, the major challenge of a large-scale application of PMMA is its low thermal stability
and low ionic conductivity. In order to increase the ionic conductivity of polymer electrolytes,
many organic and inorganic modifiers, such as polyvinylidene fluoride (PVDF) [16], poly (vinylidene
fluoride-hexafluoropropylene) (poly (VdF-HFP)) [17], poly (vinyl chloride) (PVC) [18], SiO2 [19],
TiO2 [20], Al2O3 [21] and clay, are added into the polymer matrices. Clays such as montmorillonite
and palygorskite (Pal) have several distinct advantages as fillers, namely: A high aspect ratio (∼1000),
high cation-exchange capacity, large specific surface area and appropriate interlayer charge [22–24].
Pal is a member of a group of clay minerals comprised of magnesium aluminosilicate [25]. It has
a unique, natural fibrous or rod-like, structure and many hydroxyl groups on its surface. Pal has good
compatibility with polymer matrices after suitable surface treatments [25–27]. Pal has been widely
used as the polymer enforcement dispersed in polymer matrices [28]. Chen et al. [27] reported that Pal
can significantly reinforce the mechanical properties and thermal stability of PMMA after its surface
has been treated with an organic reagent. Yao et al. [26] found that Pal can not only improve the
stiffness and toughness of a PVDF-based polymer electrolyte, but can also enhance the transference
number of Li+.

Generally, most Pal/polymer composite materials are prepared by traditional physical blending,
which would impact their compatibility, making it difficult to see their beneficial characteristics,
especially the nanoscale effects of Pal, as well as limiting their application.

In this work, poly(OPal-methyl methacrylate) (poly(OPal-MMA)) has been copolymerized by
solution polymerization, using OPal and MMA as raw materials. A coin-type cell was assembled using
poly(OPal-MMA) as the separator, lithium as the anode and lithium iron phosphate (LiFePO4) as the
cathode and the electrochemical characteristics of poly(OPal-MMA), such as its ionic conductivity,
electrochemical window and cycling performance, were evaluated.

2. Materials and Methods

2.1. Materials

Methyl methacrylate (MMA), anhydrous ethanol, 1-methyl-2-pyrrolidinon (NMP), potassium
peroxydisulfate (K2S8O4), sodium bisulfite (NaHSO3), N,N-Dimethylformamide (DMF) and acetone
were of an analytical grade. Organic palygorskite (OPal) modified by dimethyl diallyl ammonium
chloride was purchased from Zhongke New Energy Co., Ltd. (Huai’an, China). Lithium iron
phosphate (LiFePO4) powder and carbon black were purchased from Beijing HWRK Chem Co., Ltd.
(Beijing, China). Binder (polyvinylidene fluoride PVDF), lithium tablets and aluminum foil were
purchased from Mingruixiang Automation Equipment Co., Ltd. (Shenzhen, China).

2.2. Preparation of Poly(OPal-MMA)

The reaction mechanism of the poly(OPal-MMA) is shown in Scheme 1. A mixture of reaction
solvents (deionized water/anhydrous ethanol; 2/1; v/v) and a given amount of OPal were added
to a flask and the flask was then preheated to 60 ◦C. Nitrogen gas was bubbled into the solution for
30 min and a certain amount of K2S4O8 (>99%) and Na2SO3 (>99%) was then added, followed by
MMA (99%) added drop by drop (one drop per second). After 5 h, the reaction temperature was
raised to 80 ◦C for 1 h. The poly(OPal-MMA) was then filtrated, washed and purified and then dried
at 60 ◦C for 12 h in a vacuum oven. For the comparative experiments, a blend of PMMA and OPal
(PMMA/OPal blend) was prepared by evenly mixing 95 g of MMA with 5 g of OPal, using mechanical
agitation for 2 h.
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Scheme 1. The reaction mechanism of poly(OPal-MMA). 
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(SEM) (Hitachi, S-4800 FESEM, Tokyo, Japan). The sample was coated with platinum to reduce the 
charging effects before being examined. The infrared spectrum of the sample was recorded on a 
Fourier transform infrared spectrophotometer (Bruker, TENSOR 27, Karlsruhe, Germany) from 4000 
to 450 cm−1, using potassium bromide (KBr) pellets. The thermal behavior of the polymer was 
studied using Q50 (TA Instruments, New Castle, DE, USA) from 40 °C to 900 °C, with a linear 
heating rate of 10 °C/min in a nitrogen atmosphere. 
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2.3. Preparation of the Poly(OPal-MMA) Membranes

A given amount of polymer was dissolved in a mixture of organic solvent (dimethylformamide
(DMF)/acetone; 1/15; v/v). The solution was uniformly coated on a glass pane and then the coated
pane was put into deionized water in order to remove the organic solvent. Then, the polymer
membrane was dried at 80 ◦C for 24 h in a vacuum drying oven. The polymer membrane was then cut
into a disk with a radius of 9 mm.

2.4. Characterization of Poly(OPal-MMA)

The micromorphology of poly(OPal-MMA) was observed using a scanning electron
microscope (SEM) (Hitachi, S-4800 FESEM, Tokyo, Japan). The sample was coated with platinum to
reduce the charging effects before being examined. The infrared spectrum of the sample was recorded
on a Fourier transform infrared spectrophotometer (Bruker, TENSOR 27, Karlsruhe, Germany) from
4000 to 450 cm−1, using potassium bromide (KBr) pellets. The thermal behavior of the polymer was
studied using Q50 (TA Instruments, New Castle, DE, USA) from 40 ◦C to 900 ◦C, with a linear heating
rate of 10 ◦C/min in a nitrogen atmosphere.

2.5. Electrochemical Characteristics Analysis

The poly(OPal-MMA) membrane was submersed in a 1 mol/L LiClO4 electrolyte solution
(propylene carbonate/ethylene carbonate; 1/1; v/v) at 25 ◦C in a glove box. Then the excess solution
on the surface of the membrane was absorbed with filter paper and the electrolyte uptake (EU) was
calculated by the following Equation [8]:

Electrolyte uptake (%) =
W1 − W0

W0
× 100% (1)

where W1 is the weight of membrane after absorbing the liquid electrolyte and W0 is the weight of the
membrane before absorbing the liquid electrolyte.

An electrochemical cell was assembled by sandwiching poly(OPal-MMA) electrolytes between
two stainless steel blocking electrodes (surface area of 2.54 cm2) and the cell was then sealed. The ionic
conductivity was measured using the alternating current (AC) impedance spectra of the stainless steel
(SS)/polymer electrolyte/SS at 30 ◦C. The measurement was carried out over a frequency range of
0.1 Hz to 100 KHz and the amplitude was 5 mV. The ionic conductivity (σ) was calculated using the
following Equation [16,29]:

σ =
L

Rb × A
(2)
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where L is the thickness (cm), Rb is the bulk resistance (ohm) and A is the effective area (2.54 cm2)
of the polymer electrolyte.

The electrochemical window of the poly(OPal-MMA) electrolyte was studied using linear sweep
voltammetry (LSV) at a scan rate of 0.5 mV·s−1 with an electrochemical cell. The cell was assembled in
an argon-filled glove box, which consisted of an SS working electrode and lithium metal (reference
electrode), as well as a counter electrode in a CR2032 coin-type cell.

The cathode was made with a mixture composed of 80 wt % LiFePO4 powder, 10 wt % PVDF
and 10 wt % carbon black, all of which were mixed with N-methylpyrrolidone (NMP). The slurries were
spread onto aluminum foil and dried in a vacuum oven at 80 ◦C for 24 h. The LiFePO4 electrode (about
1.56 mg/cm2) was assembled as the positive electrolyte versus the Li metal as the negative electrode in
a CR2032 coin-type cell. The Li/poly(OPal-MMA) electrolyte/LiFePO4 cell was mounted in a glove
box filled with argon. The cell charge–discharge test was carried out between 2.8~4.0 V on a Neware
battery tester (Shenzhen Neware Electronics Co. Ltd., Shenzhen, China) at room temperature (25 ◦C).

3. Results

3.1. Physical Characterization of Poly(OPal-MMA) Polymers

The SEM micrographs of PMMA, OPal, poly(OPal-MMA) and the PMMA/OPal blend are shown
in Figure 1. PMMA (Figure 1a) shows many spherical particles, while OPal (Figure 1c) presents
a rod-like structure, with individual rods of about 200–500 nm in length and 30–80 nm in diameter.
The poly(OPal-MMA) (Figure 1b) shows a net-shaped microporous structure. This structure could
contribute to improving the absorption capacity of the electrolyte solution. The PMMA/OPal blend
(Figure 1d) shows many spherical particles and there are many rods of OPal between the particles
of PMMA.
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Figure 1. SEM images of poly (methyl methacrylate) (PMMA), poly(OPal-MMA), palygorskite (Pal)
and the PMMA/OPal blend. (a) PMMA; (b) poly(OPal-MMA) (5 wt % OPal); (c) OPal; (d) PMMA/OPal
blend (5 wt % OPal).
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The FTIR curves of PMMA, poly(OPal-MMA), OPal and Pal are shown in Figure 2. The spectrum
of the Pal (Figure 2d) showed a band at 3600–3100 cm−1, attributed to the strong absorbance peak of
OH group. The peak at 1652 cm−1 was ascribed to adsorbed water and the peaks at 1200–990 cm−1

were related to the stretching vibration of Si–O. The spectrum of OPal (Figure 2c) showed additional
peaks at 1456 cm−1 and 798 cm−1, which were related to the =C–H stretching vibrations. The spectrum
of the pure PMMA (Figure 2a) showed a peak at 1730 cm−1, which was related to the stretching
vibration of C=O. The characteristic bands at 2997 cm−1 and 2946 cm−1 corresponded to the stretching
vibrations of –CH3. After the addition of the OPal, absorption bands of poly(OPal-MMA) (Figure 2b)
appeared at 1050 cm−1 and 990 cm−1, due to the stretching Si–O vibration, which indicated that OPal
has been introduced into polymers.
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Figure 2. FTIR spectra of PMMA, poly(OPal-MMA), OPal and Pal. (a) PMMA; (b) poly(OPal-MMA);
(c) OPal; (d) Pal.

The thermal stability of the polymers was analyzed by thermo-gravimetry (TG) in a nitrogen
atmosphere. Figure 3 shows the weight loss (TG) and weight loss rate (DTG) curves of PMMA, OPal
and poly(OPal-MMA). The DTG curve of PMMA showed four weight-loss peaks at 178 ◦C, 252 ◦C,
291 ◦C and 364 ◦C. The weight loss of OPal increased with the increasing temperature, but no obvious
weight loss peak was observed across the test temperature range and its solid residue was about 86% at
600 ◦C. The poly(OPal-MMA) DTG curve showed peaks at 291 ◦C and 366 ◦C and its solid residue was
about 7.8% at 600 ◦C, while PMMA was completely degraded (solid residue was 0.03%). This indicated
that the thermal stability of poly(OPal-MMA) was higher than that of PMMA.Materials 2018, 11, x FOR PEER REVIEW  6 of 10 
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3.2. Electrochemical Characterization of Polymers

The electrolyte uptake of poly(OPal-MMA) polymers with different OPal contents are shown
in Table 1. The electrolyte uptake increased to a maximum with the increase of the OPal content
and then slightly decreased with the further increase of the OPal content. The highest electrolyte
uptake of poly(OPal-MMA) was 263 wt % when the Pal weight ratio was 5%, while the uptake of
the PMMA/OPal blend was 212 wt % at the same OPal concentration. The increase of the electrolyte
uptake for poly(OPal-MMA) was mainly attributed to its net-shaped microporous structure.

Table 1. The electrolyte uptake and ionic conductivity of poly(OPal-MMA).

Run OPal Content (%) Electrolyte Uptake (%) Ionic Conductivity (× 10−3 S/cm)

poly(OPal-MMA)-1 1 196 1.39
poly(OPal-MMA)-2 2 225 1.05
poly(OPal-MMA)-3 3 248 2.10
poly(OPal-MMA)-4 4 257 2.77
poly(OPal-MMA)-5 5 263 2.94
poly(OPal-MMA)-6 6 248 2.62
PMMA/OPal blend 5 212 2.45

Generally, the ionic conductivity of GPE is influenced by the amount of the liquid electrolyte
uptake within the polymer matrix. The ionic conductivity of poly(OPal-MMA) with different OPal
contents is also shown in Table 1. The ionic conductivity of poly(OPal-MMA) was greater than
1.0 × 10−3 S/cm. This value is a key factor that could determine whether the electrolyte has value
for commercial application [30]. The highest ionic conductivity was 2.94 × 10−3 S/cm at 30 ◦C,
which was observed when the OPal weight ratio was 5 wt %. The electrolyte uptake (263%) and ionic
conductivity (2.94 × 10−3 S/cm) of poly(OPal-MMA) were far above the average observed for other
PMMA/nanoparticle blends [19–22]. Generally, ionic conductivity is related to the concentration
of carrier ions and their mobility. There are two conduction paths for the mechanism of ionic
conduction, gel phase and pores full of liquid electrolyte [16]. Poly(OPal-MMA) had more pores than
the PMMA/OPal blend, could absorb more liquid electrolyte and formed a gel polymer electrolyte
with better mobility and greater porosity. In the literature, PMMA/organophilic montmorillonite
nanocomposite-based electrolytes attained a maximum value of 1.3 × 10−3 S/cm at 25 ◦C [22].

The electrochemical window of the Li/poly(OPal-MMA) electrolyte/LiFePO4 cells is shown
in Figure 4. Generally, the electrochemical window lies in the lithium salt complex and polymer
host [31] and the decomposition voltage reflects the electrochemical window. In the process of
the actual application a lithium battery, the work potential must reach 4.5 V (vs. Li+/Li). In this
study, the electrochemical window of the poly(OPal-MMA) electrolyte was investigated using the
linear sweep polarization method. The result showed that the electrochemical window of the
poly(OPal-MMA) was higher than 4.5 V, which met the practical requirement of a LIB [5].
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In order to study the electrochemical stability of poly(OPal-MMA), the charge–discharge has been
investigated and the results are shown in Figure 5. Figure 5a presents the initial charge–discharge
capacities of the Li/poly(OPal-MMA) electrolyte/LiFePO4 cell and the Li/PMMA electrolyte/LiFePO4

cell at a 54 µA/cm2 current density (corresponding to a C/10 rate). All the charge–discharge
curves of the cells showed a flat plateau between 3.4 and 3.5 V, which is a typical characteristic
of LiFePO4 [5]. Generally, the theoretical specific capacity of a LiFePO4 battery is 170 mAh/g [31,32].
Figure 5a also shows that the charge capacity of the Li/poly(OPal-MMA) electrolyte/LiFePO4

cell is greater than the discharge capacity. The irreversible capacity loss might be related to the
delithiation process in the LiFePO4, the generation of the passivation layer at the lithium anode
and an increase in the internal resistance [33–35]. When the OPal concentration was 5%, the highest
initial charge–discharge capacity of the cell was 147.57 mAh/g and 146.36 mAh/g, respectively
and the coulombic efficiency was 97.3%. Generally, battery coulombic efficiency is related to
metallic lithium plating and its subsequent corrosion, as well as the formation and growth of a solid
electrolyte interface film and so on. [18]. Many studies have reported that PMMA can reduce the
interface resistance and contact resistance between the electrolyte and the electrodes [16,18,34,36].
Cells that can absorb more electrolyte and also have good interface compatibility between the polymer
electrolyte and the electrodes will have an increased charge–discharge capacity. Figure 5b shows
the cycle discharge capacities of the Li/poly(OPal-MMA) electrolyte/LiFePO4 cell. The discharge
capacities of the cells with different separators were between 133 mAh/g to 147 mAh/g and the
capacity of the Li/poly(OPal-MMA) electrolyte/LiFePO4 cell was very stable. The capacity of the
Li/poly(OPal-MMA)-5 electrolyte/LiFePO4 cell was 146.35 mAh/g after 50 cycles and the decaying
rate was as low as 0.02% per cycle.
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Figure 5. (a) Initial charge–discharge curves of the Li/poly(OPal-MMA) electrolyte/LiFePO4 cell and
the Li/PMMA electrolyte/LiFePO4 cell at 0.1 ◦C and (b) the cycle performance of cells with different
polymer electrolytes at 0.5 ◦C.

4. Conclusions

Poly(OPal-MMA) was prepared by solution polymerization, using OPal and MMA as raw
materials. The physical and electrochemical characteristics of poly(OPal-MMA) were investigated.
The poly(OPal-MMA) copolymer showed a net-shaped microporous structure. Compared with pure
PMMA, the charge–discharge capacity of poly(OPal-MMA) was increased. When the concentration of
OPal was 5%, the highest electrolyte uptake and ionic conductivity of poly(OPal-MMA) were 263% and
2.94 × 10−3 S/cm at 30 ◦C, respectively. The Li/poly(OPal-MMA) electrolyte/LiFePO4 cell showed
a wide electrochemical window at around 4.7 V. The initial capacity of the Li/poly(OPal-MMA)
electrolyte/LiFePO4 cell was 146.36 mAh/g at 0.1 ◦C and the capacity was 146.35 mAh/g after
50 cycles, with a capacity–decay rate of 0.02% per cycle.
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