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Abstract. Testicular granulosa cell tumors (TGCTs) are rare 
tumors of sex cord‑stromal origin. TGCTs are mostly benign 
and can be classified into the adult type and the juvenile 
type. Due to the rarity of clinical cases and limited research 
efforts, the mechanism underpinning the development of 
TGCTs remains poorly understood. A landmark study has 
identified a forkhead box L2 mutation (C134W) in nearly 
all adult ovarian GCTs, but its implications in TGCTs are 
unclear. The present study focuses on reviewing the major 
signaling pathways (e.g., the transforming growth factor β 
signaling pathway) critical for the development of TGCTs, as 
revealed by genetically modified mouse models, with a goal 
of providing new insights into the pathogenesis of TGCTs and 
offering directions for future studies in this area. We posit 
that a comparative approach between testicular and ovarian 
GCTs is valuable, as granulosa cells and Sertoli cells arise 
from the same progenitor cells during gonadal development. 
Developing pre‑clinical mouse models that recapitulate 
TGCTs will help answer the remaining questions around this 
type of rare tumor.
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1. Introduction

Granulosa cell tumors (GCTs) comprise granulosa cells 
and stromal components (1). GCTs are generally low‑grade 
malignancies, manifested by indolent growth and a low 
risk of metastasis (1). However, the prognosis of GCTs is 
stage‑dependent, and patients at advanced tumor stages tend to 
have a higher risk of recurrence (2), making long‑term surveil‑
lance necessary. The recurrence also increases the mortality 
rate and the economic/emotional burden of the patients. Thus, 
it is critical to understand the molecular mechanism of GCT 
development and identify predictors for tumor recurrence and 
optimal regimen for tumor treatment.

Ovarian GCTs are the major type of malignant sex 
cord‑stromal tumors (3). There are two subtypes of ovarian 
GCTs, namely the adult type and the juvenile type (4). It has 
been reported that >80% of girls <8 years of age with juve‑
nile‑type GCTs demonstrate precocious pseudopuberty (5). 
By contrast, adult‑type GCTs often occur in perimenopausal 
women, with an unpredictable outcome of relapse. The devel‑
opment of adult‑type GCTs is often accompanied by symptoms 
of hormone dysregulation (e.g., amenorrhea, uterine bleeding 
and endometrial hyperplasia) (6,7). The clinical symptoms, 
diagnostic imaging, histology of surgery‑obtained tumor 
samples and presence of tumor markers [e.g., inhibins and 
anti‑Mullerian hormone (AMH)] provide useful information 
for the diagnosis of GCTs (8,9).

GCTs can also occur in the testis. Similar to ovarian 
GCTs, testicular GCTs (TGCTs) contain the adult and the 
juvenile subtypes. While ovarian GCTs account for ~90% 
of ovarian sex cord‑stromal tumors (reported in 2012) (4), 
the adult or juvenile type of TGCTs accounts for <0.5% of 
testicular sex cord‑stromal tumors (reported in 2017) (10). 
Although similarities exist between GCTs in the testis and 
the ovary (11,12), mechanisms underlying the development 
of these tumors remain poorly characterized, partially 
owing to the rarity of this type of testicular malignancy. In 
the present review, the subtypes and pathology of TGCTs 
and important signaling pathways associated with tumori‑
genesis are discussed. The study delves into forkhead box 
L2 (FOXL2)‑related signaling, wingless‑related MMTV 
integration site (WNT)/β‑Catenin (CTNNB1) signaling, the 
phosphoinositide 3‑kinase (PI3K) pathway and the trans‑
forming growth factor β (TGFβ) pathway in the development 
of TGCTs. With the development of new mouse models that 
focus on TGCTs, it is anticipated that the pace of investigation 
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into the molecular and genetic basis of these tumors will be 
accelerated.

2. Tumors in the testes

Testicular tumors occur mostly in males of 14‑44 years 
old (13). Based on the 2016 classification by the World Health 
Organization, testicular tumors contain germ cell tumors of 
two groups [i.e., tumors derived from germ cells neoplasia 
in situ (GCNIS) and those unrelated to GCNIS], as well as 
sex cord‑stromal tumors and several other types (14). Germ 
cell tumors account for the majority of testicular tumors. Sex 
cord‑stromal tumors make up 4% of tumors in the testis (15) 
and consist of Leydig cell tumors, Sertoli cell tumors, GCTs, 
fibroma and thecoma group tumors, mixed‑type tumors and 
unclassified tumors (14). Leydig cell tumors are the most 
common type of sex cord‑stromal tumors. These tumors 
are often well circumscribed and appear brown, yellow or 
gray‑white in color on the cut surface (16). The cell types in 
a given Leydig cell tumor may be variable. Histologically, the 
cells are often medium to large in size and polygonal in shape, 
with eosinophilic granular cytoplasm (16,17). Due to the 
histological and immunohistochemical similarities between 
GCTs in females and males (11,12), a comparative approach 
is likely to be valuable in gaining mechanistic insights into 
tumorigenesis and discovering common regulatory path‑
ways. As the causes and pathogenesis of these rare testicular 
tumors are poorly defined, clinically relevant mouse models 
are particularly useful in this research field to determine the 
oncogenic insult and potential therapeutic targets (12,18,19).

3. TGCTs: Subtypes and histopathology

TGCTs can be divided into the juvenile type and the adult 
type (Table I). Juvenile‑type TGCT is a more common 
form compared with adult‑type TGCT. The juvenile type 
represents the most common tumors in the male gonad 
in patients <6 months of age and can even be diagnosed 
shortly after birth due to the increased size of the testis (20). 
Histologically, follicular components are present in juve‑
nile‑type TGCTs (10,20). Tumor cells have round dense nuclei 
with infrequent nuclear grooves, and abundant mitosis can be 
found (21). The juvenile‑type tumors are generally benign, 
with rarely observed metastasis. In a report of 70 cases, only 
2 cases showed lymphovascular invasion and 4 cases exhibited 
rete testis involvement (21). The juvenile‑type TGCTs were 
reported to be positively stained for FOXL2, steroidogenic 
factor‑1 and vimentin (21). Some tumors also express inhibin, 
calretinin, Wilms tumor 1 and SRY‑box transcription factor 9 
(SOX9) (21). As inhibin is expressed by both granulosa cells 
and Sertoli cells, it is unclear whether the variable expression 
of the inhibin observed in juvenile TGCTs is stage‑dependent 
or merely reflects the individual variation of these tumors.

Some studies have suggested that the formation of granulosa 
cell tumors is associated with sex chromosome abnormalities 
and aberrant gonadal development (22,23). It has been shown 
that infants with mixed gonadal dysgenesis or intersexual 
disorder develop juvenile‑type GCTs (23). Another example 
of this link was found in the case of a newborn baby with the 
X/XY karyotype who developed congenital juvenile‑type 

TGCT (22). The levels of inhibin B, β‑hCG and testosterone 
appear normal in some juvenile‑type GCT patients (20). High 
levels of serum α‑fetoprotein (AFP) are observed in some 
juvenile‑type TGCTs (20,21); however, AFP levels are physi‑
ologically high in infants and newborns (24).

Adult‑type TGCTs are extremely rare, with 91 cases 
described to date (25). Microscopically, the tumor cells 
have vague cell borders and pale nuclei containing nuclear 
grooves (10,26). The tumor cells are less mitotic compared 
with those of juvenile‑type GCTs (10). It is notable that 
juvenile‑type TGCTs lack Call‑Exner bodies (i.e., small 
eosinophilic f luid‑filled spaces within microfollicular 
structures) that are observed in the adult‑type TGCTs (10). 
Although most adult‑type TGCTs are benign, the metastatic 
potential of these tumors remains of concern. For instance, in 
a previous study, one patient was found to develop metastases 
10 years after the first diagnosis, while additional metastasis 
was found in the inguinal lymph node of another patient 1 year 
after the diagnosis and detection of retroperitoneal lymph 
node metastasis (27). In another case, metastasis was found in 
the bone of a patient 6 years after orchidectomy surgery (28). 
Thus, long‑term follow‑up/monitoring is needed for patients 
with TGCTs. Histopathologically, the adult‑type GCTs are 
identified as solid and/or cystic tumors (10). Laterality has 
been reported in most documented adult‑type GCT cases in 
males (25). The histological/pathological criteria or clinical 
features that predict the malignant/benign disposition of 
TGCTs are not well defined. It appears that tumor size (>5 cm), 
but not mitotic count, tumor necrosis or other parameters, 
is positively associated with the malignancy of adult‑type 
TGCTs (29). Orchidectomy and testis‑sparing surgery have 
been used to treat TGCTs (25). Currently, it remains unclear 
with regard to the genetic or molecular determinants that 
contribute to the phenotypic and prognostic outcomes of the 
juvenile‑type versus the adult‑type TGCTs. Answering this 
question may help develop tailored treatment options for the 
two subtypes of TGCTs.

4. FOXL2 mutation in GCT development

FOXL2, a granulosa cell‑expressed gene, regulates granulosa 
cell fate and ovarian function (30). Supporting a critical role 
of Foxl2 as a female gene, disruption of FOXL2 in adult 
ovaries induces the expression of SOX9 specific to the male 
gonad (31). FOXL2 is expressed in juvenile‑type TGCTs (32). 
Notably, the expression of SOX9 is found in the cytoplasm 
of FOXL2‑positive cells in some juvenile‑type TGCTs (32). 
As FOXL2 is a granulosa cell lineage marker, this finding 
suggests potential Sertoli cell‑granulosa cell transdifferentia‑
tion during the formation of TGCTs (32).

A missense mutation of FOXL2 [nt. 402C>G (C134W)] 
is vital in the pathogenesis of adult‑type ovarian GCTs (33). 
With regard to its contribution to GCT development, studies 
have shown that this mutation impairs the capability of 
growth differentiation factor 9, an oocyte‑produced protein, 
in promoting follistatin transcription in the presence of 
SMAD3 (34). This may lead to increased cell proliferation 
due to unopposed activin signaling (34,35). In addition, 
FOXL2 mutation also reduces apoptosis and increases the 
induction of aromatase (CYP19), which promotes estrogen 
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synthesis (36‑38). Lima et al (39) identified a FOXL2 muta‑
tion in adult‑type TGCTs, with a lower mutation frequency 
compared with that in ovarian GCTs. However, this mutation 
was not found by the same researchers in other testicular 
tumors such as juvenile‑type TGCTs and Sertoli‑Leydig cell 
tumors, likely due to the limited number of cases examined 
and/or the low mutation frequency or lack of mutation in those 
tumors (39). Thus, mutational analysis of FOXL2 may prove 
beneficial in the differential diagnosis of the two subtypes of 
TGCTs if they demonstrate a different profile of FOXL2 muta‑
tion. Moreover, an in‑depth understanding of the potential 
pathogenic function of the FOXL2 mutation in TGCTs will 
be instrumental for developing tailored treatment modalities.

5. Genetically modified mouse models to study TGCTs

Elegant reviews on molecular pathogenesis, signaling 
pathways and mouse models of ovarian GCTs have been 
published (4,40,41). The present review focuses on several 
mouse models that have been reported to develop testicular 
tumors with a sex cord‑stromal origin (12,18,19,42‑44). 
Inhibins and activins are key regulators of ovarian development 
and function. In the ovary, inhibins are mainly synthesized 
by granulosa cells and negatively regulate the secretion of 
follicle‑stimulating hormone (FSH) (45). In the male gonad, 
Sertoli cells produce inhibins that regulate the testicular 
function (46). Inhibin α (Inha)‑knockout mice develop sex 
cord‑stromal tumors in both sexes (42). The neoplasms are 
mixed or incompletely differentiated tumors, accompanied by 
increased serum FSH levels (42). Deletion of both Inha and 
gonadotropin‑releasing hormone inhibits tumor development 
and reduces the levels of FSH and luteinizing hormone (47). 
CDKN1B (also known as p27) is a cyclin‑dependent kinase 
inhibitor that suppresses G1 phase progression. Compound 
deletion of Cdkn1b and Inha accelerates the development of 
testicular tumors in males compared with deletion of Inha 
alone (48). Deletion of another regulator of the G1/S transition, 
cyclin D2, inhibits tumor progression in Inha null mice (49). 
Loss of inhibins potentiates the activin signaling. It has 
been found that SMAD3 acts as an essential mediator of the 
unopposed activin signaling in testicular tumor development 
induced by Inha deletion (50). A sexually dimorphic function 

has been observed for SMAD3 in gonadal tumor development 
induced by the loss of inhibins, where depletion of SMAD3 
has a more pronounced protective effect on tumorigenesis in 
the male compared with that in the female (50).

WNT/CTNNB1 and PI3K/AKT signaling pathways play 
important roles in regulating the development of multiple types 
of cancer (51‑54). In the female, dysregulation of CTNNB1 
signaling triggers the formation of ovarian GCTs (52). Male 
mice bearing conditional expression of a stable CTNNB1 
mutant and deletion of phosphatase and tensin homolog (Pten) 
using AMH type 2 receptor (Amhr2)‑cyclization recombina‑
tion (Cre) develop TGCTs at an early age, with lung metastases 
in nearly half of the mice by 4 months (18). These tumors 
express Wnt4 and FOXL2 (18). The mechanism underlying 
tumor development in this mouse model remains unclear. 
A loss of PTEN enhances PI3K/AKT signaling activity and 
promotes the phosphorylation of FOXO1A (18); however, the 
role of FOXO1A in tumorigenesis awaits further elucidation. 
Notably, it was recently found that the conditional overacti‑
vation of CTNNB1 in mouse Sertoli cells using Amh‑Cre 
through elimination of a Ctnnb1 exon required for CTNNB1 
protein degradation induces transdifferentiation of Sertoli cells 
into granulosa‑like cells and the formation of TGCTs (43). 
Mechanistically, activation of WNT signaling increases the 
expression of FOXL2 via the binding of CTNNB1 to the 
FOXL2 promotor at the T‑cell factor/lymphoid enhancer factor 
binding sites (43). This finding may also partially explain how 
overactivation of CTNNB1 promotes the formation of TGCTs 
in the aforementioned mouse model containing simultaneous 
activation of WNT and PI3K/AKT signaling (18).

Kirsten rat sarcoma viral oncogene homolog (Kras) is an 
oncogene that encodes a small GTPase (55). Expression of 
KRASG12D inhibits granulosa cell proliferation and differen‑
tiation in early ovarian follicles, but slightly enhances cell 
proliferation in large antral follicles, revealing follicular 
stage‑dependent roles of the KRAS mutant (56). Mouse 
models with oncogenic KRASG12D expression or PTEN 
ablation in conjunction with CTNNB1 overactivation using 
Amhr2‑Cre or Cyp19‑Cre have been created to determine 
interactions between WNT and PI3K/RAS signaling (19). 
It was found that constitutive activation of KRAS or loss of 
PTEN promotes the development of ovarian GCTs or TGCTs 

Table I. Differences between the TGCT subtypes.

TGCT‑related features Juvenile‑type TGCTs Adult‑type TGCTs (Refs.)

Age Most common tumors in the Median age, 44 years (range, 12‑87 years)  (10,25)
 testis at <6 months of age 
Metastasis  Rare  Metastatic potential  (21,27) 
Macroscopic feature Yellow to tan‑white cut  Yellow‑tan cut surface; solid and/or cystic structures (10,21)
 surface; cystic or solid structures 
Microscopic feature Round dense nuclei; infrequent  Vague cell borders; pale nuclei with nuclear (10,21,26)
 nuclear grooves; abundant mitosis grooves; Call‑Exner bodies
Genomics/genetics Abnormal sex chromosome and  Some tumors contain the FOXL2 mutation (22,23,39)
 gonadal development 

TGCT, testicular granulosa cell tumor; FOXL2, forkhead box L2.
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in stable CTNNB1‑expressing mice (19). Consistent with the 
benign feature of TGCTs, metastasis was not found and the 
viability of mice was not compromised up to 8 months. As 
expected, these mice are infertile due to tumor development 
and impaired spermatogenesis (19).

Members of the FOX family are implicated in multiple 
developmental processes and diseases (57,58). FOXL2 and 
FOXO3 play key roles in ovarian development and func‑
tion (58). FOXO1 acts as a tumor suppressor through inhibiting 
CYP19 expression via mutant FOXL2 (C134W) and SMAD3 
in the human non‑luteinized granulosa cell line (59). In addi‑
tion, ~20% of Foxo1/3 double conditional knockout mice in the 
ovary using Amhr2‑Cre or Cyp19‑Cre develop ovarian GCTs 
by 6‑8 months (60). These tumors cause increased levels of 
inhibins and estradiol (60). It is yet unclear whether FOXO1/3 
is involved in TGCT development.

TGFβ superfamily signaling is implicated in numerous 
physiological and pathological processes (61). TGFβ ligands 
signal through membrane‑associated type II and I receptors 
(TGFBR2/TGFBR1) and activate receptor‑regulated SMADs 
(R‑SMADs), including SMAD2/3 (TGFβ/activin‑responsive 
SMADs) and SMAD1/5/8 [bone morphogenetic protein 
(BMP)‑responsive SMADs]. R‑SMADs then complex with 
SMAD4 to elicit biological responses via the regulation of 
gene transcription (62). TGFβ signaling plays divergent roles 
in cancer development (63) and is important for GCT devel‑
opment (62). A study by Pangas et al (44) revealed a role of 
BMP signaling in GCT development by demonstrating that 
conditional deletion of Smad1 and Smad5 promotes the devel‑
opment of GCTs in the ovary, but not in the testis. Instead, 
Sertoli‑Leydig tumors form in Smad1/5 conditionally deleted 

males (44). In a continuum of research interrogating the role 
of TGFβ signaling in reproductive development and func‑
tion, a mouse model has been generated with constitutively 
activated TGFBR1 (TGFBR1‑CA) in the gonad (12,64). Both 
male and female TGFBR1‑CA mice develop GCTs (12,64). 
TGCTs express granulosa cell markers [i.e., INHA, FOXO1 
and FOXL2]. In addition, expression of CTNNB1 is increased 
in the testes of TGFBR1‑CA mice (12), reinforcing a role of 
WNT/CTNNB1 signaling in GCT formation. The cellular 
origin of TGCTs remains enigmatic. In male TGFBR1‑CA 
mice, constitutive activation of TGFBR1 is induced by 
Amhr2‑Cre, which is expressed in both Sertoli cells and 
Leydig cells (65‑67). Notably, Sertoli cells and granulosa cells 
appear to arise from the same progenitor cells (68). Moreover, 
Sertoli cells with dysregulated gene expression can transdif‑
ferentiate into granulosa‑like cells (43). Thus, it is conceivable 
that TGCTs in TGFBR1‑CA males are derived from Sertoli 
cells. To determine the potential contribution of Sertoli cells 
to TGCT formation, the developmental dynamics of TGCTs 
were assessed by comprehensive histological and immunohis‑
tochemical analyses (12). It was found that tumors arise within 
seminiferous tubules, where the only somatic cell type is the 
Sertoli cell (12). Moreover, loss of doublesex and mab‑3 related 
transcription factor 1 (a testis‑determining protein), and gain 
of FOXL2 were found in seminiferous tubules enriched for 
Sertoli cells in TGFBR1‑CA males (12). Studies are ongoing 
with regard to identifying the tumorigenic program in the 
testis that mediates the overactivation of TGFβ signaling.

Overall, several key genes and signaling pathways have 
been associated with TGCT development (Fig. 1). Although 
robust genetic evidence supports the phenotypic relevance 

Figure 1. Key regulators of TGCT development. Sertoli cells serve an important role in maintaining normal spermatogenesis. Dysregulation of several 
genes/signaling pathways induces the formation of TGCTs. Increased TGFβ signaling via TGFBR1 activates SMAD3, whereas ablation of INHA increases 
FSH levels and enhances SMAD3 signaling. Loss of PTEN promotes pAKT and FOXO1A signaling. Activation of CTNNB1 results in increased expres‑
sion of FOXL2. In addition, KRASG12D and FOXL2 mutation (FOXL2C134W) are also implicated in TGCT development. TGCT, testicular granulosa cell 
tumor; FOXL2, forkhead box L2; KRAS, Kirsten rat sarcoma viral oncogene homolog; CTNNB1, β‑Catenin; PTEN, phosphatase and tensin homolog; FSH, 
follicle‑stimulating hormone; INHA, inhibin α; TGFBR1, TGF‑β receptor type‑1; p, phosphorylated.
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of these mouse models to TGCTs, their potential utility for 
investigating the etiology and pathogenesis of TGCTs, as well 
as testing therapeutic agents, requires further evaluation.

6. Concluding remarks and future directions

TGCTs are rare tumors that remain enigmatic in numerous 
aspects. To better define tumor etiology and discover early 
diagnostic and therapeutic options, it is beneficial to develop 
pre‑clinical mouse models that recapitulate TGCTs. To unam‑
biguously define the origin of TGCTs in the TGFBR1‑CA 
mouse model (12), it is necessary to specifically activate 
TGFBR1 using a Cre driver specific to Sertoli cells (Fig. 2). It 
is anticipated that sustained activation of TGFBR1 in Sertoli 
cells (TGFBR1‑CASC) will induce TGCT development (Fig. 2). 
Our future genetic labeling experiments using a dual fluo‑
rescence reporter mouse line, membrane‑targeted tdTomato 
(mT)/membrane‑targeted EGFP (mG) (69), may elucidate 
tumor cell origin. In the mT/mG mouse, Cre‑negative cells 
express tdTomato, a red fluorescent protein (69) (Fig. 2A). By 
contrast, Cre‑positive cells are expected to express GFP that 

can be tracked by green fluorescence (69,70) (Fig. 2B). Should 
TGCTs not occur in these mice, efforts will be undertaken to 
investigate how interactions between Sertoli cells and Leydig 
cells contribute to the formation of TGCTs in the context of 
TGFBR1 activation (Fig. 2B).

In some genetically modified mouse models, GCTs occur 
in both males and females. Since there are both histopatholog‑
ical and molecular similarities between ovarian and testicular 
GCTs, it will be informative to perform comparative analyses 
of the tumor transcriptome/proteome between males and 
females. Commonly regulated genes are likely to be valuable 
candidates for investigating tumor etiology and treatment.

Although the FOXL2 mutation is a hallmark of adult 
ovarian GCTs (33), this mutation has only been analyzed in 
a small population of patients with TGCTs (39). Thus, the 
significance of this mutation in TGCTs remains unclear. 
Studies assessing the FOXL2 mutation in TGCTs in more 
patients, either retrospectively or prospectively, appear neces‑
sary in the future.

The pathogenesis of TGCTs is complex and involves 
multiple signaling pathways, including, but not limited to, 

Figure 2. Proposed genetic labeling to trace TGCT origin in TGFBR1‑CA mice. Mice harboring constitutively active TGFBR1 will be bred with mTmG mice 
and Sertoli cell‑specific Cre mice. (A) Sertoli cells in the testes of control mice express tdTomato (red). (B) In the TGFBR1‑CA:mTmG:SC‑Cre testes, Sertoli 
cells express constitutively active TGFBR1 and EGFP (green). The experiment is expected to elucidate whether Sertoli cells contribute to the development 
of TGCTs and whether activation of TGFBR1 in Sertoli cells is sufficient to induce TGCTs. mT, membrane‑targeted tdTomato; mG, membrane‑targeted 
EGFP; PA, polyadenylation sequences; pCA, chicken β‑actin promoter with CMV enhancer; CAG, human cytomegalovirus enhancer and chicken β‑actin; 
HA, hemagglutinin; SC, Sertoli cell; TGCT, testicular granulosa cell tumor; TGFBR1, TGF‑β receptor type‑1; HPRT, hypoxanthine guanine phosphoribosyl 
transferase.
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WNT, KRAS and TGFβ. In the TGFBR1‑CA mouse model, 
activation of WNT signaling (12), PI3K/AKT signaling and 
extracellular signal‑regulated kinase 1/2 (ERK1/2) singling 
pathways in TGCTs (Fang and Li, unpublished data) was 
found. A number of questions remain with regard to how 
these signaling pathways alter the identity of Sertoli cells and 
promote oncogenic transformation, whether there is crosstalk 
between these signaling branches, what the convergence 
points of these pathways are in the development of TGCTs, 
and how genetic factors, if any, impact cellular properties and 
outputs of signaling pathways in the process of tumorigenesis. 
Future studies that address these questions using new mouse 
models, as well as mathematical modeling (71,72), will help 
our understanding of the pathogenesis of TGCTs and will 
guide the design of new therapies for this type of rare tumor.
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