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ABSTRACT
Chronic-wasting disease (CWD) is a prion-derived fatal neurodegenerative disease that has 
affected wild cervid populations on a global scale. Susceptibility has been linked unambiguously 
to several amino acid variants within the prion protein gene (PRNP). Quantifying their distribution 
across landscapes can provide critical information for agencies attempting to adaptively manage 
CWD. Here we attempt to further define management implications of PRNP polymorphism by 
quantifying the contemporary geographic distribution (i.e., phylogeography) of PRNP variants in 
hunter-harvested white-tailed deer (WTD; Odocoileus virginianus, N = 1433) distributed across 
Arkansas (USA), including a focal spot for CWD since detection of the disease in February 2016. Of 
these, PRNP variants associated with the well-characterized 96S non-synonymous substitution 
showed a significant increase in relative frequency among older CWD-positive cohorts. We 
interpreted this pattern as reflective of a longer life expectancy for 96S genotypes in a CWD- 
endemic region, suggesting either decreased probabilities of infection or reduced disease pro-
gression. Other variants showing statistical signatures of potential increased susceptibility, how-
ever, seemingly reflect an artefact of population structure. We also showed marked heterogeneity 
across the landscape in the prevalence of ‘reduced susceptibility’ genotypes. This may indicate, in 
turn, that differences in disease susceptibility among WTD in Arkansas are an innate, population- 
level characteristic that is detectable through phylogeographic analysis.
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Introduction

Chronic wasting disease (CWD) is a fatal neurodegen-
erative disorder that affects white-tailed deer (WTD; 
Odocoileus virginianus) and related cervids [1,2], with 
severe impacts on native wildlife, that also reverberate 
economically for recreational hunting and ancillary 
commercial enterprises [3,4]. Most CWD eradication 
efforts have proven unsuccessful thus far [5], leading to 
its continued spread and increased prevalence [6]. 
Given this, wildlife managers in many jurisdictions 
are responding by shifting long-term goals away from 
eradication and instead towards suppression, contain-
ment, and mitigation [7,8].

Several factors have impeded the eradication of 
CWD, including aspects of life history in both host 
and agent, as well as limited knowledge with regards 
to how these interact with environment to define CWD 
epidemiology. Pathogenicity and transmission, for 
example, occur via the structural transformation of 
a naturally occurring cellular prion protein (PrPC)  

into a misfolded ‘pathogenic’ isoform (PrPSC) [9]. The effi-
ciency with which this occurs, coupled with an extensive 
incubation period [10], serve to confound proactive surveil-
lance and management. Additionally, both vertical [11,12] 
and horizontal transmission [13,14] are seemingly involved, 
with prion persistence well established within ‘environmental 
reservoirs’ [15–17]. As a result, surveillance and monitoring 
are being increasingly used by state agencies to inform har-
vest and selective-removal-based management strategies to 
suppress the disease where it cannot be eradicated [18,19]. 
This is complicated particularly due to a potential for long- 
distance host dispersal [20–22], and prion ‘shedding’ by indi-
viduals with subclinical infections [23,24].

Environmental factors that act to reduce disease 
spread are of particular interest. For example, the capa-
city of soil as a reservoir for extra-corporeal prion 
persistence may hinge upon its composition [25]. 
Likewise, environmental factors that enhance the 
potential for WTD movements also may modulate 
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CWD transmission among herds [26,27]. Considerable 
effort to date has focused on characterizing intrinsic 
susceptibility, especially with regard to the quantifica-
tion of genetic polymorphisms that encode PrPC 

(PRNP) [28–31]. One consistent approach is to identify 
those PRNP gene variants that are associated with 
reduced CWD susceptibility [32,33]. The amino acid 
composition of the resulting protein is thus assumed to 
impact disease progression [34], although the exact 
mechanism remains unclear.

Consistent among those variants reported to be asso-
ciated with reduced CWD susceptibility is a non- 
synonymous mutation corresponding to an amino 
acid substitution at position 96 (i.e., from glycine to 
serine; hereafter 96G versus 96S). Inoculation studies 
employing this mutation have successfully delayed the 
progression of CWD in both WTD and proxies [13,35]. 
Our primary interest is to characterize if (and how) 
these PRNP alleles vary spatially [30,36], as one land-
scape-level axis that depicts a ‘resistance’ to CWD 
spread. We provide such an analysis by employing 
WTD sampled state-wide as a basis for the phylogeo-
graphy of the PRNP gene (i.e., the geographic distribu-
tion of individuals associated with a gene genealogy 
[37]). We then examine spatial and age-structured pat-
terns within this phylogeographic framework to ask 
several questions regarding the role of PRNP variants 
on population dynamics in CWD-endemic areas: Do 
‘reduced susceptibility’ variants have an effect on sur-
vivorship (e.g., as one might expect if PRNP poly-
morphisms do indeed drive susceptibility)? If so, does 
this leave a detectable signature of biased fitness (e.g., as 
a result of increased survivability and thus potential 
reproductive output)? What are the impacts of PRNP 
polymorphism on population demographics? We 
address these questions at two spatial scales: 1) within 
a dense sampling of the CWD-focal area (Newton 
County, Arkansas) from which prevalence, and, pre-
sumably, measurable impacts on population demogra-
phy are highest; and 2) state-wide, where sampling 
densities were lower, and in many areas within which 
CWD has not yet been detected (though we note that 
lack of detection does not mean lack of occurrence). 
The county-level spatial scale allowed us to examine 
demographic impacts within a recently detected out-
break in a novel area (Newton County), wherein dense 
sampling and high prevalence allow sufficient sampling 
for testing hypotheses of age structuring and selection 
on PRNP polymorphisms, while the state-level spatial 
scale allowed broad-scale analyses of heterogeneity and 
phylogeographic structuring. The combination of these 
two spatial scales allows for superimposing differential 
susceptibilities and fitness across a CWD-absent 

landscape which could in turn facilitate the creation 
of management scenarios to project and potentially 
mitigate disease spread.

Results

Data generation

From 2016 to 2019, ear and tongue tissue samples were 
collected from 1,720 harvested WTD across 75 counties 
in Arkansas (Supplemental Table S1; Figure 1). 
Subsequently, tissue samples from 1,460 WTD were 
amplified and sequenced, yielding ~800 nucleotides of 
the PRNP gene and PRNPpsg pseudogene. From these 
data, we obtained 1,433 sequences, of which 316 were 
obtained from Newton County, the CWD focal area. 
Sequences were trimmed to 720 unambiguously scored 
nucleotides, with 11 sites found to be polymorphic 
(Table 1). Three previously reported polymorphic sites 
(i.e., nt285, nt299 and nt372; Brandt et al., 2015, 2018) 
were found to be invariable in our data, whereas one 
additional site had a novel synonymous substitution 
(nt499, A/C). Three sites (i.e., nt286, nt367 and nt676) 
also reflected non-synonymous substitutions, corre-
sponding to amino acid substitutions 96S, 122 T and 
255 K, respectively.

Haplotype phasing resulted in 20 distinct alleles 
(Table 1; Figure 2), 4 of which are novel, and 16 were 
previously documented in other states [29–31]. Two 
Arkansas haplotypes (AR 2 and AR 3) share the synon-
ymous substitution 96S (nt286/A) associated with 
reduced CWD susceptibility (i.e., Haplotype C30). 
Three others (I, P and V) also share the 96S amino 
acid alteration (Table 1; Figure 2). However, all five 
were at low frequencies (<1%, except Haplotype I at 
1.47%; Table 2), and thus were excluded from tests of 
CWD association.

Amplification and sequencing of the PRNPPSG pseu-
dogene were successful in 30% of our samples (443 of 
1,459). Our comparison of the 443 PRNP and PRNPPSG 

haplotypes indicated that nucleotide polymorphism at 
site nt413 did not represent a biological variant of the 
PRNP gene but was instead off-target amplification of 
the PRNPPSG pseudogene.

PRNP haplotype frequencies

Haplotype frequencies (Table 2 and S2) differed slightly 
from those reported in other states (e.g., Wisconsin and 
Illinois [30,31]). The four most frequent haplotypes in 
Illinois and Wisconsin (i.e., >10%), were also common 
among Arkansas samples (Figure 3; Haplotypes A-D). 
We also found that Haplotype A, most common in 
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Illinois/Wisconsin at 30%, occurred in only 15% of our 
samples (Figure 3; Table 2). Haplotypes B and D were 
instead most common in our data (each at ~23%). 
Haplotype C, associated with reduced CWD suscept-
ibility, was detected at a frequency of 15%, quite similar 
to that in Illinois/Wisconsin (17%). Two additional 
haplotypes (E and G) also occurred at high frequencies 
in Arkansas (7% and 11%, respectively), whereas they 
were found at <5% in the Illinois/Wisconsin [30]. Out 
of the 16 rare haplotypes with previously reported 
frequencies ≤1% (Haplotypes K-Z [30]), seven were 
also observed at low frequencies in Arkansas (i.e., 
Haplotypes K, L, O, P, R, T, and V). Haplotype fre-
quencies also differed across counties (Supplemental 
Table S1), although we note that sampling effort was 
uneven across the state.

Evidence for disease-mediated selection on PRNP 
variants
Haplotypes B and C did not occur in the same fre-
quency within CWD-positive and CWD-negative deer 
(Table 2; Figure 3), and likewise were the most spatially 
heterogeneous of the observed haplotypes (Figure 4). 
Haplotype B was over-represented within CWD- 
positive deer, both state-wide (OR = 2.00, 
p = 0.000001), and in Newton County (OR = 1.43, 
p= 0.033). Haplotype C was under-represented within 
CWD-positive deer, both state-wide (OR = 0.30, 
p = 0.00003) and Newton County (OR = 0.42, 
p = 0.015).

If Haplotypes B and C influence CWD susceptibility, 
then their relative frequency of occurrence should vary 
among deer age-classes, reflecting a biased probability 

Figure 1. Sampling locations for white-tailed deer tissues from Arkansas evaluated in this study. The red shaded area indicates the 
16 counties included in the 2019 Chronic Wasting Disease Management Zone (CWDMZ), with a yellow boundary surrounding a focal 
area encompassing Newton County. Black dots represent collection localities for each individual tissue. Note that the boundaries of 
the CWDMZ have since expanded.
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Table 1. PRNP haplotypes tabulated from 1,433 white-tailed deer tissues collected from 75 counties in Arkansas (2016–2019). 
Haplotypes (Hap) are identified by letter (A-V) following Brandt et al. (2015, 2018). Haplotypes denoted as AR1-4 are previously 
unreported. Mutations that differ from haplotype A are shaded, with green indicating synonymous substitutions (no amino acid 
change) and blue as non-synonymous (amino acid changed in protein; NSS). Also listed are amino acid position and nucleotide site 
(Brandt et al. 2015, 2018). Polymorphisms not identified in prior studies are denoted as *.

Hap NSS Amino Acid Position
20 51 81 95 96 99 108 122 124 126 146 166 185 225

Nucleotide Site
60 153 243 285 286 299 324 367 372 378 438 499* 555 676

A C C T A G G A G G G C A C C
B C C T A G G A G G G C A T C
C 96S C C T A A G A G G G C A T C
D C T T A G G A G G G C A C C
E C C T A G G A G G G T A C C
G T C T A G G A G G G C A C C
I 96S C C A A A G A G G G C A T C
J C C T A G G G G G G C A C C
K 225 K T C T A G G A G G G C A C A
L 122 T C C T A G G A A G G C A C C
O T T T A G G A G G G C A C C
P 96S C C T A A G A G G G C A C C
R C T T A G G A G G G C A T C
T C T T A G G A G G A C A C C
V 96S C T T A A G A G G G C A C C
AR1 C C T A G G G G G A C A C C
AR2 96S C C T A A G A G G G C C T C
AR3 96S T C T A A G A G G G C A T C
AR4 C C T A G G A G G G T A T C

Figure 2. Haplotype network showing relationship of prion gene variants (PRNP) detected across 1,433 white-tailed deer collected 
from 75 counties in Arkansas (2016–2019). Data are based on sequence analysis of 720 nucleotides. Circles represent 20 haplotypes 
(=alleles) with size reflecting frequency of occurrence in entire data set (Table 2), and tick marks representing number of mutations 
(=nucleotide substitutions) distinguishing one from another (Table 1). Colour codes reflect relative frequency among CWD-positive 
(red) and CWD-negative/undetected (green). Letters correspond to haplotype names (per Brandt et al. 2015), with haplotypes unique 
to Arkansas indicated with numbers (AR#). Haplotypes sharing the 96S mutation are indicated with (*).
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of reaching older age classes. We restricted our analyses 
to Newton County to ensure only deer from CWD- 
endemic locations were considered. We found the fre-
quency of Haplotype C significantly more common in 
older deer, both when measured as relative allele fre-
quency (p= 0.036; R2 = 0.635; Figure 5), and as an age- 
partitioned odds ratio (p= 0.043; R2 = 0.601; Figure 5), 
though we note that the sample size for older cohorts 
was lower than other cohorts (Figure S2). The increase 
in Haplotype C remained substantial even when we 
considered only the relative frequency of each haplo-
type among CWD-positive deer from Newton County 
(i.e., 4% of yearling/fawn haplotypes, and 17% of those 
from individuals older than 5; Supplemental Table S3). 
Among CWD-positive deer state-wide, Haplotype 
C was recorded at 5.24% of all sampled haplotypes 
(Table 2). By contrast, Haplotype B showed neither 
a discernible relationship regarding CWD status, nor 
relative frequencies across age classes (Figure 5; 
Supplemental Table S3).

Discussion

Our diagnosis of variability in the PRNP gene across 
1,433 WTD collected from 75 counties in Arkansas was 
comparable to that found in other states (Tables 1–2). 
Of the 20 haplotypes we detected, 16 were previously 
identified in other states, with those alleles at higher 
frequencies in Arkansas also being most common else-
where [30]. Four novel variants were found at low 
frequencies (Table 2; Figure 2–3), with paralog artefacts 

as a source of this variation eliminated due to our 
sequencing of the pseudogene. Haplotype C, character-
ized by the 96S substitution, showed a significantly 
biased representation among CWD-positive deer, 
being under-represented in younger deer and over- 
represented in older CWD-positive deer (Figure 5). 
This suggests that 96S-individuals tend to live longer 
following CWD-infection than those with alternate 
genotypes. This could reflect either a reduced likeli-
hood of contracting the disease or a slower disease 
progression following exposure.

We also found Haplotype B as significantly over- 
represented in CWD-positive deer (Table 2 and 
Figure 3) but failed to find a reciprocal impact on life 
expectancy (Figure 5). Instead, we found Haplotype 
B to be most extensive within the region where CWD 
is currently centred (Figure 4). This, in turn, may 
suggest heterogeneity in Haplotype B frequency repre-
sents an artefact of population structure, a well-known 
confounding variable recognized in trait-association 
studies [38–41]. We also note that decreased precision 
of ageing of white-tailed deer on the basis of tooth 
development and wear patterns may also contribute 
some variability, particularly with regard to haplotype 
frequencies among older cohorts [42–44]. We also can-
not rule out the potential for linked variation as influ-
encing the observed pattern in Haplotype B, however 
our results do not find any evidence for increased 
susceptibility of the variant. Using panels of nuclear 
markers, we suggest further study of patterns of spatial 
connectivity and population structure in wild WTD 
[45] as a means of separating potential spatial and 

Table 2. PRNP haplotype frequencies and odds-ratios, as associated with CWD status of white-tailed deer in Arkansas, 2016–2019. 
Haplotypes were derived from unphased sequences representing 720 nucleotides of the PRNP gene. Haplotypes (Hap) are identified 
by letter (A-V) following Brandt et al. (2015, 2018). Haplotypes denoted AR1-4 are previously unreported. Listed are total numbers 
(N) and relative frequency (%) and associated values for deer that were CWD-negative (-), CWD-positive (+) or untested (?). Odds 
Ratio (OR) reflects the relative representation of a haplotype in CWD-positive deer; OR>1 indicated over-representation, OR<1 under- 
representation. SE = standard error, CI = 95% confidence interval, Z = OR Z-score and p= OR p-value. Values in bold are significant.

Hap Counts Frequency (%) Odds Ratio

N N(-) N(+) N(?) % %(-) %(+) %(?) OR SE CI Z p
A 435 367 34 34 15.18 15.1713.7117.17 0.89 0.19 [0.61–1.30] −0.61 0.54
B 657 536 90 31 22.92 22.1536.2915.66 2.00 0.14 [1.52–2.64] 4.93 0.00
C 426 376 13 37 14.86 15.54 5.24 18.69 0.30 0.29 [0.17–0.53] −4.14 0.00
D 657 547 63 47 22.92 22.6025.4023.74 1.17 0.15 [0.86–1.58] 1.00 0.32
E 187 160 16 11 6.52 6.61 6.45 5.56 0.97 0.27 [0.57–1.66] −0.10 0.92
G 309 266 24 19 10.78 10.99 9.68 9.60 0.87 0.22 [0.56–1.35] −0.63 0.53
I 42 39 1 2 1.47 1.61 0.40 1.01 0.25 1.01 [0.03–1.81] −1.38 0.17
J 65 59 3 3 2.27 2.44 1.21 1.52 0.49 0.60 [0.15–1.57] −1.20 0.23
K 10 9 1 0 0.35 0.37 0.40 0.00 1.08 1.06 [0.14–8.60] 0.08 0.94
L 2 2 0 0 0.07 0.08 0.00 0.00 - - - - -
O 3 2 1 0 0.10 0.08 0.40 0.00 4.89 1.23 [0.44–54.2] 1.29 0.20
P 10 8 0 2 0.35 0.33 0.00 1.01 - - - - -
R 2 2 0 0 0.07 0.08 0.00 0.00 - - - - -
T 41 30 1 10 1.43 1.24 0.40 5.05 0.32 1.02 [0.04–2.38] −1.11 0.27
V 1 1 0 0 0.03 0.04 0.00 0.00 - - - - -
AR1 1 0 0 1 0.03 0.00 0.00 0.51 - - - - -
AR2 15 14 0 1 0.52 0.58 0.00 0.51 - - - - -
AR3 2 2 0 0 0.07 0.08 0.00 0.00 - - - - -
AR4 1 0 1 0 0.03 0.00 0.40 0.00 - - - - -

242 T. K. CHAFIN ET AL.



phylogeographic drivers of haplotype frequencies from 
those driven by disease-mediated selection.

The recent detection of CWD in Arkansas may 
suggest an insufficient time to generate the genotype 

frequency differential we observed for Haplotype 
C (e.g., Figure 5). However, the prevalence rate in the 
Arkansas CWD Management Zone is suggestive that it 
was present in the landscape much earlier. Here, the 

Figure 3. Stacked histogram of 2,866 PRNP haplotypes detected in white-tailed deer collected in Arkansas, 2016–2019. Haplotypes 
were determined by phasing individual genotypes derived from sequencing 1,433 deer across 720 bp of the PRNP gene. Letters (A 
through V) refer to haplotypes identified in Brandt et al. (2015), whereas numbers (1–4) are haplotypes unique to Arkansas, and thus 
previously unreported. Frequencies are plotted for all 1,433 samples (=statewide) as well as for a subset of 314 samples from 
Newton County (N = 628 chromosomes). Colour codes reflect frequency among CWD-positive (CWD+) and CWD-negative (CWD-) 
samples; unknown indicates samples that were not tested for CWD. For each haplotype, paired bars report values statewide (left) 
and for the Newton County subset (right).

Figure 4. Topographies that represent interpolated haplotype frequencies for the PRNP gene in Arkansas. Frequency is depicted by 
colour, with blue reflecting low occurrence (0–5%) whereas red indicating 46–50+% of haplotypes were of this type.
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putative peak prevalence rate of 22–30% (Middaugh 
and Riggs, pers. comm) points to a longer-standing 
epidemic. For example, Miller et. al [46] showed pre-
valence rates in silico to reach 1% in a 15–20 year span, 
and 15% in 37 to 50 years, using plausible transmission 
rates. This seemingly suggests that the time required to 
reach a prevalence rate of >22% is likely to be longer 
than 37–50 years. However, we note that true preva-
lence likely varies as a function of numerous demo-
graphic factors [47] and also likely exhibits a non-linear 
temporal trend [48], thus conclusions are highly depen-
dent on the exact model parameterization [49].

Management implications of PRNP variation

Structural variants of the PrP protein play a role in disease 
progression [28,34]. However, the exact mechanisms 

remain poorly understood. The primary variant we have 
implicated herein (i.e., 96S) as influencing disease sus-
ceptibility has been supported as such in laboratory set-
tings. For example, Mathiason et al [23]. inoculated WTD 
with prion strains and examined time-to-detection (via 
saliva) across deer in multiple cohorts. Several infected 
individuals having the 96S prion gene variant remained 
undetected at 18 months post-inoculation, although this 
may represent an insufficient time for the necessary 
in vivo prion protein build-up. Race et al [35]. similarly 
inoculated transgenic mice expressing different white- 
tailed deer 96GG and 96SS PRNP genotypes and showed 
that this delay in disease progression also extended to 
heterozygotes (96GS genotype).

Despite compelling evidence for an inhibitory 
mechanism at the 96S allele, its use as a management 
tool remains unclear. Genetically guided selective 

Figure 5. Relative frequency and odds ratio for two haplotypes of the prion gene PRNP haplotypes detected in white-tailed deer age 
cohorts (<1 year to 5+ years) sampled in Arkansas from 2016–2019. Prion gene variant Haplotype C (top panel) has been associated 
with reduced susceptibility to CWD, whereas Haplotype B (lower panel) has been associated with higher susceptibility (Brandt et al. 
2018). Data are based on phased haplotypes derived from 720 nucleotides of the PRNP gene sequenced across 1,433 deer.
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breeding in domestic sheep (Ovis aries) has reduced 
scrapie incidence [50,51]. In a captive setting such an 
approach may be viable for WTD [35], although we 
note that the degree of protection offered by the 96S 
genotype to CWD is likely much lower than that seen 
among the most ‘protective’ genetic variants to scrapie 
in sheep [50]. However, captive deer maintained at high 
density and under genetic selection could also drive 
artificial selection for emergent prion strains with 
heightened pathogenicity in 96S deer, as well as poten-
tially expanding the host range to include novel spe-
cies [52].

The implication of 96S frequency with regard to 
the spread of CWD within and among herds is like-
wise uncertain. An important question is whether the 
potential for an increased incubation period [53] 
associated with 96S could also produce a similar 
extended period for asymptomatic and subclinical 
transmission/prion shedding [24,54]. If so, this 
could increase the probability of transmission by 
96S deer, thus promoting its increase within popula-
tions (Supplemental Figure S3). An understanding of 
the prion growth kinetics across host genotypes is 
needed, as well as a more thorough understanding 
of prion strain evolution [55].

Conclusion

Our results corroborate previous research conducted 
with WTD in Illinois and Wisconsin: reduced CWD 
susceptibility in PRNP variants associated with the non- 
synonymous 96S mutation [30,31]. We demonstrated 
that a common haplotype (Haplotype C) harbouring 
96S increased in relative frequency when older CWD- 
positive cohorts were examined.

Management implications of this research requires 
further epidemiological understanding necessary to 
predict outcomes (Supplemental Figure S3). The 
next step in understanding the current distribution 
and future spread of CWD in Arkansas requires the 
characterization of context-specific factors, includ-
ing 1) population structure as a potential driver of 
PRNP trends, 2) landscape features that modulate 
deer dispersal, population demography, and density, 
and 3) increased knowledge of epidemiology, includ-
ing the interactions among context-specific factors 
[56]. We thus advocate for a landscape genomic 
framework for WTD as the next logical step to char-
acterize CWD spread such that fine-scaled deer 
movement patterns can be more effectively parsed 
and interpreted [57].

Materials and methods

CWD surveillance and prevalence in Arkansas

In October 2015, CWD was initially detected in 
Arkansas in a 2.5-year old female elk (Cervus canaden-
sis) legally harvested near Pruitt in Newton County. In 
February 2016, a CWD-positive female WTD was 
found dead in Ponca in Newton County. During 
March 2016, biologists from the Arkansas Game and 
Fish Commission (AGFC) collected 266 WTD tissue 
samples within a 50,500 ha focal region. CWD preva-
lence was 23% and differed by gender (female = 20%, 
male = 32%). For these surveys, to include the samples 
collected for molecular work, ageing of deer was done 
by examination of tooth replacement and wear [58]. 
Although the method of ageing described by 
Severinghaus [58] is well established, we do note that 
it has reduced accuracy in older cohorts as compared 
with alternative methods using cementum annuli 
[44,59].

Subsequent state-wide monitoring, which included 
hunter-harvested and road-killed deer, identified 
CWD-positive individuals outside of the initial focal 
region. Additional state-wide sampling efforts, in con-
junction with hunter harvested and bi-annual surveys, 
established a state-wide baseline for occurrence of 
CWD. As of April 2020, 818 WTD and 23 elk have 
tested positive for CWD. Given the incidence of con-
firmed CWD-positive deer, AGFC established a CWD 
Management Zone (CWDMZ) that included counties 
within a 16 km radius of identified positives. At the 
completion of this study (June 2019), the CWDMZ 
encompassed 19 counties of northwestern Arkansas 
(Figure 1).

There has been a concerted effort by the AGFC to 
proactively manage CWD prevalence and potential dis-
ease spread in Arkansas, which included hunting reg-
ulations that promote harvest of young male deer and 
increased harvest of female deer (e.g., removal of antler 
point restrictions and altered bag limits). Addition 
restrictions included prohibiting baiting and feeding 
to reduce grouping behaviour in deer and to hinder 
human-mediated transmission via hunting and subse-
quent removal of carcases from with the CWDMZ. The 
CWDMZ has subsequently been expanded to encom-
pass the known distribution of CWD. During the 2018/ 
2019 deer and elk hunting seasons, 246 additional 
CWD-positive cervids (241 WTD and five elk) were 
detected. Moreover, the AGFC has mandated 
a compulsory testing requirement for harvested elk, 
and a voluntary test for WTD, facilitated by a state- 
wide network of deer head drop-off locations.
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DNA extraction and amplification

Frozen ear or tongue tissue was homogenized with the 
TissueLyser II (QIAGEN© Corporation, Maryland, 
USA), with genomic DNA subsequently extracted 
using the QIAamp Fast DNA Tissue Kit protocol 
(QIAGEN© Corporation, Maryland, USA). To ascer-
tain presence of high-quality genomic DNA (i.e., mole-
cular weight >20kb), a 5 μl aliquot of the DNA extract 
was separated on a 2% agarose gel and visualized using 
GelGreen on a blue-light transilluminator (Gel Doc™ 
EZ Imager; Bio-Rad). DNA was then used as template 
material to amplify a coding section of the PRNP gene, 
following a protocol modified from previous studies 
[31,32]. For the functional PRNP gene, the forward 
primer (CWD-13) straddles Intron 2 and Exon 3, 
with the reverse primer (CWD-LA) located 850bp 
downstream [32]. To ascertain if the polymorphisms 
were indeed in the functional PRNP gene, we tested for 
the presence of the non-coding PRNP pseudogene 
(PRNPPSG) by using pseudogene primers 223 and 
224 [33].

Amplifications for the functional PRNP gene and the 
PRNPPSG pseudogene were performed in 20 μl reactions 
consisting of 10 μl Qiagen HotStart Master Mix (1unit 
HotStartTaq DNA Polymerase, PCR Buffer with 3 mM 
MgCl2, and 400 µM of each dNTP), 8 μM each of the 
forward and reverse primer, 7.4 μl DNase-free water, 
and 1 μl of template DNA (~50-100 ng). Thermocyling 
protocols consisted of an initial denaturation step of 
15 min at 95oC, followed by 10 cycles of 45 s denatura-
tion at 95oC, 45 s annealing at 57oC, and 75 s extension 
at 72oC, 25 cycles of 30 s denaturation at 95oC, 30 
s annealing at 55oC and 60 s extension at 72oC, com-
pleted with a final extension step of 5 min at 72oC.

If both PRNP and PRNPPSG amplified in a sample, 
then each was sequenced to identify the true poly-
morphism in the functional PRNP gene. Amplicons 
were enzymatically purified, sequenced using BigDye 
v. 3.1 (Applied Biosystem Inc., Forest City, CA) dye- 
terminator chemistry, and resolved on an ABI 3730XL 
GeneAnalyzer (University of Illinois Keck Centre for 
Functional and Comparative Genomics). Sequences 
were manually edited using Sequencher (v 5.4, Gene 
Codes, Ann Arbour MI) and aligned against a reference 
database of PRNP gene sequences obtained from the 
NCBI GenBank (Accession # AF156185.1; 
AY3600089.1; AY3600091.1).

Haplotype phasing and network construction

Following alignment, sequences were phased to haplo-
types (paired nuclear alleles) using the programPHASE2 

[60], which reconstructs haplotypes using 
a probabilistic model of linkage disequilibrium. Only 
haplotypes assigned with >90% posterior probability 
(N = 1,433) were retained. Scripts employed to format 
inputs and parse haplotype phasing are available at 
github.com/tkchafin/haploTools. Haplotypes were then 
categorized using a published nomenclature [31], with 
haplotype frequencies calculated globally, by county, 
and by CWD status. We constructed a haplotype net-
work to visualize similarity amongst haplotype, using 
the median-joining algorithm employed by POPART [61]. 
Scripts to formulate these input files are found at: 
github.com/tkchafin/scripts.

Analysis of PRNP variants

We first applied spatial interpolation to examine the 
structure of PRNP haplotypes as distributed across the 
state. Haplotype frequencies were computed by first 
dividing the state into non-overlapping ‘pseudo- 
populations’ that contained between 5 and 10 sampling 
localities each. This was done because our state-wide 
sampling process lacked a priori information with 
regard to natural population structure. Our results 
yielded N = 211 polygons (Supplemental Figure 1). 
We then applied Empirical Bayesian Kriging in 
ARCMAP v10.7.1 (Esri, Inc.) to interpolate our posterior 
probabilities.

To associate disease with PRNP variants, we fol-
lowed prior studies [30,31] by computing odds ratios 
(OR). We first consider the probability of displaying an 
outcome (=CWD status) given the presence of a focal 
haplotype. An OR>1 = an over-representation of the 
focal haplotype among CWD-positive deer; an OR<1 
indicates the focal haplotype is under-represented. We 
identified and evaluated haplotypes separately, by 
examining haplotype frequencies among age classes. 
We did so because a bias in relative representation 
can be driven by multiple factors such as population 
structure, which may drive a coincident relationship. 
Here, we assumed that if a haplotype indeed affects the 
probability of survival to adulthood in CWD-present 
regions, presumably by reducing disease risk and/or 
progression, then it should show a significant change 
in relative representation in older age groups.
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