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Abstract: Peripheral nerve injuries remain a significant source of long lasting morbidity, disability,
and economic costs. Much research continues to be performed in areas related to improving the
surgical outcomes of peripheral nerve repair. In this review, the physiology of peripheral nerve
regeneration and the multitude of efforts to improve surgical outcomes are discussed. Improvements
in tissue engineering that have allowed for the use of synthetic conduits seeded with neurotrophic
factors are highlighted. Selected pre-clinical and available clinical data using cell based methods
such as Schwann cell, undifferentiated, and differentiated stem cell transplantation to guide and
enhance peripheral nerve regeneration are presented. The limitations that still exist in the utility of
neurotrophic factors and cell-based therapies are outlined. Strategies that are most promising for
translation into the clinical arena are suggested.

Keywords: peripheral nerve; peripheral nerve regeneration; stem cells; neurotrophic factors;
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1. Introduction

Peripheral nerve injuries remain a significant source of long lasting morbidity, disability, and
economic costs. The associated neuropathic pain and disability are the leading determinants for
impacted quality of life in peripheral nerve injuries [1]. Injuries to the peripheral nerves can occur in
multiple clinical scenarios. From 1% to 3% of trauma patients will have an injury involving a peripheral
nerve [2,3]. The most common associations are the male gender and motor vehicle accidents [1]. Nerve
injuries have been recognized as occurring during falls and in children [4,5]. Iatrogenic peripheral
nerve injury is seen in surgery, anesthesia injections, chemotherapy, and radiation for breast or head
and neck tumors [6–8]. Obstetrical brachial plexus injury is seen in 1.24 per 1000 births [9]. Peripheral
nerve injuries including the brachial plexus, radial, and ulnar nerves are significantly higher during
wartime in all branches of the military [10]. During Operation Iraqi Freedom, 3% of all extremity
injuries involved damage to peripheral nerves [11].
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2. Pathogenesis of Nerve Injury and Repair

In contrast to the central nervous system, the peripheral nervous system has the ability to
regenerate. There is some evidence that a conditioning lesion primes the peripheral nerve for
regeneration [12]. However, functional recovery is often incomplete.

The regenerative process starts with the initial response to injury [13]. After nerve transection, an
orchestration of morphologic changes occurs in the soma, proximal axon, and distal axonal stump.
In the soma, there is dissolution of Nissl bodies and peripheral displacement of the nucleus [13].
The neuronal mRNA transcription profile changes after injury to support axon regeneration and
neuronal survival [14]. Proteins associated with neuronal growth are upregulated such as GAP-43,
tubulin, actin, and multiple neuropeptides and cytokines [15]. The proximal nerve stump retracts back
to its node of Ranvier [16]. The distal nerve undergoes anterograde or Wallerian degeneration [17].
The proximal stump sprouts processes that sample the environment for neurotrophic factors to guide
them to their target [18,19].

Schwann cells play an important role in the axonal regeneration. Schwann cells deposit laminin,
fibronectin, tenascin, heparin sulfate, and collagen to bolster the extracellular matrix lost from
injury [15]. Schwann cells express cell adhesion molecules that are important in interacting with
matrix proteins that will modulate axon outgrowth and pathfinding [15,20,21]. Schwann cells produce
chemokines to attract macrophages for the removal of myelin and axonal debris [22,23]. Schwann cells
also elongate along their basal lamina in bands of Bungner to provide the scaffolding for new axonal
growth [22,23].

In mixed nerves with both motor and sensory axons, regenerating motor and sensory axons should
grow along the proper pathways to prevent haphazard regeneration. Intrinsic mechanisms are in place
that allow motoneurons to preferentially regenerate along motor pathways even if the nerve graft is
misaligned [24]. One pathway is through the small GTP-binding protein RhoA and effector Rho-kinase
(ROCK) [25]. RhoA differentially affects motor and sensory axonal regeneration [25]. The RhoA/ROCK
pathway is significant especially since the use of a ROCK inhibitor has been experimentally shown to
facilitate growth of motoneurons over sensory neurons [25].

Regeneration is limited by the axonal growth rate commonly stated as 1 mm per day, though it can
vary depending on location [26]. In the clinical setting, a positive Tinel’s sign elicited by neuropathic
pain, reproduced by tapping over a nerve, can help localize the regenerating nerve front. However,
in the absence of a migrating Tinel’s sign, the clinician is in the dark regarding nerve regeneration.
Common practice is to allow several weeks or months to monitor for nerve recovery before proceeding
with a nerve exploration. The senior author has previously worked on intrafascicular electrodes and
has developed biodegradable regenerative type conduits that possess electrodes for the monitoring of
nerve recovery [27–30]. Gamble et al. has also investigated implantable nerve stimulators that serve to
monitor nerve regeneration [31]. Such methods will improve our temporal understanding of complete,
incomplete, and failed nerve regeneration. In our current understanding, incomplete recovery is
related to the time dependent neurologic and non-neurologic cellular responses to injury [22]. Nerve
injuries with gaps are subject to the ingrowth of scar tissue. Large gaps affect the Schwann cell’s ability
to form adequate bands of Bungner; hence, exogenous methods of scaffolds or conduits are used.

In chronic axotomy and chronic muscle denervation, inadequate neurotrophic factors from
Schwann cells and target organs that diminish over time lead to poorer outcomes [32]. Untreated
nerve injuries have several histological and molecular changes primarily in the distal stump, such as
a decrease in Schwann cells and an increase in fibroblasts [33]. Jonsson et al. suggests three months
as the critical time point where the effects of medical intervention start to decrease [33]. After that
time period, there is a dramatic decrease in the number of regenerating motoneurons and myelinated
axons, with greater fibrosis and scarring in the distal nerve stump [33]. The distal nerve stump
degrades very quickly and loses its ability to reconnect with its previous axon as a function of time
(as short as 4 weeks) and distance [34]. In the absence of reinnervation, the muscle undergoes fibrofatty
infiltration [35].
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3. Surgical Methods of Nerve Repair

In the clinical setting, there are various surgical techniques at the disposal of the peripheral nerve
surgeon. For peripheral nerve injuries that do not involve a gap, tension-free primary neurorrhaphy
is the method of repair. For a peripheral nerve injury with a gap that precludes a tension-free repair,
bridging the gap with a nerve autograft remains the standard of care [19,36]. The sural nerve is the
most common donor nerve [19]. However, this practice is associated with donor site morbidity [19].
The sural nerve, a sensory nerve, is not always an appropriate size match for grafting, hence the
practice of cable grafting [19]. Repair of a nerve with mixed motor and sensory components is better
with a motor or mixed nerve autograft, rather than a sensory autograft [37].

An alternative to nerve autografts is the use of autogenous or synthetic conduits [19,38–41].
Vein and composite muscle-in-vein conduits have been used in patients with digital nerve injuries
with similar results to autografts [42]. In animal models, platelet-rich plasma within the vein conduit
has been used to demonstrate improved functional and histological outcomes at 6 weeks [43]. Using
veins as conduits has been described, but requires a donor site for harvesting.

Nerve allografts are another option for peripheral nerve repair that avoid the donor site
morbidity seen with autografts. However, the immunogenicity of nerve allografts require concurrent
administration of immunosuppressants for up to 18 months [44]. Protocols have been established that
create acellular nerve allografts to reduce the immunogenicity of nerve allografts while preserving
the extracellular matrix. Such protocols often involve detergent processing, freeze-thaw cycles, and
cold preservation. The proprietary preparation of AxoGen (Alachua, FL, USA) allografts involve a
combination of detergent processing, enzymatic digestion, and gamma irradiation [45]. Of particular
note, the method of preparing the acellular nerve allograft can affect the overall regeneration.
Detergent-processed allografts showed similar performance to autografts, whereas cold-preserved
allografts and AxoGen allografts showed inferior nerve regeneration in comparison to autografts [45].
In a similar pre-clinical rat sciatic model, regeneration across gaps of 14 and 28 mm using AxoGen
allografts were inferior to autografts [46].

Synthetic nerve conduits made of polyglycolic acid, polyester, collagen, or polycaprolactone
are available as “off-the-shelf” products [40] (See Table 1). Of the Food and Drug Administration
(FDA) approved nerve conduits, the collagen-based NeuraGen® (Integra LifeSciences, Plainsboro,
NJ, USA) and polyglycolic acid NeuroTube® (Synovis Micro Companies Alliance, Birmingham, AL,
USA) conduits have the most encouraging clinical data. Taras et al. showed good sensory recovery of
22 digital nerves across an average gap of 12 mm using NeuraGen® [47]. Wangensteen et al. showed
that NeuraGen® is adaptable for use throughout the body but had modest nerve improvement in
only 43% of patients in a heterogenous trauma population [48]. Ashley et al. evaluated the use of
NeuraGen® in five infants with brachial plexus injuries, with four of the five infants gaining significant
motor improvement with the ability to feed and dress themselves at 2 years follow-up [49]. In a
comparison of the NeuraGen® to the AxoGen allograft, the NeuraGen® produced inferior results in a
rat model across 14 and 28 mm gaps [46]. Collagen tubules have been evaluated by other investigators.
Boeckstyns et al. showed similar sensory and motor recovery at 24 months of ulnar and median nerve
lacerations after collagen based conduit repair compared to neurorrhaphy for gaps 6 mm or less [50].
Kuffler et al. formed collagen tubules from sheets and filled them with platelet-rich fibrin to span
across a 12 cm gap in a patient with an ulnar neuroma. Kuffler et al.’s patient showed initial motor
recovery at 1.5 years and full motor recovery at 2 years.
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Table 1. Food and drug administration (FDA) approved nerve graft conduits.

Product Material Company Clinical or Preclinical Comment

NeuraGen® Collagen Type I Integra LifeSciences Co.,
Plainsboro, NJ, USA

Taras et al. † [47]
Wangensteen et al. † [48]

Ashley et al. † [49]
Whitlock et al. [46]

Absorbable.
Good clinical data for

sensory and motor recovery.

NeuraWrap™ Collagen Type I Integra LifeSciences Co.,
Plainsboro, NJ, USA n/a Protective wrap.

NeuroFlex™ Collagen Type I Collagen Matrix, Inc.,
Franklin Lakes, NJ, USA n/a Flexible.

For gaps 2.5 cm or less.

NeuroMatrix™ Collagen Type I Collagen Matrix, Inc.,
Franklin Lakes, NJ, USA n/a For gaps 2.5 cm or less.

NeuroMend™ Collagen Type I Collagen Matrix, Inc.,
Franklin Lakes, NJ, USA n/a Self curling protective wrap.

NeuroTube® Polyglycolic acid
Synovis Micro

Companies Alliance,
Birmingham, AL, USA

Battiston et al. † [39]
Rosson et al. † [51]
Duncan et al. † [52]

Absorbable.
Acidic degradation limits

quantity used [53]
Clinical data available for

sensory and motor recovery.
Risk of extrusion.

Neurolac® Poly(D,L-lactide-co-
ε-caprolactone)

Polyganics BV,
Groningen, The Netherlands

Bertleff et al. † [54]
Meek et al. [55]

Hernandez et al † [56]
Chiriac et al. † [57]

Absorbable. For gaps
less than 20 mm.
Risk of foreign
body reaction.

Salutunnel™ Polyvinyl alcohol
hydrogel

Salumedica LLC,
Atlanta, GA, USA n/a Non-degradable.

AxoGuard™
Nerve Connector

Porcine intestinal
submucosa

Cook Biotech, Inc.,
West Lafayette, IN, USA n/a For gaps less than 5 mm.

† denotes clinical study.

The largest clinical series evaluating polyglycolic acid conduits was performed by Weber et al. [58].
Weber et al. demonstrated in 62 repaired digital nerves that nerve gaps less than 4 mm had
better two-point discrimination when repaired with polyglycolic acid conduits versus primary
neurorrhaphy [58]. Battiston et al.’s series of 17 patients with 19 digital nerve injuries repaired
using NeuroTube® conduits across gaps 1–4 cm showed similar positive results [39]. Significant motor
recovery using NeuroTube® was reported by Rosson et al.’s retrospective case series of six patients
with various upper extremity nerve gaps 1.5–4 cm in length [51]. All six patients had greater than
anti-gravity strength on follow-up [51]. A known disadvantage of the NeuroTube® is the extrusion
of the conduit, even through healthy appearing tissues [52]. Weber et al. also reported three cases of
conduit extrusion in his series [58].

Pre-clinical data in rats with a 10 mm sciatic nerve gap using Neurolac® suggested favorable
motor recovery with the Neurolac® comparable to autografts [59]. The clinical data on the use of
the Neurolac® has been less encouraging. Bertleff et al. used Neurolac® in 17 patients with 21 nerve
injuries in the hand with similar outcomes to standard treatment [54]. The Neurolac® conduit incites
an inflammatory foreign body reaction that negated any benefit in rats, but also has been demonstrated
in humans [55,56]. In a larger series of 23 patients with 28 nerve injuries in the hand, there were two
patients with fistulization of the conduit into the joints [57].

Synthetic conduits are limited by the lack of an internal architecture. A fibrin clot has to form
which serves as the scaffold for Schwann cells to grow along and for axonal regeneration to occur on.
Fibrin clot instability limits how long a gap can be for axonal regeneration to occur given the lack of an
internal architecture in a conduit. Different gap lengths have been investigated in pre-clinical primate
models. Regeneration across collagen conduits of 5 cm has been shown to occur, however the results
are inferior to outcomes across a 2 cm gap [60,61]. In Krarup et al.’s study, two out of seven median
nerve gaps of 5 cm did not have any regeneration across the collagen conduit [61]. As such, synthetic
conduits for clinical use are limited to gaps of <3 cm [40,62].
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4. Regulating Peripheral Nerve Regeneration

Neurotrophic factors are proteins necessary for the function, viability, and regeneration of a
neuron after injury [15,34,63,64]. The neurotrophin family includes nerve growth factor (NGF),
brain-derived neurotrophic factor (BDNF), glial cell line-derived neurotrophic factor (GDNF), ciliary
neuronotrophic factor (CNTF), platelet-derived growth factor (PDGF), vascular endothelial growth
factor (VEGF), and many other growth factors [34]. These factors bind to receptors such as the
transmembrane tyrosine kinase receptors on the regenerating neuron or the p75 receptor expressed
by Schwann cells [34,65,66]. Different neurotrophic factors encourage different aspects of peripheral
nerve regeneration. Neurotrophin-4 appears to be important in postnatal development, whereas
BDNF appears to have a predominant role after nerve injury [65]. Schwann cell-derived BDNF acts as
a retrograde signal from the distal nerve stump to trkB receptors expressed on the regenerating
proximal axon to promote axonal elongation [65,67]. NGF attracts regenerating sensory axons
within a concentration dependent gradient and enhances Schwann cell motility [68–70]. GDNF
is a chemoattractant for Schwann cells and stimulates their motility [68,70].

Much progress has been made in elucidating the underlying mechanisms in which neurotrophic
factors support nerve regeneration. The transcription factor Sox11 is very important in peripheral
nerve regeneration. Sox11 is downregulated in normal adult neurons but will significantly increase
expression after injury [71]. Sox11 upregulation promotes neurite elongation, branching, and
myelination through activating the regeneration-associated small proline rich protein 1a (Sprr1a)
gene [72–74]. Sox11 also supports a pro-neuronal survival paradigm through the expression of TNF
receptor-associated factor-associated NF-kB activator (TANK) [71,75]. Levels of BDNF are impacted by
the transcription factor Sox11 [75,76].

Experimental studies have shown that the Sox11 and its downstream targets are central in
peripheral nerve regeneration. Known stimulators of nerve regeneration such as exercise and electrical
stimulation lack effects in BDNF or trkB knockout mice [77]. Dorsal root ganglia with Sox11 knockdown
have drastically reduced levels of TANK and decreased axonal growth, even in the presence of
nerve growth factor [71,75,78]. Inhibition of Sprr1A through the use of siRNA reduces the neuronal
stimulation effects of Sox11, highlighting the role of other pathways downstream of Sox11 [73].

The growth factor family of neuregulins also serve an important role in the communication
between the regenerating axon and the surrounding Schwann cells. Neuregulin-1 is expressed by the
regenerating axon and binds to the ErbB tyrosine kinase receptors on surrounding Schwann cells [79].
Within the Schwann cell, the signal expounds upon multiple pathways including the ERK1/2-MAPK,
calcineurin-NFAT, and PI3K-Akt pathways [79]. The broad downstream activity of neuregulin-1 plays
a role in Schwann cell growth, motility, and remyelination after injury [80]. Stassart et al. demonstrated
that in transgenic mice that overexpressed neuregulin-1, remyelination after injury was restored to its
normal thickness [81].

5. Exogenous Agents Improving Peripheral Nerve Regeneration

The addition of exogenous neurotrophic factors in peripheral nerve injury repair has garnered
attention [82]. Rat tibial nerves reconstructed with fibroblast growth factor within a silicone
conduit were found to have 30% more regenerating axons compared to autografts [83]. There is
much to be improved regarding growth factor delivery given the short half-life of growth
factors [34]. Marquardt et al. utilized scaffolding containing GDNF and tetracycline-inducible GDNF
over-expressing Schwann cells to create both the spatial and temporal delivery of GDNF in an animal
model, resulting in increased muscle mass [84]. Growth factors are limited by the delivery method and
short half-life and do not appear to be promising as a standalone therapy, especially across longer gaps.

A multitude of agents have been investigated to improve outcomes in peripheral nerve repair.
Betamethasone, vitamin E, thyroid hormone, pyrroloquinoline quinone, and erythropoietin have been
shown to improve neuronal recovery [85–88]. Immunophilins have been shown to have an effect
on nerve regeneration. Local rapamycin can increase nerve regeneration [89]. FK506, a calcineurin
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inhibitor, enhances peripheral nerve regeneration and increases axonal sprouting [90,91]. FK506
has a dose dependent benefit, however it also has immunosuppressant properties [92]. Related
proteins FK1706 and the FK506-binding protein 52 have similar neurotrophic activity without the
immunosuppressive qualities [93–95]. These agents have not been widely adopted due to limited
demonstrable efficacy in humans and/or side effect profiles.

6. Schwann Cell Transplantation in Nerve Regeneration

Creating an acellular nerve allograft requires removing Schwann cells that are otherwise beneficial
for nerve regeneration. The addition of exogenous Schwann cells improves peripheral nerve
regeneration in acellular nerve grafts and vein conduits in rats [96,97]. Allogeneic Schwann cells
may not persist beyond 6 weeks in rats without concurrent immunosuppression [98]. The process of
culturing viable Schwann cells is time consuming, however, newer techniques have been developed
that shorten the process to 2 weeks [99–101]. Levi et al. reported the first human experience of
using autologous Schwann cells grown from an injured sciatic nerve and sural nerve graft [102].
The autologous Schwann cells were added to sural nerve grafts to repair a 7.5 cm sciatic nerve defect
30 days after the initial trauma [102]. This case demonstrates the clinical feasibility of harvesting sural
nerves for Schwann cell culturing and definitive nerve repair. This method requires harvesting and
resultant donor site morbidity. It is, however, a method that involves a procedure already well known
to peripheral nerve surgeons without any genetic manipulation.

7. Stem Cells in Nerve Regeneration

Stem cells have come to the forefront for their potential benefits in peripheral nerve regeneration.
Successful regeneration requires interactions between the neuronal and non-neuronal supporting cells
of the extracellular matrix, in addition to neurotrophic factors. Stem cells are of interest given their
potential to differentiate into supporting cells to aid in the regenerating process. There are different
sources and types of stem cells (See Table 2). Embryonic stem cells are true pluripotent cells that can
differentiate into any cell type. Adult stem cells, also known as somatic stem cells, are multipotent
and can differentiate into cells along a specific lineage. Takahashi showed that fibroblasts could be
reprogrammed into expressing embryonic stem cell markers and behavior by introducing several
defined transcription factors [103]. The mechanism of enhanced peripheral nerve repair is not entirely
elucidated. Stem cells can differentiate into glial fibrillary acidic protein-positive Schwann cells and can
support myelination and the repair process [104]. Stem cells may also differentiate into fibroblast-like
cells capable of producing neurotrophic factors in addition to extracellular matrix proteins [105].

The use of stem cells for clinical purposes is subject to various regulations and monitoring. In the
United States, this regulatory responsibility falls under the Food and Drug Administration. In 2009,
President Barack Obama took a supportive stance for research by lifting a ban that limited federal
funding of human embryonic stem cell research to those stem cell lines in use prior to the 2001 ban [106].
At the same time, the National Institutes of Health Guidelines on Human Stem Cell Research were
released to stipulate responsible and ethical research of human embryonic and induced pluripotent
stem cells [107]. Research is also subject to the individual states’ laws regarding human embryonic
stem cells, which can range from fully supportive to restrictive legislation with regard to legalizing or
banning embryonic stem cell research and certain practices such as the cloning of human embryos, and
provisions for the use of state funding for research [106]. In Europe, the European Medicines Agency
classifies cell-based therapies as “advanced therapy medicinal products” [108]. While the European
environment is supportive of stem cell research, the infrastructure to allow for the timely transfer
of cell-based therapies to the market is still in development [108]. In 2014, Japan enacted the Act on
the Safety of Regenerative Medicine and the Revised Pharmaceutical Affairs Law to foster industry
collaboration to streamline stem cell-based therapies [109].
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Table 2. Stem cell sources for peripheral nerve regeneration.

Stem Cell
by Source Advantage Disadvantages Clinical or Preclinical Data Mechanisms of

Regenerative Benefit

Embryonic Totipotent.

Regulatory restrictions.
Ethical concerns. Risk of

teratoma. Limited
availability.

Ziegler et al. [110]
Cui et al. [111]

Schwann Cells, GDNF,
NGF, FGF, BDNF,

angiopoietin-1.
35%–60% yield

differentiation to
Schwann cells [110,111].

iPSC Inducible from easily
obtainable somatic cells.

Genetic manipulation
required. Potential risk

of teratoma.
Ikeda et al. [112] Differentiation to

Schwann cells.

Adipose Ease of harvest.
Widely available.

Variability of results.
Require stimulation for

neurotrophic effect [113].

Wei et al. [114]
He et al. [115]

Kingham et al. [116]
Sowa et al. [117]

Tomita et al. [118]

Production of
neurotrophic and
angiogenic factors

[116,118].

Neural crest

Ease of harvest from skin
and follicle cells. Can be
induced from fibroblasts,

hESC, iPSC.

-
Lin et al. [119]

Amoh et al. [104]
Grimoldi et al.† [120]

Differentiate into
neurons and SC.

Bone
marrow

Familiarity
with harvesting.

Bone marrow
biopsy required.

Heterogeneity of cells.

Cuevas et al. [121,122]
Chen et al. [105]

Mohammadi et al. [123,124]
Fan et al. [125]

Fibroblast-like cell
differentiation. Increase

production of myelin
basic protein, NGF,

BDNF, GDNF, CNTF.
† denotes clinical use.

7.1. Embryonic Stem Cells versus Induced Pluripotent Stem Cells

Embryonic stem cells and induced pluripotent stem cells are similar in differentiation potential.
So far induced pluripotent stem cells have shown variable results in the yield of differentiation
compared to embryonic stem cells [126].

7.2. Embryonic Stem Cells

Embryonic stem cells are self-replicating totipotent stem cells derived from the early human
embryo stage, which limits their availability. There are, however, multiple established human
embryonic stem cell lines that are available for research. Embryonic stem cells can differentiate into
Schwann-like cells that express a Schwann cell phenotype and are shown to associate with axons [110].
Embryonic stem cells injected within an epineurium conduit in rat sciatic nerves demonstrated
64% of normal axonal count versus 7% in autograft across a 1 cm gap [111]. Just over one-third
of the embryonic stem cells differentiated to Schwann cells and were shown to survive for at least
three months [111]. In another study, human embryonic stem cells were efficiently differentiated
to Schwann cells with a yield of 60% [110]. There are, however, ethical concerns with the use of
embryonic stem cells. Although differentiation of embryonic stem cells to neural crest stem cells has
been performed without the development of tumors, embryonic stem cells have a recognized tendency
to form teratomas and immunologic rejection [127–129].

7.3. Induced Pluripotent Stem Cells

Induced pluripotent stem cells are somatic cells that have been genetically manipulated such
that they express a “stem cell-like” phenotype in morphology and growth behavior. Somatic cell
induction to stem cells avoids immune rejection and can be taken from sites on the body with
lower morbidity. The process of stem cell induction requires cell reprogramming often achieved
by retroviral introduction of transcription factors and can take weeks. Induced pluripotent stem cells
have been formed from both mouse and human fibroblasts [103,130]. When evaluated in rats, Ikeda
demonstrated that nerve conduits coated with induced pluripotent stem cells and fibroblast growth
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factor had synergistic improvements in regeneration, however the autograft group maintained the
best outcomes [112]. Other investigations have shown the induced pluripotent stem cells are similar to
embryonic stem cells and, therefore, have a tendency to form teratomas [103,131]. Teratogenicity can
be related to the c-Myc gene and has been reduced in protocols using retroviruses without the c-Myc
gene, however the process efficiency is reduced [130]. An additional disadvantage is that retroviral
silencing occurs when somatic cells make the transformation to the pluripotent state, which affects the
stability of induced pluripotent stem cells later in the culturing process [132].

7.4. Adipose Stem Cells

Adipose-derived stem cells are promising given that they can be obtained using liposuction
techniques without significant morbidity [115]. Wei et al. showed that exogenous adipose-derived
stem cells produced similar regenerative outcomes in a rat 10 mm sciatic nerve injury model compared
to exogenous Schwann cells within a conduit [114]. These results were improved upon by transducing
microRNA-34a into the adipose-derived stem cells in a rat 10 mm sciatic nerve gap model [115].
MicroRNA-34a regulates multiple genes with a resulting pro-neuronal phenotype [133].

Adipose-derived stem cells may promote repair by differentiating into Schwann cells and secreting
neurotrophic and angiogenic factors [116]. Pre-clinical studies to date have had variable results
using adipose-derived stem cells. Adipose-derived stem cells have questionable durability after
differentiating to Schwann-like cells as they are noted to de-differentiate back into stem cells once
removed from the differentiation stimulating media [113]. Sowa et al., however, have shown that
adipose-derived stem cells may not differentiate to Schwann or Schwann-like cells in-vivo despite
in-vitro differentiation [117]. This distinction is important as Tomita et al. showed that undifferentiated
adipose stem cells secrete neurotrophic factors, albeit at a lower quantity than adipose stem cells
that differentiated into Schwann cells [118]. Thus, the beneficial effects of adipose-derived stem cells
are not entirely dependent on in-vivo differentiation to Schwann cells but are enhanced by Schwann
cell differentiation.

7.5. Neural Crest Stem Cells

Neural crest cell derivatives include peripheral nerves, melanocytes, adrenal glands, teeth, thymus,
and Schwann cells [134]. Neural crest cells may be harvested from the skin and have been derived
from human induced pluripotent stem cells, fibroblasts, and human embryonic stem cells [128,129,135].
Lin et al. differentiated rat hair follicle neural crest stem cells into neuron and Schwann cells using
sonic hedgehog with retinoic acid and neuregulin-1, respectively [119]. The neural crest stem cell
derived neurons survived up to 52 weeks post-transplantation with a greater number of regenerated
axons in treated groups compared to a xenograft without seeded neurons and Schwann cells [119].
Amoh et al. demonstrated that pluripotent hair follicle stem cells from human scalp could differentiate
into Schwann cells and result in greater axonal growth and gastrocnemius muscle contraction in a rat
sciatic nerve model [104]. Harvesting hair follicle neural crest stem cells from the skin is favorable
given the ease of access with low morbidity and no genetic manipulation required.

To our knowledge, the only reported clinical use of stem cells for peripheral nerve repair was
using neural crest stem cells by Grimoldi et al. [120]. Grimoldi et al. used autologous skin-derived stem
cells that included neural crest cells to salve an upper extremity in a young woman with polytrauma
from a knife stabbing [120]. These stem cells were used within collagen conduits that supported
a sural nerve graft across gaps of 8–10 cm [120]. Electromyography and nerve conduction studies
demonstrated regeneration across the long gaps, but the motor functional recovery was poor [120].
Her case demonstrates that regeneration across very long gaps can occur with the use of stem cells.

7.6. Bone-Marrow Mesenchymal Stem Cells

Bone marrow mesenchymal or stromal cells are a heterogeneous cluster of cells which contain
mesenchymal stem cells. These bone marrow derived mesenchymal stem cells can differentiate into
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Schwann-like cells and improve neural regeneration by expressing trophic factors such as nerve growth
factor, BDNF, myelin basic protein, and GDNF [105]. The beneficial effect on nerve regeneration does
not appear to be entirely dependent on differentiation into Schwann cells [105]. Cuevas et al. reported
the benefits of bone marrow stromal cells in a rat sciatic nerve injury model, however only 5% of the
stromal cells differentiated into Schwann cells [121]. In a follow-up experiment, Cuevas et al. showed
that sciatic nerve injured rats with transplanted bone marrow stromal cells maintained a significant
improvement over control rats at 180 days post procedure [122]. Chen et al. showed the benefit of
stromal cells in silicone conduits as measured by the number of axons, reduced muscle atrophy, and
walking behavior in rats despite being unable to detect Schwann cells within the silicone conduit [105].
The positive effect on nerve regeneration occurred through the increased production of myelin basic
protein and neurotrophic factors [105]. Similarly, Mohammadi et al. showed that undifferentiated
bone marrow stromal cells within a vein conduit increased the number and diameter of regenerating
myelinated axons and functional improvement to vein grafting alone in a rat sciatic nerve regeneration
model [123,124]. When bone marrow stromal cells are differentiated into Schwann-like cells, there is an
improvement in rat sciatic nerve regeneration within acellular nerve allografts over undifferentiated
bone marrow stromal cells and are overall comparable to the outcomes of autografts [125]. Though
bone marrow mesenchymal stem cells promote nerve regeneration, the studies to date show that
outcomes are only similar, not improved, when compared to autografts. In the clinical arena, a bone
marrow biopsy would be required if autologous transplantation is desired. Further improvement in
differentiating bone marrow stromal cells into Schwann cells would enhance the regenerative effect.

8. Nerve Tissue Engineering

Nerve tissue engineering refers to the fabrication of biocompatible constructs with or without
cellular components that support, encourage, and direct neurite elongation and Schwann cell migration.
Neural outgrowth involves close interactions with Schwann cells and the extracellular matrix.
By designing biomaterials with internal features or grooves, neural elongation and Schwann cell
migration can be guided while minimizing significant fibrosis. Nanofibrous scaffolds are favorable as
they have microscopic fibrous features that resemble the microscopic appearance of the extracellular
matrix [136]. Yang et al. showed that neural stem cells are capable of attaching to and growing
along poly(L-lactic acid) scaffolds [137]. Prabhakaran et al. were able to demonstrate in-vitro
mesenchymal stem cell differentiation into neuronal cells capable of expressing neurofilaments on a
similar nanofibrous scaffold [138].

An additional challenge will be regeneration across bifurcations of mixed motor and sensory
nerves. Romero et al. used sensory specific neurotrophins, and targeted regeneration down a sensory
pathway was achieved in-vitro across a “Y” construct. The addition of 3D printing technology is
promising as it is possible to create “smart” scaffolding with internal cues and spatial gradients of
growth factors to direct nerve regeneration in mixed nerves and across bifurcations [68]. 3D printing
technology has been combined with computed microtomography (microCT) to both demonstrate
and replicate the internal structure of acellular nerve allografts [139]. It is quite foreseeable to have
a peripheral nerve replacement that spans across a bifurcation with a native internal structure for
directed regeneration.

9. Future Directions

It is well recognized that there is significant room for improvement in peripheral nerve
regeneration outcomes. We do not yet have an “off-the-shelf” product for repair of large peripheral
nerve defects. The ideal product will be readily available and primed with a protein or cellular substrate
to promote regeneration without deleterious immune responses or teratogenicity. In complex injuries
involving mixed nerves at a bifurcation, the ideal product will help direct appropriate regeneration.

To our knowledge there has not been a study directly comparing different methods of using
exogenous cells, whether they be cultured Schwann cells, or Schwann-like cells from stem cells.
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As preclinical trials commonly use rat models, it is difficult to simulate large nerve gap defects that are
seen by today’s peripheral nerve surgeon.

The sheer time needed for axonal regeneration across large gaps >5 cm favors methods that will
utilize Schwann or Schwann-like cells with durable viability. Stem cells from an optimal source are
part of the picture. The translational work of Levi and Grimoldi are landmarks in peripheral nerve
repair [102,120]. Barriers, however, include the need for clinical trials and the resources needed by a
hospital to culture autologous Schwann or Schwann-like cells. The continually improving culturing
methods with shorter durations will facilitate both.

10. Conclusions

Peripheral nerve surgeons are in need of a technique that consistently produces favorable results
for patients with peripheral nerve injuries spanning long gaps. Current modalities under way to
improve outcomes include immunomodulation, increasing neurotrophic factors, exogenous Schwann
or Schwann-like cells, and advanced nerve scaffoldings. By combining methods to create multimodal
techniques, the most significant improvements in peripheral nerve regeneration will be seen.
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