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Background: Ovarian granulosa cell tumors are the most common sex-cord stromal tumors and have juvenile
(JGCTs) and adult forms. In a previous study we reported the occurrence of activating somatic mutations of
Gαs, which transduces mitogenic signals, in 30% of the analyzed JGCTs.
Methods:We have searched for alterations in other proteins involved in ovarianmitogenic signaling.We focused
on the PI3K–AKT axis. As we found mutations in AKT1, we analyzed the subcellular localization of the mutated
proteins and performed functional explorations using Western-blot and luciferase assays.
Findings:Wedetected in-frame duplications affecting the pleckstrin-homology domain of AKT1 inmore than 60%
of the tumors occurring in girls under 15 years of age. The somatic status of the mutations was confirmed when
peritumoral DNA was available. The JGCTs without duplications carried point mutations affecting highly con-
served residues. Several of these substitutions were somatic lesions. The mutated proteins carrying the duplica-
tions had a non-wild-type subcellular distribution, with a marked enrichment at the plasmamembrane. This led
to a striking degree of AKT1 activation demonstrated by a strong phosphorylation level and by reporter assays.

Interpretation: Our study incriminates somatic mutations of AKT1 as a major event in the pathogenesis of JGCTs.
The existence of AKT inhibitors currently tested in clinical trials opens newperspectives for targeted therapies for
these tumors, which are currently treated with standard non-specific chemotherapy protocols.
© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Sex cord stromal tumors involve granulosa, theca or stromal cells,
alone or combined. The most common ones are ovarian granulosa cell
tumors (GCTs), which represent up to 5–8% of all ovarian tumors
(Pectasides et al., 2008; Young and Scully, 1992). Two distinct subtypes
have been described based on clinical presentation and histology: the
juvenile and the adult forms. Five percent of GCTs occur in the prepu-
bertal period and are often uncovered by a precocious pseudo-puberty
and/or dysmenorrhea (Fleming et al., 2010). Although advanced-stage
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disease can be observed, most of the juvenile GCTs (JGCTs) are detect-
able at an early stage but recurrence and metastases are possible
(Kalfa et al., 2007). The adult form (AGCTs) most commonly appears
during the perimenopausal period. AGCTs are characterized by a ten-
dency to late recurrence (Pectasides et al., 2008). The pathophysiologi-
cal mechanisms underlying GCTs are still unclear. However, a recurring
somatic mutation has been identified in the sequence of FOXL2, which
encodes a transcription factor, in more than 95% of AGCTs (Shah et al.,
2009). This mutation perturbs TGF-beta signaling in granulosa cells
(Rosario et al., 2012). With regard to JGCTs, in a previous study we
showed that FOXL2 expression was absent or reduced in the granulosa
cells of a number of patients. Interestingly, the patients with absent/re-
duced FOXL2 expression displayed higher mitotic activity in the tumor
and more advanced oncological stages. Furthermore, all recurring tu-
mors displayed extinction of FOXL2 (Kalfa et al., 2007). In another
study, we reported the occurrence of the activating somatic mutations
the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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R201C and R201H of Gαs in one third of the analyzed JGCTs. This muta-
tionmay lead to a constitutive activation of mitogenic FSHR signaling in
the latter (Kalfa et al., 2006). FSHR signaling also activates the
oncoprotein AKT (Hunzicker-Dunn et al., 2012) that phosphorylates
and inhibits transcription factors such as those belonging to the
Forkhead box protein O family (FOXO) (Telikicherla et al., 2011). Be-
cause not only FSH but other mitogens such as IGFs also signal through
PIK3CA and AKT in granulosa cells (Hunzicker-Dunn et al., 2012;
Baumgarten et al., 2014; Reynaud et al., 2010), we hypothesized that al-
terations of this pathwaymight be involved in themolecular etiology of
JGCTs. Thus,we searched formutations in the genes encoding these pro-
teins in a cohort of 16 tumors occurring in girls under 15 years of age.
Recently, mutations in PIK3CA, which encodes the catalytic subunit of
PI3K, were identified in various human cancers. Since 80% of these mu-
tations clusterwithin exons 9, 18 and 20,we focused on themand found
no alterations. With regard to AKT, we show here that more than 60%
(i.e. 10/16) of the JGCT samples harbor in-frame duplications that affect
the pleckstrin-homology domain (PHD) and activate AKT1 and that the
rest of the tumors often display several potentially damaging point mu-
tations. Our study points to AKT1 as a major driver in the pathogenesis
of JGCTs.

2. Materials and Methods

2.1. Patients

This study involves a cohort of 16 histologically proven JGCTs, occur-
ring in girls under 15 years of age, collected between 1994 and 2014
(from the Necker-Enfants Malades Hospital, Paris and the University
Hospital Montpellier tumor repositories). The available clinical data
are displayed in Table 1. This studywas validated by the Ethics Commit-
tees of the two tumor repositories that contributed the samples.

2.2. Nucleic Acid Extraction and Sequencing

Twelve samples were formalin-fixed paraffin-embedded (FFPE)
(T1–T12). Four tumors were obtained as frozen samples (T13–T16).
We isolated genomic DNA and RNA from FFPE tumors using the AllPrep
DNA/RNA FFPE Kit (Qiagen) and the frozen ones were processed using
standard procedures. To assess the somatic status of the mutations,
we extracted DNA frommanually isolated peritumoral tissue fragments
(only available for 8 samples). We also analyzed the COV434 cell line,
supposed to derive from a JGCT (Van den Berg-Bakker et al., 1993).

Sequencing of exon 8 of the Gαs gene, potentially harboring the
activating mutations R201C and R201H, was performed as described
(Kalfa et al., 2006). Exons 9, 18 and 20 of the PI3KCA (Li et al., 2005)
and all of the exons of AKT1 were amplified from gDNA using the
primers described below. For nested/semi-nested PCRs, when required,
we used the primers F2 and/or R2 from the list below. Sanger sequenc-
ing was performed by MWG-Biotech-AG according to their in-house
procedures.

Exon1-F1: 5′TGGCCTCACATTCAGCTTCCTT3′, Exon1-F2: 5′AGCGCC
AGCCTGAGAGGA3′,
Exon1-R1: 5′AGGGCACAGGCACTCACAGA3′
Exon2-F1: 5′TGTCCTGGCACACCCAGTT3′, Exon2-F2: 5′AGGGTCTG
ACGGGTAGAGT3′,
Exon2-R1: 5′GCAAAGAGGGCTCCAGCCAA3′
Exon3-F1: 5′ATGCACGCAGACAGAGGCT3′, Exon3-F2: 5′ATCCCCGT
GTCCCTCCTAAGC3′,
Exon3-R1: 5′GAGGATGGCTACAGGCAGAGGT3′
Exon4-F1: 5′TGTGGAACCACGCTTGTGA3′, Exon4-F2: 5′TGAAAGAC
GTGGGGTGGAGC3′,
Exon4-R1: 5′CCTCCACAGTCCAAGGCA3′, Exon4-R2: 5′CAGGCACA
GGCAGAAGTGG3′
Exon5-F1: 5′TTGCTGACCCTGGTGCCTG3′, Exon5-R1: 5′AGGAAGGG
GTGCCTGGAGT3′,
Exon5-R2: 5′CACCCCGCACCCTCATCT3′
Exon6-F1: 5′AAGGAAGTCATCGTGGCCAAGGT3′, Exon6-R1: 5′TAAA
GCCCTCACGTGCCCAAGAA3′,
Exon6-R2: 5′AGCTCACCCAGCCCTGCTTTACA3′
Exon7-F1: 5′TCAGGCGACGTGGTATCAAGC3′, Exon7-R1: 5′CCCTAA
CTCAGCAGGAACAAGTCA3′,
Exon7-R2: 5′ACAGGCCGCGAAGTCCATC3′
Exon8-F1: 5′CACGGCTGTGCCTCAGGTT3′, Exon8-R1: 5′GTGATCTT
AATGTGCCCGTCCTTG3′,
Exon8-R2: 5′CTCAGGTCAGTGCCGCCA3′
Exon9-F1: 5′ACTGACCTGAGGCCACCTTT3′, Exon9-R1: 5′AGCATTGC
GTGTGCTCAGGA3′,
Exon9-R2: 5′GACGCAGCAACGCGTATG3′
Exon10-F1: 5′GCCGAGTCCTGCCCATCT3′, Exon10-F2: 5′AGGTGCTG
GAGGACAATGACTA3′,
Exon10-R1: 5′GGATGAGGGGATGGAGGTGTA3′
Exon11-F1: 5′CGACACTGTGGCCTTGTTTCCT3′, Exon11-R1: 5′CGTG
CATGCGTGAGTGTGGATA3′,
Exon11-R2: 5′ATGCGTGCGCGTGAATATGC3′
Exon12-F1: 5′AAGCTCATGACTGTCCCGTCTG3′, Exon12-R1: 5′ACTG
CCTCCCACCCTGATCATT3′,
Exon12-R2: 5′CTCTCTGAGTGTGGAGAGAAAAGG3′
Exon13-F1: 5′GTTGGCTTCCTACTGGAGCTGT3′, Exon13-F2: 5′TGGA
GGTGGCAGGGAGGT3′,
Exon13-R1: 5′CCTCTCCATCCCTCCAAGCTAT3′ Exon13-R2: GTTGGC
TTCCTACTGGAGCTGT3′.

The primers used to obtain the amplicons shown in Fig. 1A and B
were

gDNA-F1: 5′ATGCACGCAGACAGAGGCT3′, gDNA-R1: 5′CACGTACC
GCTCCTCAGGAGT3′

cDNA-F2: 5′GCAGGATGTGGACCAACGTGA3′, cDNA-R2: 5′TCTGGA
TGGCGGTTGTCCACT3′.

2.3. Cell Culture

HeLA cells were used for protein localization and functional studies.
They were grown in DMEM-F12 medium (Gibco®, Life Technologies,
Grand Island, NY, USA), supplemented with 10% fetal bovine serum
(FBS) and 1% penicillin/streptomycin (Invitrogen-Gibco, Life Technolo-
gies, Grand Island, NY, USA).

2.4. AKT1 Expression Constructs

The plasmids driving the expression of wild-type andmutated AKT1
fused to the mCherry protein were constructed by fusion PCR. Briefly,
for the insertion mutations, two PCRs were performed to generate the
5′ and 3′ portions of the AKT1 coding sequence using, respectively,
AKT1RED–EcoR1-F primer and the corresponding mutagenic R primer
and AKT1-F2 primer along with AKT1RED–BamH1-R. After purification
of the PCR products, they were quantified, mixed in similar amounts
and allowed to undergo eight cycles of PCR in the absence of primers,
to generate the full-lengthmutated coding regions. Then, a final PCR re-
action was performed using the EcoR1–BamHI primers. For E17K, we
used the primers E17K F and AKT1RED–BamH1-R to generate the
amplicon in a single PCR. The amplified EcoR1–BamHIs were cloned
(EcoR1–BamHI) into digested pDsRed vector to produce fusion proteins
in frame with the mCherry. All constructs were sequenced to exclude
the presence of PCR-induced mutations. The sequences of the primers
used are the following:
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AKT1RED–EcoR1-F: 5′AGCTTCGAATTCGCCACCATGAGCGACGTGGC
TATTGTGAAGG3′

AKT1-F2: GTGGACCACTGTCATCG3′
AKT1RED–BamH1-R: 5′ACCGGTGGATCCCG GGCCGTGCCGCTGGCC
GAGTAGGAGAAC3′
InsertionT3R: 5′CGATGACAGTGGTCCACTGCAGGCAGCGGATGATGA
AGGTGTTGGGCCGGGGCCAGCGGATGATGAAGG3′
InsertionT8R: 5′CGATGACAGTGGTCCACTGCAGGCAGCGGATGATGA
AGGTGTTGGGCCGGGGCCGCAGGCAGCGGATGATGAAGG3′
InsertionT5R: 5′CGATGACAGTGGTCCACTGCAGGCAGCGGATGATGA
AGGTGTTGGGCCGGGGCCGCTCGCAGCGGATGATGAAGGTGTTGG3′
InsertT11R: 5′CGATGACAGTGGTCCACTGCAGGCAGCGGATGATGA
AGGTGTTGGGCCGGGGCCGCTCCAGGCAGCGGATGATGAAGG3′
InsertT12R: 5′CGATGACAGTGGTCCACTGCAGGCAGCGGATGATGA
AGGTGTTGGGCCGGGGCCGCTCCGTCTTCATCAGCTGGCGGATGATGA
AGGTGTTGGG3′
InsertT14R: 5′CGATGACAGTGGTCCACTGCAGGCAGCGGATGATGA
AGGTGTTGGGCCGGGGCTGCAGGCAGCGGATGATGAAGG3′
InsertT15R: 5′CGATGACAGTGGTCCACTGCAGGCAGCGGATGATGA
AGGTGTTGGGCCGGATGATGAAGGTGTTGG3′
InsertT16R: 5′CGATGACAGTGGTCCACTGCAGGCAGCGGATGATGA
AGGTGTTGGGCCGGGGCCGCTGGCAGCGGATGATGAAGG3′
E17K F: 5′GCCACCATGAGCGACGTGGCTATTGTGAAGGAGGGTTGGC
TGCACAAACGAGGGAAGTACATCAAGACCTGG3′
Q79K-F: 5′CATCATCCGCTGCCTGAAGTGGACCACTGTCATCG3′
Q79K-R: 5′CGATGACAGTGGTCCACTTCAGGCAGCGGATGATG3′
W80R-F: 5′CATCATCCGCTGCCTGCAGAGGACCACTGTCATCG3′
W80R-R: 5′CGATGACAGTGGTCCTCTGCAGGCAGCGGATGATG3′
Q79K–W80R-F: 5′CATCATCCGCTGCCTGAAGAGGACCACTGTCA
TCG3′
Q79K–W80R-R: 5′CGATGACAGTGGTCCTCTTCAGGCAGCGGATG
ATG3′.
2.5. Protein Subcellular Localization, Western Blot and Luciferase Assays

HeLa cellswere transfectedwith constructs driving the expression of
AKT1 fused to themCherry protein. Cells were seeded, in 24-well plates
containing sterile coverslips, 16 h before transfection to be confluent at
the time of transfection. Cells were transfected using the calcium-
phosphate method with 250 ng of plasmid per well and rinsed 24 h
after transfection. At this point, cells were serum-starved or not for
24 h. Forty-eight hours after transfection, cells were washed with
phosphate-buffered saline solution (PBS) and fixed for 15 min with
paraformaldehyde (PFA 4%). They were washed three times in PBS
and nuclei were stained with Hoechst 33342 (Invitrogen, CA, USA).
Coverslips were mounted on microscope slides using the fluorescence
mountingmediumDakoCytomaton (DAKO, CA, USA). Cells were visual-
ized with an epifluorescence microscope provided with an ApoTome
module.

For Western-blot studies, HeLa cells were transfected with the con-
structs driving the expression of wild-type or mutated AKT1 forms. One
day after transfection cells were rinsed and serum-starved or not for
24 h before lysis. Electrophoresis and Western-blot were performed as
previously described (Georges et al., 2014). The primary antibodies
used were anti-phospho-AKT (S473) (sc-7985-R, Santa Cruz Biotech-
nology, Dallas, TX, USA), anti-AKT (sc-8312, Santa Cruz Biotechnology,
Dallas, TX, USA) and Anti-GAPDH (ABM G041, Applied Biological Mate-
rials, Inc., Richmond, BC, Canada). For pAKT1 immunohistochemistry,
4 μm-thick FFPE tumor sections were analyzed. Immunohistochemistry
was carried out using the anti-phospho-AKT (S473mentioned above) at
a dilution of 1:300. Epitope unmasking was performed in a pH 6 buffer
heated at 120 °C. After 20 min of incubation with the first antibody,
staining was obtained using the Pure Envision dual link kit (DAKO, CA,
USA) (30 min of incubation).

Dual-Luciferase Reporter Assays (Promega, Madison, WI, USA) in-
volved the reporter promoter 4XDBE-luc which contains 4 copies of
the FOXO response element (DAF-16 family member-binding element
or DBE) upstream of a minimal promoter driving the expression of the
firefly luciferase gene (Furuyama et al., 2000). Each experiment was
performed in three replicates in 96-well plates. Cells were seeded 16 h
before transfection to be at confluence at the time of transfection and
transfected with 150 ng of total DNA per well (4XDBE-luc, AKT1 vector,
FOXO3a (Addgen no 1787) or NLS-control vector and renilla luciferase
vector) using the calcium phosphate method and rinsed 24 h after
transfection. At this point, cells were serum-starved or not for 24 h.
Forty-eight hours after transfection, cells were washed with PBS before
lysis and luciferase measurements were performed with a TriStar LB
941 luminometer (Berthold Technologies, Bad Wildbad, Germany). To
monitor transfection efficiency, a Renilla luciferase vector (pRL-RSV,
Promega, Madison, WI, USA) was co-transfected. Activity is expressed
as relative luciferase units (RLU, i.e. the ratio of the firefly luciferase ac-
tivity over the Renilla luciferase activity). Statistical significance was es-
timated by Student's t-tests. Error bars represent the standard deviation
between replicates.

3. Results

3.1. A Hotspot of In-frame Duplications and Point Mutations alter AKT1 in
JGCTs

First of all, we performed a Sanger sequencing of the exon potential-
ly harboring the previously reported activating mutations of Gαs alter-
ing protein position 201 (Kalfa et al., 2006). The absence of this
mutation suggested that these tumors were good candidates to harbor
driver mutations elsewhere. A survey by direct sequencing of exons 9,
18 and 20 of PIK3CA in 7 tumors of the cohort showed the absence of
mutations suggesting that PIK3CAmutationswere not a frequentmolec-
ular lesion in JGCTs.

During the analysis of the AKT1 gene, the agarose gel electropho-
resis of exon-3 PCR amplicons revealed the coexistence of two or
three bands in 9 out of the 16 JGCT samples (Fig. 1A). One band
had the expected length and the others were longer. One sample
(T1) displayed only a slow-migrating fragment. These results point-
ed to the existence of insertion(s) in this exon. This was confirmed
through exon-3 amplification with other pairs of primers. We per-
formed a similar analysis using the cDNAs from 4 cryopreserved tu-
mors (T13–T16, for which high-quality mRNA was available) and
again the insertions were apparent, in agreement with the results
obtained with the corresponding gDNAs (Fig. 1A). An analysis of
gDNA extracted from the peritumoral tissue, available only for two
of the samples bearing the insertions, formally proved the somatic
status of these twomutations (Fig. 1B). Sanger sequencing of the iso-
lated DNA bands showed the presence of 10 in-frame tandem dupli-
cations, which had never been reported either in the literature or in
the databases (Fig. 1C and Table 1). The slowest-migrating bands
were heteroduplexes of wild-type and mutated sequences. Interest-
ingly, all duplications but two were different, which suggests that
the mutational process affecting the underlying coding region is
very dynamic and attributable to DNA-polymerase errors (Viguera
et al., 2001). More details on the tandem duplications (and their of-
ficial names) are available in the Supplementary material. A screen-
ing by PCR of the gDNA from 10 AGCTs (Benayoun et al., 2013), 15
colorectal carcinoma samples (Benayoun et al., 2010) and 59 NCI
cell lines provided no evidence for the existence of this type of inser-
tion in such samples (Fig. 2). The latter result is in agreement with
exome sequence data available for the NCI cell lines.

Given the high degree of identity between AKT1 and AKT2 in the
region harboring the duplications, both at the DNA and protein



Table 1
Clinical features of patients with JGCTs.

Patient/
tumor 

no.

Age
(yr)

Estradiol
(pg/ml)

Testosterone
(ng/ml)

Delta–4
androstenedione

(ng/ml)

LH
(UI/l)

FSH
(UI/l)

AKT1 exon 3
duplication

length
(bp)

AKT1 point
mutations

1 6 y NA NA NA NA NA 36 –

2 4 y 3/12 44 NA NA <0,2 <0,2 – Q79K*, W80R*

3 4 y 2/12 19 0,19 NA 0,3 <0,2 30 D3Y, E91K, M458I 

4 13 y 5/12 320 0,2 1,6 NA NA –
P24L*, G232W,
D274H*, S378F*

5 6 y 17 1,1 NA NA NA 36 D3Y, G37D, R465C

6 13 y 1/12 High Normal NA NA NA – –

7 14 y 6/12 23 3.69 2,6 4.2 2.72 – T21I, P348S*

8 6 y 9/12 157 2,4 7.3 1.3 0.3 36a
D3Y, C460S*

9 Neonatal 760 1.1 1.7 0.34 <0.2 – D274H, L357F

10 1 y 10 NA NA NA NA – –

11 1 y 5/12 <3 <0.07 NA NA NA 39 K14I, K14N

12 10 y 8/12 18 0.10 NA 0.6 4.1 48a
A250F, G345S

13 8 y 6/12 100 <0.07 1.10 0.4 <0.20 48 N199I 

14 7 y 10/12 103 0.82 1.14 <0.4 <0.5 36 –

15 2 y 2/12 1116 2.2 NA NA NA 24 –

16 0 y 9/12 NA NA NA NA NA 36 –

NA: not available

* somatic status confirmed

Mutation names in red involve highly conserved residues. They are predicted to be damaging by PolyPhen 2  

(http://genetics.bwh.harvard.edu/pph2/index.shtml). Only E91K, which alters a highly conserved residue was not  

predicted to be damaging by PolyPhen 2. SIFT (http://sift.jcvi.org) predicts all the mutations in bold to be damaging.

Mutations E91N and M458I in T3 and T21I and P348S in T7 were found to be apparently homozygous.
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levels, we also analyzed exon 3 of AKT2 for the presence of duplica-
tions. No duplications could be observed. Full direct sequencing of
the coding region of AKT1 uncovered an array of point mutations al-
tering residues highly conserved among orthologs and even between
the paralogs AKT1 and AKT2 (Fig. 3 and Table 1). These mutations
were identified in 10 tumors and the status of somatic mutations
was confirmed for seven of them (for which peri-tumoral gDNA
was available). Interestingly, several tumors without in-frame dupli-
cations carried two or more potentially damaging point mutations.
Two tumors harbored homozygous/hemizygous mutations (E91N
andM458I in T3 and T21I and P348S in T7). Amplicon cloning and se-
quencing of individual clones showed that the somatic mutations
underlying the substitutions Q79K and W80R appeared on the
same allele in T2. Owing to the lack of high-quality AKT1 cDNAs for
formalin-fixed paraffin-embedded (FFPE, T1–T12) samples, the
allelic combinations (i.e. haplotypes) of the other co-occurring
mutations could not be worked out, thus preventing their experi-
mental exploration. In total, 14 out of 16 JGCTs harbor putative driver
alterations of AKT1.

3.2. The In-frame Duplications Alter the Pleckstrin Homology Domain of
AKT1 and Lead to Oncoprotein Activation

The tandem duplications described here alter the PHD of AKT1
(Gibson et al., 1994). The PHD binds to phosphatidylinositol-di/
trisphosphates (PIP2 and PIP3) from the plasma membrane, which
are produced by activated PI3K (Franke et al., 1997). This leads to
the translocation of AKT to the plasmalemma. In such conditions,
phosphoinositide-dependent kinases (among others) phosphory-
late AKT1 on T308, leading to its partial activation. Full activation
is achieved upon phosphorylation of S473 (Warfel et al., 2011;
Mahajan and Mahajan, 2012). On structural grounds, the PHD in-
volves two main beta sheets (Protein DataBase structures 1H10,
3O96 and 4EJN). The tandem duplications described here involve
the 6th beta strand, according to the ribbon model displayed in
Fig. 4. The co-occurring substitutions Q79K and W80R map right
after the beta strand involved in the duplications. Interestingly,
Q79K has already been shown to activate AKT1 probably by decreas-
ing the interaction between the PHD and the kinase domain (Warfel
et al., 2011; Yi et al., 2013) and W80 has been proposed to interact
with F469 from the hydrophobic domain to keep AKT inactive
(Calleja et al., 2009).

To determine whether the duplications within the PHD induced
functional alterations of AKT1, we generated constructs driving the
expression of wild-type and mutated AKT1 proteins (including a
version carrying the activating mutation E17K Carpten et al., 2007)
fused to the mCherry fluorescent protein. We observed that the
wild-type AKT1-mCherry fusion protein displayed a rather diffuse
localization and that E17K was enriched at the plasma membrane but
was also present in the nucleus of transfected HeLa cells, irrespective



Fig. 1. Tandem duplications within exon 3 of AKT1 in JGCTs. A: Agarose gels showing the migration of the amplicons of exon 3 of AKT1 from gDNA (a) and cDNA (b) in the 4 tumors of the
JGCT cohort and in the COV434 JGCT-derived cell line. B: Electrophoreticmigration of the amplicons involving exon 3 fromgDNA of two tumors T8 and T12 (a) and from the corresponding
peritumoral gDNA (b). The absence of the longer bands in the latter confirms the somatic nature of the duplications. C: Simplified representation of the AKT1 protein and of the PHDwith
its secondary structural features (beta strands from 1–7 and the C-terminal helix, according to crystallographic data from the Protein Data Bank). The sequences of 9 different duplications
are displayed, alongwith two examples of Sanger sequencing traces. The tandemly duplicated sequences are highlighted by horizontal brackets pointing to the position of the insertion in
thewild-type sequence. The duplications involve totally or partially the 6th beta strand of the PHD. Three of the duplications break a codon,which leads to a change of one residue (in red).
The official names (according to https://www.mutalyzer.nl/name-checker) and details of the duplications are provided in the Supplementary material.
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of the presence of serum. Themutated proteins carrying the duplications
were almost exclusively located under the plasma membrane region
of transfected cells, in the presence or absence of serum (Fig. 5 and Sup-
plementary material). One outstanding characteristic of the cells
transfected with the mutated constructs was the abundance of
filopodia-like cytoplasmic processes. The subcellular localization of the
mutated proteins with the duplications was strikingly different from
that of E17K AKT1 in our experimental setting. The pervasive presence
at the plasmalemma of the elongated AKT1 proteins suggested the exis-
tence of a high level of activation. To test this hypothesis, we analyzed
the phosphorylation status of seven AKT1 variants carrying the in-
frame duplications, which is supposed to reflect protein activation
(Warfel et al., 2011; Calleja et al., 2009). In agreement with our hypoth-
esis, a Western-blot analysis using an antibody directed against phos-
phorylated S473 showed a dramatic difference between the wild-type
and E17K variants with respect to the proteins carrying the duplications
(Fig. 6A). This difference was obvious in low serum conditions as well as
in the presence of serum. The presence of phosphorylated AKT1 was
confirmed on histological tumor sections (Fig. 6B).

To obtain further functional insights, we studied the effect of the
variants on a FOXO3a-based reporter system. Indeed, FOXO factors
are negatively regulated by AKT in response to a series of growth
factors and other signals. Phosphorylation of the FOXOs at three
conserved sites by AKT causes their sequestration in the cytoplasm,
preventing transactivation of their targets (Calnan and Brunet,
2008). Luciferase experiments were performed in HeLa cells co-
transfected with the 4X-DBE-luc reporter, a FOXO3a expression vec-
tor (or a control vector) and various constructs driving the expres-
sion of wild-type or mutated AKT1 forms. Wild-type AKT1 elicited
the expected response: in the presence of serum, FOXO3a was re-
pressed by phosphorylated AKT1. In serum-starved cells, wild-
type AKT1 repressed FOXO3a less strongly (Fig. 6C, D). Luciferase
experiments demonstrated that the AKT1 proteins bearing the du-
plications were hyperactive and insensitive to serum-deprivation,

https://www.mutalyzer.nl/name-checker


Fig. 2. Absence of AKT1 in-frame duplications from a series a tumor and cancer cell line genomic DNA samples. A) Exon-3 amplicons in 10 adult-type GCTs. Control + stands for exon 3 in
T14 (carrying the insertion, note the bands at 154 bp and 190 bp),− denotes PCR control (without DNA). Electrophoresis migration was performed in 2% agarose gels of 24 cm to ensure
allelic discrimination by size. B) Exon-3 amplicons in colorectal cancer (CRC) samples. C) Exon-3 amplicons in the 60 cell line panel of theNational Cancer Institute. Control+ stands for the
amplicon in T13 (carrying the insertion, note the bands at 144 bp and 192 bp),− denotes PCR control (without DNA). Only one band having the wild-type length was obtained in all the
samples tested thus far. Cell lines: 1: K-562; 2:MOLT-4; 3: CCRF-CEM; 4: RPMI-8226; 5: HL-60(TB); 6: SR; 7: SF-268; 8: SF-295; 9: SF-539; 10: SNB-19; 11: SNB-75; 12: U251; 13: BT-549;
14: HS 578T; 15: MCF7; 16: NCI/ADR-RES; 17: MDA-MB-231/ATCC; 18: MDA-MB-435; 19: T-47D; 20: COLO 205; 21: HCC-2998; 22: HCT-116; 23: HCT-15; 24: HT29; 25: KM12; 26: SW-
620; 27: A549/ATCC; 28: EKVX; 29: HOP-62; 30: HOP-92; 31: NCI-H322M; 32: NCI-H226; 33: NCI-H23; 34: NCI-H460; 35: NCI-H522 (empty tube); 36: LOX IMVI; 37: M14; 38:MALME-
3M; 39: SK-MEL-2; 40: SK-MEL-28; 41: SK-MEL-5; 42: UACC-257; 43: UACC-62; 44: IGR-OV1; 45: OVCAR-3; 46: OVCAR-4; 47: OVCAR-5; 48: OVCAR-8; 49: SK-OV-3; 50: DU-145; 51: PC-
3; 52: 786–0; 53: A498; 54: ACHN; 55: CAKI-1; 56: RXF 393; 57: SN12C; 58: TK-10; 59: UO-31; 60: MDA-MB-468.
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much like the E17K mutant (i.e. FOXO3a was repressed irrespective
of the presence or absence of serum). Of note, the mutant Q79K–
W80R AKT1 also displayed strong membrane localization and hy-
peractivation (Fig. 7).

4. Discussion

The mechanisms underlying GCT formation and progression re-
main largely unknown and their occurrence probably results from
somatic mutations. Here, we contribute to elucidate the etiology of
JGCTs by showing that more than 60% of the analyzed tumors, occur-
ring in girls under 15, bear in-frame tandem duplications in AKT1
leading to the activation of the mutated proteins. Our functional
data show that the mutated proteins display a marked membrane lo-
calization leading to AKT1 phosphorylation and to the appearance of
filopodia-like processes. Of note, the tumors without AKT1 in-frame
duplications often had two or more point mutations altering highly
conserved residues.
The strong enrichment at the plasma membrane of the elongated
AKT1 mutants is to be correlated with that of other natural or
artificial mutants such as viral-Akt, myristoylated-Akt and Akt-
E40K. Interestingly, the common trait behind their efficient cell
transforming capability is their enhanced localization at the plasma-
lemma, achieved by a PHDwith increased lipotropy (E40Kmutation)
or by the presence of a myristoylation signal, artificially introduced
or provided by the viral Gag sequence fused to Akt in v-Akt (Aoki
et al., 1998). Structural studies, including crystallography, have
suggested that the E17K activating mutation directly alters the
lipid binding pocket of the PHD (Carpten et al., 2007). In the case of
the tandem duplications identified here, it is not clear what the
basis of the membrane localization and activation is. However, if
we assume that the first duplicated sequence “pairs” with the 5th
beta strand of the PHD (as the former emerges from the ribosome
during translation) then the second copy is left unpaired and might
form a protrusion. Such a structural defect might alter the interaction
with the plasma membrane and/or with the kinase domain (KD).

Image of Fig. 2


Fig. 3. Point mutations of AKT1 in JGCTs. Alignment of several AKT1 orthologous protein sequences from human (Homo sapiens, Hsa), mouse (Mus musculus, Mmu), puffer-fish (Takifugu
rubripes, Tru) and the frog Xenopus tropicalis (Xtr) aswell as the AKT2 paralogs in the same species. Note the high degree of evolutionary conservation of themutated residues highlighted
in red in the human sequence. The corresponding substitutions are displayed at the bottom of the alignment.

Fig. 4.Ribbon representation of the AKT1 PHDdomain and predicted effect of the duplications. A)Wild-type domain, according to the PDB Structures 1H10. The upper regionmediates the
interactions with the plasma membrane. The beta-strand involved in the duplications is highlighted in red. B) Predictions of the effects of several duplications on the 3D structure of the
PDH domain (usingModellerWebb and Sali, 2014).We propose threemain types of spatial arrangements, according to the insertions. These predictions do not take into account the pres-
ence of the rest of the protein. Structures (PDB: 3O96 and 4EJN) including the PHD and KD domains lack the segment linking both domains, which renders difficult the construction of
realistic models. Only X-ray crystallography of both PHD and KD will allow us to work out the impact of the duplications on protein structure.
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Fig. 5. Subcellular localization of the AKT1 variants. Fluorescence microscopy of HeLa cells transfected with constructs driving the expression of different AKT1 variants fused to the
mCherry fluorescent protein, in the presence of serum. Imageswere obtained with a Zeiss ApoTomemicroscope. This instrument allows the production of optical sections by using struc-
tured illumination. The left panels represent merged Z-stacks of typical cells (i.e. several images taken at different depths/focal planes within the cell). DNA was stained with Hoescht (in
blue). The right panels represent optical sections, where DNA staining is not shown, to better appreciate the sub-cellular distribution of the AKT1 variants. Note the rather diffuse distri-
bution ofwild-type AKT1 and themembrane and the nuclear enrichment of E17K (activatingmutation). The typical staining pattern of themutatedAKT1 carrying the duplications is strik-
ingly different. Note the strong enrichment in the cortical sub-membrane regions. Moreover, the transfected cells displayed a profusion of filopodia-like processes (see insert). Similar
results were obtained in the absence of serum. Further examples are provided in the Supplementary material.
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Mutations in AKT1 at the PHD–KD interface, as is the case here, that
weaken their interaction have been previously reported in human
cancers (Parikh et al., 2012). Such altered interactions in our mutants
could explain the dramatic tropism for the plasmalemma and the
concomitant increase of phosphorylation. A similar explanation
would hold for the co-occurring mutations Q79K–W80R. However,
further studies are required to completely elucidate the underlying
mechanism(s).

Although JGCTs are of good prognosis, it would be interesting to
study the properties of the filopodia-like processes induced by the mu-
tated AKT1 carrying the duplications because of the known roles of
filopodia/invadopodia in sensing, migration and intercellular interac-
tions (Mattila and Lappalainen, 2008). These processes are similar to
those observed upon eEF1A2 over-expression in BT549 human breast
cancer cells and non-transformed Rat2 cells. Interestingly, eEF1A2
expression in BT549 cells stimulates filopodia formation, cell migration
and invasion in a PI3K- and Akt-dependent manner (Amiri et al., 2007).
Along the same vein, squamous cell carcinoma lines engineered to ex-
press constitutively active AKT display down-regulation of E-cadherin,
reduced cell–cell adhesion and increased motility in vivo (Grille et al.,
2003).

One interesting question is raised by the apparent specificity of the
AKT1 insertions. Several hypotheses can explain this fact. First, the
tandem duplications only appear in the ovary because the underlying
mutational process is favored in granulosa cells for as yet unknown
reasons. Second, the selective advantage of tumor cells may involve
interactions of the mutated AKT1 with ovarian-specific (signaling or
interacting) partners. Finally, we cannot exclude that granulosa cells
may need a strong level of AKT1 activation to become transformed,
which would only be achieved with the observed duplications or with
several AKT1 mutations per cell, such as Q79K and W80R. The fact
that most of the JGCTs harbor AKT1 mutations and the involvement of
the PI3K–AKT pathway in regulating cellular proliferation and survival
suggests that the molecular lesions reported here are driver events.

Image of Fig. 5


Fig. 6. Mutated AKT1 phosphorylation and activation levels. A) Western-blot analysis of the phosphorylation levels of several AKT1 variants (wild-type/WT, E17K and 4 elongated pro-
teins). nt: not transfected. Note that for similar amounts of total AKT1-mCherry, the mutated proteins carrying the duplications are intensely phosphorylated compared to the wild-
type protein and to the E17K variant, which is our control of activatingmutation. The anti-GAPDH shows that similar protein amounts were loaded in each lane, showing that cell cultures
were treated and transfected very similarly. B) Anti-phospho-AKT immunostaining of a section of a tumor (T5) harboring an AKT1 tandem duplication. A section of the nearby, apparently
healthy, ovarian tissue also stainedwith the anti-pAKT is displayed for comparison. C) Effect of the FOXO3aon the 4X-DBE-luc reporter (NLS stands for a control vector) in transfectedHeLa
cells in the absence or presence of serum. D) Effect of AKT1 variants on FOXO3a transactivation (note that the scale is different with respect to 6C). Here, the cells were co-transfectedwith
4X-DBE-luc and the various constructs driving the expression ofwild-type ormutated AKT1 forms. AKT1-dependent phosphorylation of FOXO3a causes its cytoplasmic sequestration and
prevents transactivation of its targets. In the presence of serum, FOXO3awas repressed by phosphorylated wild-type AKT1. In serum-starved cells, wild-type AKT1 repressed FOXO3a far
less strongly. The AKT1 proteins bearing the duplications are hyperactive like the E17Kmutant. In our experimental setting, this luciferase assay behaved in a rather binaryway. This may
explain why the impact of E17K and the duplications on AKT1 activity (measured via FOXO3a transactivation) are similar, despite the striking differences of their phosphorylation levels.
Error bars represent the standard deviation of 3 replicates. The results are representative of two independent experiments. The differences between the wild-type and mutated AKT1 (in
the absence of serum) estimated by a two-sided Student's t-test were all highly significant (p b 0.01).
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Irrespective of the precise role of AKT1 in the origin and/or progression
of the JGCTs, which is yet to be studied, the uncovering of the AKT1 in-
sertions will facilitate the molecular diagnostics of JGCTs. Our findings
open also targeted therapeutic perspectives because inhibitors of the
PI3K–AKT–mTOR pathway(s) are being tested in clinical trials (Don
and Zheng, 2011).
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Fig. 7.Pointmutations activateAKT1. A) FluorescencemicroscopyofHeLa cells transfected
with constructs driving the expression ofQ79K–W80RAKT1 fused to themCherryfluores-
cent protein, in the same conditions as in Fig. 5. Note the strong enrichment at the cortical
sub-membrane region. B) (Left panel) Effect of the FOXO3a on the 4X-DBE-luc reporter
(NLS stands for a control vector) in transfected HeLa cells in the absence or presence of
serum. (Right panel) Effect of two AKT1 point mutations on FOXO3a transactivation
(note that the scale is different with respect to that of the left panel). The procedure was
the same as in Fig. 6C, D. The AKT1 variant bearing the co-occurring mutations Q79K–
W80R is hyperactive like the E17Kmutant. Interestingly, eachmutation alonewas activat-
ing as well. Error bars represent the standard deviation of 3 replicates. The results are rep-
resentative of two independent experiments. The differences between the wild-type and
mutatedAKT1 (in the absenceof serum) estimated by a two-sidedStudent's t-testwere all
highly significant (p b 0.01).We did not attempt the analysis of the other point mutations
because they co-occur with other mutations but we cannot tell apart their combinations.
For instance in tumor 4, we do not know the allelic combinations encoding themutations
P24L, G232W, D274H, and S378F.
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