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A single-cell network approach to decode
metabolic regulation in gynecologic and
breast cancers
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Cancer metabolism is characterized by significant heterogeneity, presenting challenges for treatment
efficacy and patient outcomes. Understanding this heterogeneity and its regulatory mechanisms at
single-cell resolution is crucial for developing personalized therapeutic strategies. In this study, we
employed a single-cell network approach to characterize malignant heterogeneity in gynecologic and
breast cancers, focusing on the transcriptional regulatory mechanisms driving metabolic alterations.
By leveraging single-cell RNA sequencing (scRNA-seq) data, we assessed the metabolic pathway
activities and inferred cancer-specific protein-protein interactomes (PPI) and gene regulatory
networks (GRNs). We explored the crosstalk between these networks to identify key alterations in
metabolic regulation. Clustering cells by metabolic pathways revealed tumor heterogeneity across
cancers, highlighting variations in oxidative phosphorylation, glycolysis, cholesterol, fatty acid,
hormone, amino acid, and redox metabolism. Our analysis identified metabolic modules associated
with these pathways, along with their key transcriptional regulators. These findings provide insights
into the complex interplay between metabolic rewiring and transcriptional regulation in gynecologic
and breast cancers, paving theway for potential targeted therapeutic strategies in precision oncology.
Furthermore, this pipeline for dissecting coregulatory metabolic networks can be broadly applied to
decipher metabolic regulation in any disease at single-cell resolution.

Gynecologic malignancies, primarily encompassing endometrial, ovarian,
and cervical cancers, significantly impact women’s health on a global scale1.
These cancers originate from the Müllerian ducts, sharing similar
embryonic origins. Additionally, breast cancer is the most commonly
diagnosed cancer among women and the leading cause of cancer deaths in
womenworldwide2. Breast cancer is categorized into four subtypes based on
the expression of hormone receptors: estrogen receptor positive (ER+ ),
progesterone receptor positive (PR+ ), human epidermal growth factor
receptor positive (HER2+ ), and triple-negative breast cancer (TNBC). ER
+ breast cancer expresses the estrogen receptor, while TNBC lacks
expression of ER, PR, and HER2, making it unresponsive to hormonal
therapies. Recent TCGA pan-cancer studies have revealed molecular
similarities across gynecologic and breast cancers, highlighting both com-
mon pathways and unique molecular features3,4. These cancers pose sig-
nificant health challenges due to their prevalenceand the complexity of their
diagnosis and treatment. Despite advancements in medical research,
gynecologic cancers are often diagnosed at advanced stages, resulting in
poor prognoses and high mortality rates1. In particular, ovarian cancer is

frequently diagnosed at a late stage, contributing to its high mortality rate
and poor survival outcomes5.

Single-cell RNA sequencing (scRNA-seq) has revolutionized cancer
research by allowing the examination of gene expression at the individual
cell level. This technology provides insights into the heterogeneity of cancer
cells within a tumor, revealing distinct cellular subpopulations and their
functional states. Differential expression analysis of scRNA-seq data can
reveal genes unique to specific cell types and states. However, deciphering
cellular functions based solely on lists of upregulated or downregulated
genes is challenging6. The functional roles of genes and the impact of
disease-associated variants are significantly influenced by their interaction
partners within the cellular context. Networkmodeling of gene interactions
helps elucidate the functional organization of key regulators and the path-
ways they govern in each cell state6. This approach has shifted our per-
ception of cellular mechanisms from linear pathways to a complex web of
molecular interactions6. A recent study analyzed cell type-specific gene
expression changes to identify potential drug targets and genetic biomarkers
associated with Alzheimer’s disease using single network biology7. By
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constructing and analyzing networks of genes, we can elucidate the reg-
ulatory circuits that drive cancer progression.

Cancer metabolism has gained significant attention in the last decade
due to its crucial role in supporting tumor growth and survival. Cancer cells
often reprogram their metabolic pathways to meet the demands of rapid
proliferation andadaptation to the tumormicroenvironment.Ahallmarkof
this metabolic reprogramming is the Warburg effect, where cancer cells
preferentially utilize aerobic glycolysis over oxidative phosphorylation, even
in the presence of adequate oxygen. This metabolic shift not only provides
energy but also supplies the building blocks necessary for macromolecule
biosynthesis. The transcriptional regulation of metabolism in cancer
involves complex networks of transcription factors that control the
expression of genes related to variousmetabolic pathways. Investigating the
intricate regulation ofmetabolic pathways in cancer cells can uncover novel
targets for cancer therapy and deepen our understanding of tumor biology.

Earlier studies on metabolism focused on analyzing the tissue-level
changes. The field of single-cell transcriptomics provides the opportunity to
study metabolism at the single-cell level and it is an emerging area of
research. Few studies have utilized scRNA-seq to investigate metabolic
changes during developmental processes8. Different computational mod-
eling approaches such aspathway-level analysis, constraint-basedmodeling,
and kinetic modeling can be adopted to study single-cell metabolism9.
Pathway-level analysis focuses on identifying metabolic pathways and their
activity levels within individual cells by integrating transcriptomic data with
prior knowledge of metabolic networks. In constraint-based modeling,
cellularmetabolism is representedas a networkof reactionswith constraints
based on known biochemical principles to predict metabolic fluxes and
identify active pathways.Kineticmodels describe thedynamics of individual
reactions and enzyme kinetics. A recent study adopted a pathway-based
approach to establish a computational framework for characterizing
metabolism using scRNA-seq data, shedding light on the unique metabolic
demands of different cell types within the tumor microenvironment10.

In this work, we employed a scRNA-seq network biology approach to
investigate the metabolic landscape and its regulation in gynecologic and
breast cancers. Figure 1 illustrates the workflow of our study.We examined
the crosstalk betweendifferent cellularnetworks touncover the coregulatory
networks involved in metabolic reprogramming. We have created a com-
prehensive resource on single-cell cancer metabolism. This resource offers
valuable insights into regulatory mechanisms at play and contributes to the
advancement of personalized medicine for treating gynecologic and breast
cancers.

Results
Heterogeneity of metabolic pathway in cancer cells
The metabolic pathways from the Human-GEMmodel were scored based
on scRNA-seq data to characterize malignant heterogeneity in gynecologic
and breast cancers. This study analyzed scRNA-seq datasets from endo-
metrial (3 patients, 6296 malignant cells), ovarian (2 patients, 6051 cells),
cervical (2 patients, 13,443 cells), TNBC (5 patients, 9596 cells), and ER+
breast cancers (4 patients, 10,343 cells). We identified significantly over-
dispersed pathways that formed the basis for clusteringmalignant cells into
distinct clusters (Fig. 2A). We obtained 5 clusters of endometrial cancer,
ovarian cancer, cervical cancer, ER+ breast cancer, and 6 clusters of TNBC
(Figs. 2 and 3). The chi-square test reveals a significant correlation between
these clusters and patient information.

In endometrial cancer, we observed a single cluster for patient EEC-1
(cluster 3) and EEC-3 (cluster 2), while EEC-2 displays three heterogeneous
populations (cluster 0, 1, and 4) (Fig. 2B). EEC-1 and EEC-3 share similar
metabolic profiles with upregulation of glycolysis, fatty acid biosynthesis,
androgen and cholesterol metabolism. However, differences in expression
levels of some pathways were observed. EEC-1 exhibits elevated expression
in pathways such as galactose metabolism, pantothenate and CoA meta-
bolism, pyrimidinemetabolism, andROSdetoxification. In contrast, EEC-3
shows high expression in pathways such as omega-3 fatty acid metabolism,
prostaglandin biosynthesis, linoleate metabolism, and eicosanoid

metabolism. In the case of EEC-2, we observed distinct metabolic profiles
within its respective clusters. Cluster 0 displays high activity in fatty acid
beta-oxidation pathways. Cluster 4 exhibits upregulation in energy meta-
bolism pathways such as pyruvate metabolism, TCA cycle, and oxidative
phosphorylation. Cluster 1 represents an intermediate state with mixed
expression patterns across metabolic pathways.

In ovarian cancer, three heterogeneous clusters (cluster 0, 3, and 4)
emerged within HGSOC-1 and two clusters (cluster 1 and 2) in HGSOC-2
(Fig. 2C). Surprisingly, we observed a high expression of fatty acid meta-
bolism, with simultaneous upregulation of both fatty acid synthesis and
oxidation in HGSOC-1, suggesting a possible complex interplay. Omega-3
andomega-6metabolism is alsohighly expressed inHGSOC-1. InHGSOC-
2,weobservedoxidative phosphorylation, nucleotidemetabolism,N-glycan
metabolism, and cholesterol biosynthesis to be upregulated. Our findings
align with recent studies indicating metabolic heterogeneity in ovarian
cancer, particularly favoring oxidative phosphorylation in invasive migra-
tory and cancer stem cells11,12. Cholesterol biosynthesis has been associated
with enhancing the stemness properties of cancer cells, a crucial factor in
initiating the metastatic cascade13. Both ovarian cancer patients are char-
acterized by intra-malignant heterogeneity. In HGSOC-1, cluster 0 shows
high expression of arginine and prolinemetabolism. Cluster 3 has increased
activity for pathways such as glycolysis, pyrimidinemetabolism, glutathione
metabolism, and ROS detoxification. Cluster 4 demonstrates upregulation
in androgen metabolism.

In cervical cancer, we observed two heterogeneous groups (cluster 1
and 2) inCC-1 and three groups (cluster 0, 3, and 4) inCC-2 (Fig. 2D).CC-1
is characterized by the upregulation of oxidative phosphorylation, androgen
metabolism, amino acid metabolism, glycan metabolism, and eicosanoid
metabolism.Ontheotherhand,CC-2displayshigh expression forpathways
such as glycolysis, fructose and mannose metabolism, and nucleotide
metabolism. In CC-1, cluster 1 shows upregulation in vitamin D metabo-
lism, while cluster 2 has high activity for starch and sucrose metabolism,
pantothenate and CoA metabolism, and riboflavin metabolism.

In TNBC, we identified one cluster per patient, with the exception of
TNBC-2, which exhibits two clusters (cluster 0 and 5) (Fig. 3A). Cluster 1, 2,
3, and 4 corresponds to patient TNBC-4, TNBC-5, TNBC-1, and TNBC-3,
respectively. TNBC-1 is characterized by the upregulation of one-carbon
metabolism, including cysteine and methionine metabolism and glycine,
serine, and threonine metabolism, crucial for nucleotide synthesis, methy-
lation reactions, and antioxidant defense. In TNBC-2, both cluster 0 and
cluster 5 share similar metabolic profiles. TNBC-2 shows upregulation in
lipid metabolism, including cholesterol metabolism, estrogen metabolism,
linoleate metabolism, arachidonic acid metabolism, omega-3 fatty acid
metabolism, fatty acid biosynthesis, and glycolysis. TNBC-3 demonstrates
elevated expression in pathways associated with redox homeostasis such as
glutathione metabolism, pentose phosphate pathway, and ROS detoxifica-
tion. The pentose phosphate pathway provides NADPH, necessary for
converting oxidized glutathione (GSSG) back into its reduced form (GSH),
which is vital for scavenging reactive oxygen species (ROS). TNBC-4
exhibits high activity in metabolic pathways, such as amino sugar and
nucleotide sugar metabolism, galactose metabolism, and the TCA cycle.
TNBC-5 displays upregulation of oxidative phosphorylation and androgen
metabolism.

InER+breast cancer,weobtained three clusters corresponding to each
patient exceptER-2,whichhas twoheterogeneous groupsofmalignant cells,
cluster 0 and 4 (Fig. 3B). Cluster 1, 2, and 3 corresponds to patient ER-4, ER-
1, andER-3, respectively.Weobserved theupregulationof lipidmetabolism,
including steroid metabolism, estrogen metabolism, and fatty acid bio-
synthesis in ER-1. The two clusters of ER-2 share a similarmetabolic profile
but exhibit differences in expression levels of pathways such as arginine and
proline metabolism, phenylalanine, tyrosine and tryptophan biosynthesis,
which are upregulated in cluster 0, while cholesterol metabolism and fatty
acid biosynthesis are upregulated in cluster 4. In ER-3, we observed that the
estrogen metabolism is not expressed. ER-4 is characterized by the upre-
gulation of oxidative phosphorylation, propanoatemetabolism, glutathione
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metabolism, and valine, leucine, and isoleucine metabolism. However,
estrogen metabolism is downregulated. Notably, ER-4 exhibits high meta-
bolic activity compared to the other ER+ patients.

Overall, we found thatmalignant cell clusters of gynecologic and breast
cancers show gene expression differences in cholesterol metabolism, eico-
sanoid metabolism, fatty acid metabolism, oxidative phosphorylation,

Fig. 1 | Pipeline for uncovering the metabolic regulation of gynecologic and
breast cancers using a single-cell network approach. This pipeline utilizes scRNA-
seq data combined with network analysis to uncover key regulatory interactions,

enabling a comprehensive understanding of cancer-specific metabolic landscapes
(see methods for details).
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glycolysis, amino acid metabolism, and redox pathways. The clusters also
show differences in androgen and estrogen metabolism.

Cancer Cell-Specific Protein-Protein Interaction Network
To uncover the connectivity pattern among genes in malignant cells, we
aimed to infer malignant cell-specific PPI networks by integrating gene
expression with PCNet. Network corresponding to gynecologic and breast
cancers comprises approximately 14–25% of PCNet nodes and 4–22% of
PCNet edges (Fig. 4A and Table S1). We observed that more than 50% of
nodes and 30%of edges are shared between at least two cancers (Fig. 4B, C).
However, the cervical cancer network has more unique nodes and edges
compared to the rest of the cancers. To better understand the network-level
relationship among these cancers, we performed network proximity ana-
lysis. This analysis reveals that all gynecologic and breast cancers are sig-
nificantly proximal to each other, with distance ranging from 0.4 to 0.8,

except ovarian and cervical cancers (Z-score <−2 and p-value < 0.001)
(Fig. 4D). This suggests a shared relationship between gynecologic and
breast cancers at the network level. Additionally, TNBC and ER+ breast
cancer show the least proximity since both are subtypes of breast cancer.

To gain further insight into this shared connectivity, we extracted a
network common across gynecologic and breast cancers. We included
proximal genes whose average shortest distance is less than or equal to 2 (in
addition to common genes) to explore the biological rationale through
enrichment analysis14. We identified 1150 proximal genes, in which we
observe 154 genes to be common across endometrial, ovarian, cervical,
TNBC and ER+ breast cancers (Table S2). On the other hand, the number
of common genes increased to 774 if cervical cancer was not considered
given that it was less proximal to other cancers. These proximal genes are
enriched in MSigDB hallmarks such as androgen response, estrogen
response early, estrogen response late, and oxidative phosphorylation. We

Fig. 2 | Single-cell analysis ofmetabolic heterogeneity across gynecologic cancers.
AOverview of the single-cell approach used to characterizemetabolic heterogeneity,
integrating the Human-GEMmodel with scRNA-seq data. Themetabolic landscape

of (B) endometrial cancer, (C) ovarian cancer and (D) cervical cancer, showing
clustering of malignant cells, distribution of clusters across patients, and heatmap of
metabolic pathway activity score.
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Fig. 4 | Comparative analysis of PPI networks in gynecologic and breast cancers.
ABar plot displaying the percentage of nodes and edges preserved in PPI networks of
gynecologic and breast cancers. B Venn diagram illustrating the overlap of nodes in

the PPI networks.CVenn diagram showing the overlap of edges in the PPI networks.
D Network proximity analysis of gynecologic and breast cancers, with the heatmap
indicating the distances between networks.

Fig. 3 | Single-cell analysis of metabolic heterogeneity in breast cancer subtypes.
The metabolic landscape of (A) TNBC and (B) ER+ breast cancer, showing

clustering of malignant cells, distribution of clusters across patients, and heatmap of
metabolic pathway activity score.
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observed that ErbB growth factor signalling pathway as a relevant pathway
associated with proximal genes. Breast, ovarian, and endometrial cancers
are hormone-sensitive cancers. ERBB2 is overexpressed in breast and
gynecologic cancers15. Abnormal expression of steroid hormones, particu-
larly androgens and estrogens, has consistently been reported in gyneco-
logical cancers16. The number of shared genes in these pathwayswas limited
in cervical cancer. Oxidative phosphorylation also emerged as a common
theme altered in gynecologic and breast cancers. Its activity is reduced in EC
cells compared to normal human endometrial cells17. Ovarian cells rely on
oxidative phosphorylation for survival and is proposed as therapeutic
target18. Oxidative phosphorylation is a metabolic vulnerability in some
cancers, including TNBC and metastatic ER+ breast cancers19,20.

The PPI network is further used to identify metabolic modules,
uncovering connectivity patterns among metabolic genes. Clustering was
applied on each malignant specific PPI based on network topology. Sub-
sequently, the pathway enrichment analysis of modules was performed to
identify metabolic modules. We found two modules to be significantly
enriched in metabolic pathways in endometrial cancer, ovarian cancer, and
TNBC (Fig. 5). For endometrial cancer, module M6 (EEC_M6) is enriched
in cholesterol metabolism, omega-3 fatty acid metabolism, omega-6 fatty
acid metabolism, arachidonic acid metabolism, and estrogen metabolism,
while module M8 (EEC_M8) is enriched in oxidative phosphorylation.
Similarly, for ovarian cancer,moduleM3 (HGSOC_M3) shows enrichment
of pathways comparable to those observed in EEC_M6. On the other hand,
module M5 (HGSOC_M5) is enriched in oxidative phosphorylation. For
TNBC, moduleM2 (TNBC_M2) is significantly enriched in beta-oxidation
of fatty acids, TCA cycle, and oxidative phosphorylation. In contrast, the
other metabolic module M10 (TNBC_M10) is enriched in cholesterol and
estrogen metabolism.

In addition, we identified three metabolic modules for cervical and ER
+ breast cancers (Fig. 5). The M6 module in ER+ (ER_M6) is enriched in
oxidative phosphorylation, similar to HGSOC_M5, TNBC_M2, and
EEC_M8modules. Themodule ER_M5 also has similar overall enrichment
profiles to the EEC_M6, TNBC_M10, and CC_M8modules with respect to
lipidmetabolism andTCAcycle.Glycine, serine and threoninemetabolism,
alanine, aspartate and glutamate metabolism, branched-chain amino acid
metabolism and phenylalanine, tyrosine and tryptophan metabolism are
also significantly enriched in EEC_M6, ER_M5, TNBC_M10 and CC_M8
modules. Other amino acid metabolism captured by this analysis include
arginine and proline metabolism and cysteine and methionine metabolism
in EEC_M6 and ER_M5.

This approach considers interactions among metabolic genes derived
from a cancer-specific PPI network to uncover functional modules across
patients. These modules are enriched in lipid metabolism, amino acid
metabolism, the TCA cycle and oxidative phosphorylation, aligning with
our findings from the pathway-guided approach. We also found that
pathways related to specific amino acids (glycine, serine, and methionine
metabolism; alanine, aspartate, and glutamatemetabolism) are significantly
enriched acrossmultiple cancers compared to the pathway-based approach.

Gene regulatory network of gynecologic and breast cancers
To investigate the transcriptional regulationmechanisms inmalignant cells,
we constructed gene regulatory networks and identified active regulons in
gynecologic and breast cancers. The number of active regulons varied across
different cancer types, ranging from 140 to 200 (Fig. 6A and Table S3).
Notably, we identified 31 common regulons across subtypes implicated in
TNF-alpha signaling via NF-κB, hypoxia, G2-M checkpoint, and
interferon-gamma response (Fig. 6B and Table S4).

To explore further, we characterized transcriptional regulation at the
individual patient level and identified patient-specific regulons based on the
regulon specificity score (RSS) (Fig. 6C). In EEC-1, we found that the top
regulons are involved in regulating the immune response and inflammation.
Regulons IRF1 and NFKB2 are critical for the activation of immune
response genes, while ETS1 and SMAD3 contribute to the regulation of
immune cell differentiation and function. Additionally, ATF4, a key

regulator in the stress response pathway, is commonly expressed in EC cell
lines, contributing to the tumor growth of endometrial cancer21. In EEC-2,
the top regulons are involved in cellular differentiation,metabolism, and the
cell cycle. The regulons HOXA3 and SOX4 play crucial roles in regulating
gene expression during development, cell proliferation and differentiation.
Additionally, the candidates USF1 and USF2 regulate the genes involved in
lipid metabolism and glucose homeostasis22. EEC-3 is regulated by REL,
RELB, and NFKB1, which are key players of the NF-κB signaling pathway,
playing a vital role in immune responses, inflammation, and cell survival.
KLF3 and KLF6, also associated with the immune system, are implicated in
carcinogenesis23. Moreover, another candidate, POU5F1, is crucial for
maintaining pluripotency in cancer stem-like cells andplays a pivotal role in
tumor initiation and metastasis24.

In HGSOC-1, our analysis identified regulons that have been pre-
viously reported (Fig. 6C). A recent pan-cancer analysis study high-
lighted the aberrant upregulation of ZBED2 in ovarian cancer and the
enrichment of ZBED2-overexpressing cell lines in ovarian cancer-
derived cell lines25. MBD2 expression is also significantly higher in high-
grade serous ovarian cancer (HGSOC) tissue samples compared to
normal tissue samples26. Another key regulon, FOXO3, is reported to be
overexpressed in ovarian cancer cell lines27. The regulon NR3C1 encodes
the Glucocorticoid receptor (GR), a hormone receptor involved in
metabolic homeostasis and stress response. It accelerates glucose meta-
bolism by driving stress response28. Similarly, in HGSOC-2, TFAP2C is
reported to be upregulated in advanced ovarian carcinoma and is
implicated in preventing ferroptosis, a regulated cell death process
involving dysregulated iron metabolism, lipid peroxidation, and ROS
accumulation29. Another important regulon, SMAD3, serves as a prog-
nostic biomarker for ovarian cancer patients and plays a pivotal role in
regulating the transforming growth factor-beta (TGF-β) pathway, which
impacts metastatic processes in ovarian cancer30,31.

The regulons specific to CC-1 include IRF7, IRF9, NFKB2, and
NFATC2, which are involved in the regulating genes associated with the
immune response (Fig. 6C). Another candidate, KMT2B, plays a role in
regulating developmental genes and is found to be upregulated in cervical
cancer cells and facilitates metastasis and angiogenesis in cervical
cancer32. In CC-2, we identified PGR, which encodes the progesterone
receptor and is overexpressed in cervical adenocarcinomas33. The reg-
ulon FOXO1, a key regulator of insulin signaling, controls metabolic
homeostasis during oxidative stress. Other candidates include E2F3,
which regulates the cell cycle; EBF1, which is crucial for B cell develop-
ment and differentiation; and OVOL2, which controls the epithelial-to-
mesenchymal transition (EMT), a process critical for development and
cancer metastasis.

In TNBC-1, the regulons include ETV6, IKZF1, and SPI1, which are
involved in the regulation of hematopoiesis and blood cell development
(Fig. 6C). Other candidates include SOX8 and SOX10, which regulate
embryonic development and determining cell fate, and ZFP42, which reg-
ulates pluripotency and differentiation in embryonic stem cells. In TNBC-2,
weobservedhighexpressionof the regulonSREBF2,which is involved in the
regulation of lipid homeostasis, particularly cholesterol biosynthesis and
metabolism. This observation aligns with our pathway-level analysis, which
showed high activity in cholesterol metabolism for this patient. In TNBC-3,
we observed high expression of the EPAS1 regulon, also known as hypoxia-
inducible factor-2α (HIF-2α), which controls the transcription of genes
involved in the cellular response to hypoxia and angiogenesis. Additionally,
regulons CREB3L1 and HIC1 are involved in the cellular response to
endoplasmic reticulum (ER) stress and DNA damage, respectively. In
TNBC-4, high expression of TFAP2C was observed, consistent with the
recent single-cell study of TNBC34. TFAP2C regulates networks involving
the Estrogen Receptor Alpha (Erα) and ERBB2 (HER2)29. Other candidate
regulons include E2F4, IRF9, ETV3, and ETV7. In TNBC-5, our analysis
identified PITX1 as a highly expressed regulon. Overexpression of PITX1
has been reported in breast cancer cells, functioning as a critical regulator of
Erα-mediated transcriptional activity in breast cancer cells35.
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In ER-1, the top regulonWT1has been implicated in regulating EMT in
breast cancer cells,withhigher expressionobserved in theER+ subtype36 (Fig.
6C). High activity of candidate regulons SREBF1 and SREBF2 is linked to the
upregulation of cholesterol metabolism in ER-1, similar to TNBC-2. Another

key regulon, PATZ1, is involved in cellular proliferation and apoptosis and is
overexpressed in breast tumors37. In ER-2, regulon TFAP2B is highly
expressed and plays a crucial role in regulating tumor cell proliferation in
breast cancer38. InER-3, the top regulons are linked todevelopment (HOXA9,

Fig. 5 | Enrichment of modules associated with metabolic pathways identified from PPI networks of gynecologic and breast cancers. The heatmap shows the negative
log10 of adjusted p-values for these modules, highlighting the shared and distinct enrichment profiles between cancers.
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HOXA10), immune response (IRF7, STAT2, NFKB2), and stress response
(CREB3, CREB3L1). In ER-4, regulonMYC is highly expressed and regulates
cellular signaling and metabolic pathways. Its overexpression contributes to
the development of resistance in ER+ breast cancer39.

Crosstalk between GRN and PPI Network in the Control of
Cancer Cell Metabolism
To elucidate the underlying regulation of metabolic changes in gynecologic
and breast cancers, we performed transcriptional factor enrichment analysis

Fig. 6 | Regulatory network analysis across gynecologic and breast cancers. A Bar
plot depicting the number of regulons identified in GRN of gynecologic and breast
cancers.BVenn diagram illustrating the overlap of regulons among gynecologic and

breast cancers. C RSS plot highlighting the top 10 patient-specific regulons in
gynecologic and breast cancers.
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ofmetabolicmodules identified from the cell-specific network.Our analysis
revealed several transcription factors significantly enriched in these mod-
ules, highlighting their roles in metabolic reprogramming. In module M6
(EEC_M6) of endometrial cancer, transcription factors XBP1, TFDP1,
E2F1, and FOXM1 primarily regulate enzymes involved in the TCA cycle
and one-carbon amino acid metabolism (Fig. 7A). XBP1 and TFDP1 also
target enzymes involved in branched-chain amino acid metabolism. In
module M8 (EEC_M8), XBP1, TFDP1, RFX3, and USF2 regulate over-
lapping and unique enzymes involved in oxidative phosphorylation
(Figure S1A). TFDP1 forms a complex with E2F1, controlling its tran-
scriptional activity. E2F1, FOXM1 and XBP1 are upregulated in endo-
metrial cancer40,41. Both E2F1 and FOXM1play crucial role in cancer energy
metabolism and metabolic adaptation41,42.

Inovarian cancer,module 3 (HGSOC_M3)highlights the role ofETV4
in lipid metabolism and EHF in amino sugar and nucleotide sugar meta-
bolism (Fig. 7B). In module 5 (HGSOC_M5), EHF, E2F1, MYBL2, and
ETV4 target enzymes involved in oxidative phosphorylation, with EHF also
regulating enzymes in the TCA cycle (Fig. 7C). EHF, a member of the E26
transformation-specific (ETS) transcription factor family, is overexpressed
and linked to shorter survival times in ovarian cancer43. Increased expres-
sion of ETV4 contributes to chemoresistance in ovarian cancer44. A recent
study also reported that MYBL2 promotes tumorigenesis in ovarian
cancer45. Additionally, E2F1 transcriptionally regulates MYLB2, promoting
the progression of ovarian cancer46.

In cervical cancer, module M4 (CC_M4) is associated with tran-
scription factors such as CREB3L2 and HOXB2, which regulate enzymes
involved in amino sugar and nucleotide sugar metabolism, as well as
N-glycan biosynthesis (Figure S1B). CREB3L2 also targets enzymes
involved in protein processing in the ER andplays a role in unfolded protein
response (UPR)47. The candidate HOXB2 is expressed in cervical tumor
tissues and contributes to cancer progression48. In TNBC, transcription
factors TFDP1, CEBPB, and ETS2 target enzymes involved in oxidative
phosphorylation in module M2 (TNBC_M2) (Fig. 7D). CEBPB acts as a
master regulator in mammary gland development and is overexpressed in
breast cancer49. Experimental studies have shown that knocking out CEBPB
in TNBC cells significantly reduces cell migration, highlighting its role in
regulating migration and invasion in these cells50. In module M10
(TNBC_M10), SREBF2 and SPDEF regulate steroid biosynthesis, and fatty
acid biosynthesis (Fig. 7E). SPDEF inhibits cell migration and invasion by
targeting EMT pathway51.

In ER+ breast cancer, all three metabolic modules are associated with
different transcription factors. Module M2 (ER_M2) highlights SPDEF’s
role inN-glycan biosynthesis andGPI-anchor biosynthesis (Figure S1C). In
moduleM5 (ER_M5), transcription factors SPDEF, CREB3L4, TFDP1, and
TFAP2B regulate enzymes in the TCA cycle (Fig. 7F), while in module M6
(ER_M6),DRAP1, ZNF580,CREB3L4, andCREB3 regulate enzymes in the
oxidative phosphorylation (Figure S1D). SPDEF, CREB3L4 and TFAP2B
are overexpressed in ER+ breast cancer and are associated with poor
prognosis38,52,53. Overall, the proposed approach specifically captures the
crosstalk between gene regulatory and protein-protein interaction networks
that can drive metabolic reprogramming in gynecologic and breast cancers.
The analysis revealed that transcriptional regulation of interacting targets is
primarily linked to oxidative metabolism in these cancers.

Discussion
Metabolic reprogramming is a hallmark of cancer cells. Earlier scRNA-seq
study showed significant variation inmetabolic activity among different cell
typeswithin the tumormicroenvironment10. In thiswork,we aimed to study
the regulation of metabolic pathways that enable cancer cells to meet their
increased energy and biosynthetic demands while adapting to the evolving
tumormicroenvironment. Our study employed a comprehensive network-
based approach to dissect the complex landscape of metabolic regulation
within malignant cells at the single-cell level (Fig. 1). We first uncovered
metabolic pathway profiles withinmalignant cells of gynecologic and breast
cancers, revealing key metabolic pathways and providing valuable insights

into cancer metabolism (Fig. 2A). By inferring PPI and gene regulatory
networks, we identified the cancer-specific interactions and regulons. We
then identified metabolic modules that highlight connectivity patterns
among metabolic genes and their associated transcription factors through
gene regulatory networks. This analysis provides a comprehensive view of
the regulatory mechanisms driving metabolic changes in gynecologic and
breast cancers. Furthermore, this pipeline can alsobe applied to decipher the
metabolic regulation of any disease at single-cell resolution.

We observed metabolic heterogeneity both across different patients
and within individual patients. In ovarian and cervical cancers, metabolic
heterogeneity between patients correlated with differences in tumor stage
(Fig. 2C, D). In contrast, metabolic variations were observed among EC
patients even within the same tumor stage. Notably, patients EEC-1 and
EEC-3 exhibited more similar metabolic profiles to each other than to
patient EEC-2 (Fig. 2B). The intra-patient heterogeneity observed in EC
patient (EEC-2) suggests thepresenceof distinct tumor subpopulationswith
differing metabolic demands. Although all breast cancer patients in our
study belong to either TNBCor ER+ subtypes, they also exhibited variation
inmetabolic profiles. This variability betweenpatients suggests that intrinsic
(mutations, epigenetics) and extrinsic (tumor microenvironment) factors
may contribute to these differences54. TNBCpatients can be subtyped based
on the differences in glycolysis, oxidative phosphorylation, cholesterol
metabolism, one-carbonmetabolism, and redoxmetabolism (Fig. 3A). This
extends the previous metabolic subtyping of TNBC into the lipogenic
subtype (with upregulated lipid metabolism), the glycolytic subtype (with
upregulated carbohydrate and nucleotide metabolism), and the mixed
subtype (with major pathway dysregulation)55. Additionally, we observed
two subtypes among ER+ breast cancer patients. One subtype, represented
by patient ER-4, exhibits higher metabolic activity compared to the other
subtype, which includes patients ER-1, ER-2, and ER-3 (Fig. 3B). This
distinction may reflect differences in metabolic demands and could inform
therapeutic strategies, such as targeting hyperactive metabolic pathways in
the ER-4-like subgroup.

Our study revealed that oxidative phosphorylation exhibits variation
across gynecologic and breast cancers (Figs. 2, 3 and 5). This observation
alignswithXiao et al.10, who identified oxidative phosphorylation as amajor
contributor tometabolic heterogeneity inmalignant cells10. Additionally, we
observed variability in glycolysis activity within malignant cells
(Figs. 2 and 3). In endometrial and ovarian cancer, we observed mutually
exclusive behavior with respect to oxidative phosphorylation and glycolysis
(Fig. 2B, C). On the other hand, we observed a complex interplay of oxi-
dative phosphorylation and glycolysis inTNBC,with one patient (TNBC-5)
showingupregulationof bothprocesses (Fig. 3A).Thisfinding indicates that
cancer cells exhibit metabolic plasticity, enabling them to switch between
oxidative phosphorylation and glycolysis and adopt a hybrid state based on
oxygen availability andmetabolic demands. The hybrid glycolysis/oxidative
phosphorylation state is associated withmetastasis and therapy resistance56.
Our analysis highlighted the elevated activity of hypoxia-inducible factors
(HIF1A and EPAS1) in TNBC (Fig. 6C) and their upregulation is known to
contribute to treatment resistant in TNBC57. We also identified distinct
transcription factors regulating oxidative phosphorylation across different
cancers. Notably, E2F1 and TFDP1 are among the transcription factors
targeting oxidative phosphorylation in endometrial cancer, ovarian cancer,
and TNBC (Fig. 7 and S1).

We also observed variations in cholesterol and fatty acid metabolism
and identified metabolic modules associated with these pathways at the
network level (Figs. 2, 3 and 5). Cholesterol, a key component of cellular
membranes, also serves as a precursor for the synthesis of steroid hormones
and bile acids. Cholesterol is an endogenous ligand of ERRα and it increases
glycolysis and oxidative phosphorylation in ERRα-dependent mananer58.
Cholesterol metabolism involves de novo cholesterol biosynthesis, choles-
terol uptake, efflux, and esterification59. We observed alterations in cho-
lesterol biosynthesis across gynecologic and breast cancers (Fig. 5).
Cholesterol biosynthesis is primarily regulated by sterol regulatory element-
binding proteins (SREBFs), which are active in breast cancer subtypes,
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Fig. 7 | Interactions between significantly enriched transcription factors and
genes within metabolic modules in gynecologic and breast cancers.
A Endometrial cancer module M6 (EEC_M6), B ovarian cancer module M3
(HGSOC_M3), C ovarian cancer module M5 (HGSOC_M5),D TNBCmodule M2

(TNBC_M2), E TNBC module M10 (TNBC_M10), and F ER+ breast cancer
module M5 (ER_M5). For clarity, only the interactions between transcription fac-
tors and metabolic genes are displayed, while interactions between metabolic genes
or between transcription factors are not shown.
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including TNBC and ER+ (Table S3). Additionally, SREBF2 regulon
activity is observed in endometrial and cervical cancers (Table S3).

We identified SPDEF in our network-based analysis of TNBC and ER
+ breast cancer (Fig. 7 and S1). It is also highly expressed regulon in
endometrial and cervical cancers (Fig. 6C). SPDEF belongs to the ETS (E26
transformation-specific) transcription factor family, which is expressed in
hormone-regulated epithelia such as the prostate, breast, and ovary. SPDEF
regulates genes related to fatty acid metabolism and oxidative metabolism.
Androgen and estrogen metabolism show heterogeneous expression pat-
terns within malignant cells of gynecologic and breast cancers (Figs.
2 and 3). Estrogenmetabolism is also enriched in the PPI networkmodules
of these cancers (Fig. 5). High levels of androgens have been associated with
an increased riskof cervical cancer60.However, its role in endometrial cancer
remains controversial61. Further, our study revealed a complex interplay
between omega-3 and omega-6 metabolism in gynecologic and breast
cancers (Fig. 5). Omega-3metabolism is important for the synthesis of anti-
inflammatory eicosanoids (EPA and DHA), while omega-6 is involved in
the synthesis of pro-inflammatory eicosanoids (arachidonic acid). We
observed that in ovarian cancer, both omega-3 and omega-6 metabolisms
are upregulated, while in endometrial cancer and TNBC patients, they are
activated in a mutually exclusive manner (Figs. 2 and 3). Arachidonic acid
serves as the main precursor of several eicosanoid species, including pros-
taglandins and leukotrienes, which can modulate tumor
microenvironment62.

Amino acid metabolism is altered in gynecologic and breast cancers,
with distinct patterns observed across different cancer types
(Figs. 2, 3 and 5). Arginine and proline metabolism show heterogeneous
expression patterns in endometrial, ovarian, and ER+ breast cancers. A
recent metabolomic study of urine and serum samples from early-stage
endometrial cancer patients identified differential metabolites specifically
involved in arginine and proline metabolism63. Another key pathway, one-
carbon metabolism, is enriched in PPI network modules of cervical,
endometrial andbreast cancer subtypes (Fig. 5). This pathway is essential for
supporting nucleotide and amino acid biosynthesis, epigenetic modifica-
tions, and antioxidant regeneration through the methionine cycle64. Addi-
tionally, variations in aromatic and branched-chain amino acidmetabolism
are observed in cervical and ER+ breast cancers (Figs. 2, 3 and 5). Fur-
thermore, we observed differences in expression patterns of glutathione
metabolism across gynecologic and breast cancers (Figs. 2 and 3). Glu-
tathione metabolism, ROS detoxification, and the pentose phosphate
pathway are highly expressed in some TNBC patients compared to others.
We also identified different transcription factors associated with ER stress
(CREB3 subfamily) in gynecologic and breast cancers (Figs. 6, 7 and S1). ER
stress enhances the adaptability of tumor cells to unfavorable conditions,
driving cancer progression. It influences glycolysis and lipid metabolism,
promoting tumor growth, invasion, and metastatic potential65.

The gene regulatory network analysis revealed significant activity of
NF-κB-regulated regulons (NFKB1, NFKB2, REL, RELA, and RELB) in
gynecologic and breast cancers (Table S4). Nuclear factor-κB (NF-κB) is a
family of stimuli-responsive transcription factors that control a wide range
of genes involved in immune and inflammatory responses. This family
includes five structurally related members, NFKB1, NFKB2, REL, RELA,
and RELB, which regulate gene transcription by binding to a specific DNA
sequence known as the κB enhancer, either as homo- or hetero-dimers66.
NF-κB signaling pathway has been associated with cancer progression
through its role in regulating EMT and metastasis67. Additionally, regulons
involved in interferon-gamma response are expressed in gynecologic and
breast cancers.

Our comprehensive analysis of scRNA-seq data reveals significant
metabolic heterogeneity among malignant cells in gynecologic and breast
cancers. This heterogeneity highlights the complexity of metabolic repro-
gramming, which may play a crucial role in tumor survival, growth, and
adaptation to the tumor microenvironment. Importantly, it uncovers the
underlying regulatory mechanisms driving metabolic dysregulation,
including the identification of key transcription factors and their targets,

which together form an integrated network. These results provide a foun-
dation for further investigation into cancermetabolism, potentially guiding
the development of targeted therapies to disruptmetabolic pathways critical
to cancer progression and treatment resistance.

Since our study is based on multiple publicly available datasets for
different cancers, we adhered to the quality control (QC) criteria reported in
the original studies (see Methods). Selecting appropriate QC thresholds is
critical, and a common approach is to experiment with different thresholds
while ensuringminimal loss of biological information due to changes in the
number of cells included. To assess whethermitochondrial gene percentage
significantly impacts our results, we tested different thresholds using the
TNBCdataset as an example.When the thresholdwas reduced from20% to
15% and 10%, clustering results and most pathway activity patterns
remained consistent, despite a loss of approximately 1000 to 3000 cells
(Figure S2). However, further reducing the threshold to 5% led to a loss of
more than 50% of cells, which may not be appropriate for obtaining
meaningful results. Overall, we note that the impact on the results is
minimal if the decrease in cell count due to QC criteria changes is not
dramatic.

A key limitation of this study is the small sample size, especially in
gynecological cancers. To address this, we applied stringent inclusion cri-
teria, ensuring that datasets included more than 1,000 malignant cells per
patient for sufficient representation. However, broader validation with
larger annotated datasets is necessary to confirm and expand upon these
findings. Another limitation is the lack of direct experimental validation,
such as knockout experiments of transcription factors, to confirm the
observed crosstalk between GRN and PPI networks of metabolic genes.
Currently, only transcription factor expression data and their relevance in
specific cancers are available from existing literature. Our findings will serve
as hypotheses for further refinement of transcriptional regulation of
metabolic pathways in gynecologic and breast cancers through targeted
experiments.

Methods
Datasets
We obtained scRNA-seq datasets (feature-barcode matrices) for endo-
metrial and ovarian cancer from the Gene Expression Omnibus (GEO)
database (accession number GSE173682)68. The corresponding cell type
annotations were retrieved from the supplementary files provided. The
Broad Institute Single Cell Portal (https://singlecell.broadinstitute.org/
single_cell) was used to download the scRNA-seq data with cell type
annotations for breast cancer (Accession ID: SCP1039) and cervical cancer
(Accession ID: SCP1950)69,70. The endometrial cancer dataset includes five
patients, all classified as the endometrioid subtype at stage 1. The ovarian
cancer dataset includes two patients, one at stage 2 and the other at stage 3.
The cervical cancer dataset contains 7 patients, with 4 at stage 1 and 3 at
stage 2. The breast cancer cohort comprises 26 patients: 11 ER+ , 5
HER2+ , and10TNBC.The scRNA-seqdatasetswere selectedbasedon the
availability of cell-type annotation information, inclusion of a substantial
number of malignant cells, and availability of clinical metadata.

To study cancer metabolism, we employed the latest version of the
human genome-scale metabolic model known as Human-GEM (version
1.14.0)71. This comprehensive model encompasses 13,085 reactions, 8499
metabolites, and 2897 genes, providing a detailed representation of the
standard metabolic processes in human cells.

Data preprocessing
The feature-barcode matrix for each patient was transformed into a Seurat
object using the Seurat R package (version 4.4.0)72. We utilized the pre-
filtered cell barcodes available in the supplementary/metadata files from the
original dataset paper for downstream analysis. We considered dataset-
specific QC criteria based on recommendations from the original studies.
This approachaccounts for biological variations andensures alignmentwith
the tissue and cell-type contexts unique to each dataset, as QC thresholds
can vary significantly across tissue types, study conditions, and
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technologies73. For endometrial and ovarian cancer datasets, QC and
doublet cell removal were conducted for each patient68. The QC metrics
included three criteria: log-transformedUMI counts ( > 2MADs, low end),
log-transformednumber of expressed genes ( > 2MADs, low end), and log-
transformed percentage of mitochondrial read counts ( > 2 MADs, high
end). Doublet cells were identified using both DoubletDecon and Dou-
bletFinder. For cervical cancer datasets, the following QC criteria were
applied for cell filtering: UMI counts < 8000 or mitochondrial gene per-
centage < 10%, and gene counts between 500 and 400070. In breast cancer
datasets, cells were retained if they exhibited a gene count exceeding 200,
UMI counts surpassing 250, and a mitochondrial percentage below 20%69.

To ensure unbiased analysis and adequate representation ofmalignant
cell populations, we excluded patients with fewer than 1000malignant cells
in the endometrial, cervical, and breast cancer datasets. Consequently, for
the downstream analysis, we retained 3 patients from endometrial cancer, 2
patients from cervical cancer, and 9 patients (4 ER+ and 5 TNBC) from
breast cancer. Detailed patient information is provided in the supplemen-
tary file (Table S5).

Next, we performed normalization using SCTransform, a variance-
stabilizing transformation method that preserves true biological variation
while removing the technical variability74. A prior study highlighted the
better performance of SCTransform in comparison to alternative normal-
ization methods for scRNA-seq analysis75.

Calculation of activity score of metabolic pathways
To characterize the variation in the metabolic profile of cancer cells, we
calculated the pathway activity score for each cell using Pagoda (pathway
and gene set overdispersion analysis), a computational framework designed
for characterizing transcriptional heterogeneity in scRNA-seq data. First,
Pagoda fits a cell-specific error model using a modified mixture model
approach. This approach models each gene in a cell as a mixture of
amplificationprocesses (negative binomial distribution) anddropout events
(Poisson distribution). Next, it adjusts the variance of each gene by renor-
malizing the observed expression based on the errormodel estimates, which
also includes batch corrections. To determine the significance of residual
variance, the chi-square test is applied. Then, themethodperformsweighted
Principal Component Analysis (PCA) for each gene set and utilizes the first
principal component to quantify the activity of the gene set.Weighted PCA
helps account for technical noise contributions. To assess the statistical
significance of PAS, it compares the variance explained by the first principal
component of the gene set with the expected variance calculated using
random gene sets. It also corrects for multiple hypothesis testing to identify
significant pathwayswith adjusted p-values < 0.05, termed as overdispersed,
for subsequent analysis.We implemented this method using the Pagoda2 R
package (version 1.0.11)76.

Identification of clusters based on metabolic pathways
To uncover the various metabolic states within cancer cells, we performed
clustering on the pathway activity score data of metabolic pathways. First,
we scaled the data to standardize the values, enabling a robust principal
component analysis (PCA). We then computed a PCA matrix using the
RunPCA function and selected appropriate principal components for
subsequent clustering and visualization. We constructed a shared nearest
neighbor graph with the FindNeighbors function, specifying 10 compo-
nents, and applied the Louvain algorithm via the FindClusters function to
identify distinct clusters. Finally, we visualized the clustering results using
t-SNE plots, facilitating the interpretation of the metabolic landscape in
cancer cells.

Construction of cancer-cell specific protein-protein interaction
network
To gain a deeper understanding of the complex interactions among genes
within cancer cells, we aimed to construct a comprehensive cancer-cell-
specific PPI network. This approach allows us to decode crucial interactions
and regulatory elements unique to cancer cells. We employed the SCINET

(single-cell imputation and network construction) method to generate
cancer-specific PPI networks using scRNA-seq data of malignant cells77.
SCINET integrates a global, context-independent reference interactome
(parsimonious composite network (PCNet)78 with scRNA-seq data. PCNet
was constructed by integrating 21 distinct network resources (e.g., STRING,
ConsensusPathDB, GIANT). It retains edges supported by at least two
independent sources, resulting in a network that outperforms individual
networks in predicting disease-related genes.

SCINET employs a decomposition-based imputation method to
addressnoise and sparsity in scRNA-seqdataby interpolatingmissing values
and balancing gene expression levels. It builds on the ACTION framework,
which iteratively decomposes the expressionmatrix into lower-dimensional
archetypes that optimally capture the variability within the dataset. It then
applies a rank-based inverse normal transformation to address the large
differences in gene expression distributions, ensuring that the expression
scales are comparable across genes. This technique computes two factors:
one representing each gene’s expression across cells (row factor) and another
representing the mean expression of all genes within a specific cell popula-
tion (column factor). These transformations result in gene activity scores
that are consistent and comparable across genes and cell types. To assess co-
expression dependencies between interacting genes, SCINET assumes that
an interaction requires both genes to have sufficiently high expression levels.
This is quantified using the minimum expression value of two interacting
genes as a statistic. A p-value is calculated under a null model of indepen-
dence, quantifying the interaction strength for each gene pair and cell. To
address noise and varying sample sizes across cell types, SCINET employs a
resampling technique akin to ensemble learning. Cells are sampled ran-
domly and individual interaction p-values are calculated. These p-values are
aggregated using Fisher’s method to compute a meta p-value that reflects
interaction likelihoods within the population. Repeated resampling pro-
duces an empirical distribution for each interaction, and the mean of this
distribution is used for further analysis. This approach efficiently maps gene
activity scores to the reference interactome and estimates interaction
strengths at the cell-type levels. We implemented this method using the
SCINET R package (version 1.0) with default parameters.

Subsequently, we applied the Leiden clustering algorithm to identify
distinct modules within the network. To uncover the regulatory mechan-
isms governing metabolic processes, we performed hypergeometric tests to
identify modules enriched in metabolic pathways and to determine the
transcription factors associated with each module. An adjusted p-value
threshold of < 0.01 was applied as the significance criterion for identifying
metabolic pathways and transcription factors.

Network proximity analysis
We performed a network proximity analysis to explore the inter-
connectedness of genes across gynecologic and breast cancer subtypes. This
method quantifies the similarity between two sets of nodes (e.g., genes or
proteins) within a PPI network. It measures how “close” or “relevant” one
set of nodes is to another based on their positions in the network, with
smaller scores indicating higher proximity.

The algorithm computes pairwise shortest path distances between
nodes in set A and set B within the network. These distances are then
aggregated using the network proximity metric to calculate the average
shortest distance, known as the proximity score79:

dAB ¼ 1
k A k þ k B k

X

a2A
minb2Bdða; bÞ þ

X

b2B
mina2Adða; bÞ

 !
ð1Þ

Here, dða; bÞ is the shortest path distance between gene a from set A and
gene b from set B within the network. It focuses on the closest interaction
between the two sets and captures the average closeness of the two sets.

To assess the statistical significance of the proximity score, we per-
formed a permutation test. Nodes were randomly sampled from the entire
network, ensuring their degree distributions matched those of the nodes in
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the original sets. Using these random samples, we calculated the mean and
standard deviation of proximity scores across 1000 permutations. The
Z-scorewas then determined, providing a normalizedmeasure of proximity
as follows:

ZdAB
¼ dAB � dm

σm
ð2Þ

Here, dm and σm are the mean and standard deviation of the permutation
test. We used the PPI network nodes for gynecologic and breast cancers,
with PCNet serving as the reference network. Two cancers were considered
significantly proximal or overlapping in the interactome if they satisfied the
criteria of a Z-score <−2 and a p-value < 0.001, indicating a high degree of
interaction similarity. This analysis was implemented using the NetworkX
library in python.

Inference of gene regulatory network
To elucidate the regulatory mechanisms underlying cancer progression at
the single-cell level, we employed the SCENIC method to construct a gene
regulatory network. SCENIC is a computational approach designed for
inferring gene regulatory network from scRNA-seq data80. The pipeline
consists of three main steps: first, it identifies potential regulatory modules
by analyzing co-expression patterns among genes through a regression-
based network inference method. Subsequently, it refines these co-
expression modules by leveraging transcription factor motif information
to remove indirect targets. Finally, the activity of these identified regulons is
evaluated in individual cells using AUCell. Based on AUCell scores, we
computed the regulon specificity score (RSS) to identify patient-specific
regulons. This method was implemented using the pySCENIC (version
0.12.1) package available in Python.

Data availability
The datasets analyzed in the current study are available from public
repositories: https://www.ncbi.nlm.nih.gov/geo/ and https://singlecell.broad
institute.org/single_cell.

Code availability
The packages used in the analysis are referenced in the manuscript. The
source codes are provided in the GitHub repository: https://github.com/
CancerDiag/scMetaReg.
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