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A B S T R A C T   

Background: Although measurement of 25(OH)D3 is a routine analytical method to determine plasma vitamin D 
status, 1α,25(OH)2D3 is the biologically active form. Hence, simultaneous measurement of 25(OH)D3 and 1α,25 
(OH)2D3 could provide better insight into vitamin D status and pharmacokinetics. However, 1α,25(OH)2D3 has a 
low plasma concentration, making its quantification challenging for most analytical techniques. Here, we 
demonstrate use of liquid chromatography tandem mass spectrometry (LC-MSMS) for the development of a 
simple and rapid method for the simultaneous quantification of 25(OH)D3 and 1α,25(OH)2D3. 
Methods: Samples were purified from 250 µL human plasma. Chromatography was performed on an analytical 
column, under gradient conditions using a mobile phase consisting of methanol-lithium acetate. The mass de-
tector was operated in positive multiple reaction monitoring mode. The established method was validated ac-
cording to the guidance issued by ICH and FDA. Furthermore, a clinical study was performed using this method 
to detect the plasma concentrations of 1α,25(OH)2D3 after oral administration of calcitriol. 
Results and conclusion: The method was acceptably linear over the concentration ranges of 20–1200 pg/mL for 
1α,25(OH)2D3 and 1–60 ng/mL for 25(OH)D3, respectively, with correlation coefficients of r2 > 0.993. Both the 
inter-assay and intra-assay precision was < 15%, and the analytical recoveries were within 100% ± 10%, with no 
significant matrix effect or carryover. Thereby, we, provide a facile method for the simultaneous detection of 
vitamin D metabolites in plasma.   

1. Introduction 

Substantial clinical findings have demonstrated that vitamin D (VD) 
is related to various physiological processes and pathologies, such as 
cancer [1], asthma [2], and cardiovascular diseases [3,4]. After 
endogenous synthesis or intestinal absorption, cholecalciferol (vitamin 
D3) is firstly metabolized in the liver by 25-hydroxylases producing 25- 
hydroxyvitamin D3 (25(OH)D3), which is used as a clinical biomarker 
for assessing vitamin D status [5–8]. It is generally agreed that a lower 

level 25(OH)D3 is associated with an increased risk of fractures [7,9,10]. 
Then, 25(OH)D3 is converted, primarily by the kidney, to its the most 
active form, 1α,25(OH)2D3, which is the ligand of the vitamin D receptor 
in target tissues [11]. However, recent studies suggest that VD status 
assessment based on concentrations of 25(OH)D3 alone may be subop-
timal [12]. Some populations have low 25(OH)D3 concentrations 
without clinical manifestations of VD deficiency [13–16]. The VD 
Metabolite Ratio has been suggested as a superior indicator of VD status, 
where the 1α,25(OH)2D3:25(OH)D3 ratio is a better predictor for the 
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development of diabetic and cardiovascular complications [12,17,18]. 
Therefore, measuring both analytes simultaneously could provide a 
valuable method for studying diseases caused by alterations in the VD 
pathway [19–22]. 

Partly because 1α,25(OH)2D3 circulates at low picomolar concen-
tration ranges with highly lipophilic and plasma protein binding prop-
erties [23,24], measurement in the human body is challenging. Many 
assays for vitamin D3 metabolites have been published, including 
enzyme-linked immunoassay, radioimmunoassay [25,26], high- 
performance liquid chromatography [27,28], and liquid chromatog-
raphy coupled with mass spectrometry (LC-MS/MS), the latter of which 
is considered the “gold standard” for the determination of vitamin D3 
metabolite levels [29–33]. Currently, the majority of methods reported 
in the literature usually use derivatization to improve the ionization 
efficiency of 25(OH)D3 and 1α,25(OH)2D3, which is financially costly 
and time consuming [31,33]. Therefore, development of an easy-to- 
operate and highly sensitive method to measure 25(OH)D3 and 1α,25 
(OH)2D3, simultaneously, has high scientific and clinical value. 
Accordingly, in this study, we developed and validated a relatively 
simple and precise method for the simultaneous determination of 
plasma 25(OH)D3 and 1α,25(OH)2D3. Furthermore, we performed 
proof-of-principle clinical research using this method to demonstrate its 
clinical applicability. 

2. Materials and methods 

2.1. Chemicals and reagents 

In our study, 25(OH)D3, 25(OH)D3-d3, 1α,25(OH)2D3, 1α,25 
(OH)2D3-d6 (dissolved in 80% methanol) were provided by Toronto 
Research Chemicals (North York, Canada). LC-MS chromasolv-grade 
methanol (MeOH) and LC-MS chromasolv-grade iso-propyl alcohol (IPA) 
were purchased from Merk (Darmsrtadt, Germany). LC-MS Optima- 
grade water was purchased from Quchenshi (Shanghai, China). Further, 
96-well SPE plates were purchased from Waters (Manchester, UK). 

2.2. Instrumentation and bioanalytical conditions 

Samples were analyzed using an Acquity UPLC ultra-high- 
performance liquid chromatography system coupled with Xevo TQ-S 
triple quadrupole mass spectrometer (Waters Crop, Manchester, UK). 
Ionization was performed in electrospray ionization (ESI) mode and the 
mass spectrometer was operated in the positive ion electrospray mode. 
The temperature of the electrospray source was maintained at 120 ◦C 
and a desolvation temperature of 500 ◦C. The capillary voltage was set 
3.5 V. Multiple reaction monitoring (MRM) mode was used to monitor 
and quantify VD metabolites. The mass spectrometry conditions used for 
detecting the analytes are shown in Table 1. 

Chromatographic separation was performed using a Waters Acquity 
UPLC BEH C18 (100 × 2.1 mm, 1.7 µm), which was maintained at 40 ◦C 
in the column oven. The mobile phase was composed of lithium acetate 
(0.378 mM) aqueous solution (solvent A) and methanol (solvent B), with 
a total flow rate of 0.25 mL/min. The integration of the peak area and 
concentration calculation were done by the workstation UNIFI software 
(UNIFY 1.7.1.022). 

2.3. Preparation of standards and quality control samples 

25(OH)D3 and 1α,25(OH)2D3 were used to prepare standard curves 
and quality controls with internal standards (25(OH)D3-d3, 1α,25 
(OH)2D3-d6 (100 ng/mL) were used to prepare working solutions. 

These working solutions were further diluted with surrogate matrix 
(10% bovine serum albumin) to provide calibration standards in the 
range of 20–1200 pg/mL for 1α,25(OH)2D3 and 1–60 ng/mL for 25(OH) 
D3. Surrogate calibration standards were prepared fresh daily from the 
working solutions. Quality control (QC) samples were independently 
prepared in the surrogate matrix at four different concentrations of 1, 2, 
16, and 48 ng/mL (LLOQ, QCL, QCM, and QCH, respectively) for 25 
(OH)VD3 and 20, 40, 320, and 960 pg/mL (LLOQ, QCL, QCM, and QCH, 
respectively) for 1α,25(OH)2D3. QC samples were stored at − 70 ◦C until 
analysis. 

2.4. Sample preparation 

A portion of 250 µL plasma sample added with 2.5 µL internal 
standards was mixed with 250 µL of 0.2 mol/L zinc sulfate and vortex- 
mixed (10 s). Next, 900 µL MeOH was added to precipitate the pro-
teins. The solution was then vortexed at high speed for 1 min before 
centrifugation (13000 rpm, 5 min). The supernatant was quickly 
transferred to a Waters C18 SPE cartridge (Waters Oasis HLB 96-Well 
plate), which was previously conditioned with 200 µL MeOH and 200 
µL water. The solid phase was washed with 200 µL of a mixture of MeOH: 
water (5:95,v/v) twice and 200 µL of a mixture of MeOH:water (60:40, 
v/v) twice. Then, the targeted 25(OH)D3 and 1α,25(OH)2D3 were eluted 
with 40 µL of a mixture of MeOH:IPA (95:5,v/v) twice and 20 µL of water 
was added. Lastly, 10 µL of the mixture was analyzed using the LC-MS/ 
MS system. 

2.5. Bioanalytical method validation 

The method was validated according to the guidelines by the Inter-
national Council on Harmonisation of Technical Requirements for 
Registration of Pharmaceuticals for Human Use (ICH) [34] and FDA 
[35]. Quantification was performed by calculating the peak-area ratios 
of 25(OH)D3 to 25(OH)D3-d3 and 1α,25(OH)2D3 to 1α,25(OH)2D3-d6, 
respectively. 

Linearity was evaluated by analyzing a series of standard concen-
trations generated over the range of 20–1200 pg/mL for 1α,25(OH)2D3 
and 1–60 ng/mL in 10% BSA. The curves were established by per-
forming a linearly weighted (1/X2) least squares regression obtained by 
plotting peak-area ratios of the analytes to IS against the nominal con-
centration of analytes. The ratio of response area for analytes to IS was 
used for regression analysis. 

The intraday and interday accuracy and precision were assessed by 
replicate analysis of the four QC levels on three consecutive days. In 
each of the precision and accuracy sequences, five replicates at each QC 
level were analyzed. Recovery analysis of the extraction method was 
performed at three 25(OH)D3 and 1α,25(OH)2D3 concentrations in five 
replicates each. 

The stability of vitamin D3 metabolism in 10% BSA during analysis 
and usual storage condition was inspected with the following parame-
ters: freeze–thaw cycle stability, long-term stability, pre-extraction sta-
bility at room temperature (RT), post-extraction stability at 4 ◦C, and 
stability in the autosampler. 

2.6. Method application 

The validated method was applied for the simultaneous determina-
tion of 25(OH)D3 and 1α,25(OH)2D3 in human plasma. A human phar-
macokinetic study was performed in nine healthy Chinese volunteers (3 
males, 29.2 ± 6.8 years old, and 6 females, 27.3 ± 6.8 years old; BMI 
range: 19.8–26 kg/m2) after oral administration of Calcitriol Soft 

Table 1 
MRM transitions, collision energies and cone voltages of vitamin D metabolites.  

Compound MRM 
transitions 

Cone voltage 
(V) 

Collision energy 
(eV) 

25(OH)D3 407.31 > 389.24 44 32 
25(OH)D3-d3 410.50 > 392.26 77 22 
1α,25(OH)2D3 423.26 > 369.25 49 22 
1α,25(OH)2D3- 

d6 

429.36 > 374.36 60 25  

S. Xu et al.                                                                                                                                                                                                                                       



Journal of Mass Spectrometry and Advances in the Clinical Lab 24 (2022) 65–79

67

Capsules (CP Pharmaceutical Group, China) at a single dose of 4 µg. The 
clinical study was approved by the Medical Ethics Committee of the 
Xinxiang Central Hospital, Henan Province (Xinxiang, China). All vol-
unteers provided written informed consent for their participation in the 
study, according to the principles of the Declaration of Helsinki and 
Good Clinical Practice. A total of 22 blood samples (1 mL each) were 
collected in heparin anticoagulant tubes at − 18.00, − 12.00, and − 6.00 
h (pre-dose) and then 0, 0.50, 1.00, 1.50, 2.00, 2.50, 3.00, 3.50, 4.00, 
5.00, 6.00, 7.00, 8.00, 10.00, 12.00, 24.00, 36.00, 48.00, and 72.00 h 
(post-dose). The blood samples were centrifuged at 3000 g for 5 min at a 

temperature of 4 ◦C, and plasma samples were harvested, labeled, and 
stored at − 70 ◦C before analysis. 

The plasma samples were processed as described in Section “2.4. 
Sample preparation.” In parallel with the actual plasma samples, QC 
samples at low, medium, and high concentrations were allocated in the 
analytical run, and analyzed in duplicates. The pharmacokinetic pa-
rameters, such as mean residence time, area under the concen-
tration–time curve (AUC), maximum concentration (Cmax), and half-life 
time (T1/2), and time to reach maximum concentration (Tmax) were 
calculated using the software Phoenix WinNonlin (7.0), and the plasma 

Fig. 1. Intensity of 1α,25(OH)2D3 at LLOQ with the lithium acetate mobile phase at various concentrations (A) 0.149 mM, (B) 0.378 mM, (C) 0.597 mM, and (D) 
0.746 mM. 
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concentration–time curves of the volunteers drawn by Prism 7.0 
(GraphPad Software, Inc, La Jolla, CA). 

3. Results and discussion 

3.1. Method development 

Because 1α,25(OH)2D3 is tightly bound to plasma proteins and 

circulates at picomolar concentrations [23,24], the development of a 
rapid, simple method for the simultaneous determination of plasma 25 
(OH)D3 and 1α,25(OH)2D3 required considerable work, as described 
below. 

3.1.1. Optimization of chromatography conditions and sample preparation 
C18 and C8 columns designed for the analysis of polar compounds 

were tested. Although 25(OH)D3 had similar results using both columns, 

Fig. 1. (continued). 
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results for 1α,25(OH)2D3 suffered from poor selectivity and sensitivity. 
C18 columns, including BEH C18 (100 × 2.1 mm, 1.7 µm) and BEH C18 
(50 × 2.1 mm, 1.7 µm) were then evaluated. BEH C18 (100 × 2.1 mm, 
1.7 µm) was chosen for the method based on optimal retention time, 
selectivity, and peak shape. Different column temperatures were also 

tested from 20 ◦C to 45 ◦C, and the sensitivity improved under 40 ◦C 
column temperature. 

Ammonium formate, ammonium acetate, formic acid, and lithium 
acetate were evaluated as aqueous mobile phase additives for sensi-
tivity, selectivity, and chromatographic reproducibility. The addition of 
lithium acetate to 1α,25(OH)2D3 resulted in the formation of stable 
parent ions in the ESI mode, higher ion response, and compound 
cleavage into stable fragment ions. Therefore, lithium acetate was used 
in the mobile phase. Then, the concentration of the lithium acetate was 
optimized. The optimum concentration of lithium acetate was found to 
be 0.378 mM in water, which was used as the mobile phase A in this 
study, whereas methanol was used as mobile phase B (Fig. 1). 

Table 2 
LC gradient elution program detail.  

Gradient elution program 

Time (min) 0 3.5 5 5.1 6.4 6.5 8 
Mobile phase A (%) 28 8 8 0 0 28 28 
Mobile phase B (%) 72 92 92 100 100 72 72  

Fig. 2. Fragmentation pattern for (A) 25(OH)D3 and (B)1α,25(OH)2D3.  
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Fig. 3. Representative chromatograms from 25(OH)D3 and 1α,25(OH)2D3 analyses. (A) blank 10% BSA, (B) analytes at LLOQs and ISs, and (C) plasma sample 
collected at 3 h after oral administration of Calcitriol Soft Capsules at a single dose of 4 µg. 
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Fig. 3. (continued). 
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Deuterated internal standards were used to minimize any analytical 
variation due to solvent evaporation, integrity of the column, and 
ionization efficiency of the analytes. 

The gradient program (Table 2) was initiated with a step increase in 
the proportion of mobile phase B from 72% to 92% to delay the elution 
of the more polar derivative of 1α,25(OH)2D3, to isolate it from any 
possible early eluting matrix contaminants, or from the remnants of the 
derivatization reaction solution. Moreover, a step increase in the 
composition of mobile phase B from 92% in 5 min to 100% at 5.1 min 
was necessary to elute the less polar derivative of 25(OH)D3. The ratio 
was maintained for 1.3 min at 100% B to guarantee a completed elution. 
Then an equilibration stage of 1.5 min at 72% B again was necessary for 
the column to obtain reproducible chromatography. 

Different extraction methods, such as protein precipitation and liq-
uid–liquid extraction (LLE), were explored to achieve acceptable 
reproducibility and recovery. Both methanol and acetonitrile were used 
for protein precipitation, but these could not achieve the required 
reproducibility. The recovery and reproducibility of LLE were also poor 
for 1α,25(OH)2D3 due to ion suppression in the solvent systems. Solid 
phase extraction (SPE) showed consistent recovery and reproducibility 
with Waters Oasis HLB SPE cartridge without any immunoextraction, 
derivatization or drying under nitrogen. The entire process lasted 
approximately 45 min including 8 min for the LC-MS/MS run time. 
Samples were prepared in an ice bath due to instability of analytes in the 
matrix. 

3.1.2. Optimization of mass spectrometric conditions 
Carl Jenkinson et al. reported the protonated molecule mass-to- 

charge ratios (m/z) 383.2 and m/z 399.2 as the precursor ions of 25 
(OH)D3 and 1α,25(OH)2D3 [36], respectively. In our study, a Q1 scan of 
25(OH)D3 and 1α,25(OH)2D3 with electrospray ionization (ESI) mode 
revealed a high abundance of lithium adducts ([M + Li]+), with 25(OH) 
D3 and 1α,25(OH)2D3 showing the highest signals at m/z of 407.31 and 
423.26, respectively. The product ion scan of 25(OH)D3 resulted in high- 

intensity peaks of fragment ions at m/z 389.24, whereas 1α,25(OH)2D3 
resulted in fragment ions at m/z 387.17 and 369.0 (Fig. 2). Fragment 
ions with m/z of 389.24 and 369.25 exhibited higher ion responses and 
more stable signals; therefore, they were selected as the MRM quanti-
tative detection ions of 25(OH)D3 and 1α,25(OH)2D3, respectively. 
Finally, the quantitative MRM channels for 25(OH)D3 and 1α,25 
(OH)2D3 were determined to be m/z 407.31 → 389.24 and m/z 423.26 
→ 369.25, respectively. The same method was used to determine the 
MRM ion channel of the isotope internal standards 25(OH)VD3-d3 and 
1α,25(OH)2D3-d6, which was m/z 410.50 > 392.26 and 429.36 >
374.36, respectively. 

Fig. 4. Plasma calibration curves for (A) 25(OH)D3 and (B) 1α,25(OH)2D3.  

Table 3 
Inter-day and Intra-day precision and accuracy of 25(OH)D3 and 1α,25(OH)2D3 
in human plasma.  

QC 
samples 

Target value 
(pg/mL) 

Accuracy% Precision% 

Inter- 
daya 

Intra- 
dayb 

Inter- 
daya 

Intra- 
dayb 

25(OH)D3 

QC-LLOQ 1000  95.25  97.22  2.94 2 
QCL 2000  105.27  102.68  4.55 5.31 
QCM 16,000  102.58  106.21  8.4 9.7 
QCH 48,000  94.17  92.79  8.27 6.08 
1α,25(OH)2D3 

QC-LLOQ 20  94.59  100.95  9.5 7.2 
QCL 40  101.42  93.66  11.2 14.2 
QCM 320  99.8  92.07  7.4 3.3 
QCH 960  110.19  102.86  5.7 4.5  

a (n = 5), expressed as (found concentration /target value) × 100. 
b Values obtained from all three runs (n = 15). 
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3.2. Bioanalytical method validation 

3.2.1. Selectivity and carryover 
An LC-MS/MS workflow was developed for accurate and precise 

quantification of 25(OH)D3 and 1α,25(OH)2D3. Being endogenous 
compounds, it is challenging to define the selectivity of these analytes. 
Contrarily, the challenge could be minimized by using 10% BSA as a 
blank. Furthermore, the LLOQ was determined to coincide with the 
standard, which was a 1/100 dilution of the working solution. Fig. 3 
illustrates the representative chromatograms. As expected, there were 
no peaks corresponding to each analyte and IS in the blank 10% BSA run, 
indicating that BSA, as a better matrix, can be applied for this analytical 
method. 

3.2.2. Linearity 
The results showed acceptable linearity for both 25(OH)D3 and 

1α,25(OH)2D3, with R2 > 0.993 for 25(OH)D3 and R2 > 0.996 for 1α,25 
(OH)2D3(Fig. 4). 

3.2.3. Precision and accuracy 
The precision, accuracy and LLOQ We have accepted the revision.are 

displayed in Table 3. Satisfactory repeatability and precision were 
achieved as CV values ranged from 2% to 14.2 %. Accuracy was also well 
within the acceptance range for both intraday and interday measure-
ments, with the acquired bias value from 92.07% to 110.19% for 
calibrators. 

3.2.4. Recovery 
Recovery analysis was performed at three concentrations indepen-

dently to assess the quality and applicability of the developed method. 
Results revealed that the spiked recovery of 25(OH)D3 ranged from 
91.22% ± 2.65% to 99.56% ± 10.26%, and the spiked recovery of 1α,25 
(OH)2D3 ranged from 94.13% ± 6.25% to 97.98% ± 9.20%. All the 
recovery rates were within ± 15% bias, which indicates that the pro-
cesses of the study led to low loss of both 25(OH)D3 and 1α,25(OH)2D3 
in the test samples. 

3.2.5. Stability 
The stability of 25(OH)D3 and 1α,25(OH)2D3 is summarized in 

Table 4. Evaluation of the freeze–thaw cycle stability demonstrated the 
analytes were stable for at least two freeze and thaw cycles. The results 
demonstrated that the analytes was stable in human plasma at room 
temperature for at least 4 h. Both 25(OH)D3 and 1α,25(OH)2D3 were 
stable in a processed form (extracted) throughout the residence time of 
24 h in the autosampler. The stability results demonstrated that the 
analytes were stable under refrigeration (− 70 ◦C) for 1 month. 

3.3. Method application 

The fully validated LC-MS/MS method was successfully imple-
mented in a clinical pharmacokinetic study of 1α,25(OH)2D3 in human 
plasma, as well as of 25(OH)D3. Figs. 5 and 6 described the plasma 
concentration–time profiles of 1α,25(OH)2D3 and 25(OH)D3 in human 
plasma after oral administration of Calcitriol Soft Capsules at a single 
dose of 4 µg. The main pharmacokinetic parameters calculated by 
Phoenix WinNonlin (7.0) are summarized in Table 5. After oral 
administration, plasma concentrations of 25(OH)D3 were essentially 
unchanged. A statistical analysis was conducted to study the change of 
the 25(OH)D3 concentrations. Statistical analysis was conducted using 
one-way repeated measures ANOVA (using the Shapiro–Wilk test and 
Mauchly’s test of sphericity), which was performed using IBM 
SPSS®Statistics 26. There was no significant difference in 25(OH)D3 
concentration before and after an oral dose of 1α,25(OH)2D3; after 
correction, F(4.881,39.047) = 2.018, p = 0.099 > 0.05. The precision 
and accuracy for calibration and QC samples along with subject samples 
were analyzed during a period of 3 days, and the precision and accuracy Ta
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for calibration and QC samples were well within the acceptable limits. 
This study is limited by its relatively small population. Therefore further 
studies on the clinical pharmacokinetic study of 1α,25(OH)2D3 in human 
plasma as well as 25(OH)D3 based on a larger population in China are 
needed. 

4. Conclusions 

In this study, we describe a novel and validated high throughput LC- 
MS/MS method for the simultaneous separation and concentration 
determination analysis of 25(OH)D3 and 1α,25(OH)2D3, which meets 
the requirements proposed by the US Food and Drug Administration. 
The lowest detected concentrations of 25(OH)D3 and 1α,25(OH)2D3 
were 1 ng/mL and 20 pg/mL, respectively, both satisfying the clinical 
determination thresholds. The novel validated LC-MS/MS method has 
been successfully implemented in a clinical pharmacokinetic study of 
1α,25(OH)2D3 and 25(OH)D3 in human plasma after oral administration 
of Calcitriol Soft Capsules at a single dose of 4 µg. The results revealed 

that plasma concentrations of 25(OH)D3 were effectively unchanged 
after oral administration of Calcitriol Soft Capsules. 

A normal level of vitamin D is usually defined as a 25(OH)D3 con-
centration higher than 30 ng/mL (75 nmol/L) [37]. Vitamin D insuffi-
ciency and deficiency are usually defined as a 25(OH)D3 concentration 
of 20–30 ng/mL and < 20 ng/mL, respectively. In this study, all vol-
unteers showed a high incidence of vitamin D deficiency, diagnosed by 
25(OH)D3 concentrations lower than 20 ng/mL. Lyra et al. have shown 
that a low 1α,25(OH)2D3 serum concentration is associated with cancer, 
in spite of normal levels of 25(OH)D3, however, mechanisms explaining 
a lower 1α,25(OH)2D3 plasma concentration in breast cancer patients is 
currently unclear [19]. The study by Irwinda et al reports that lower 
placental 25(OH)D3 status and a higher placental CYP27B1 and 25(OH) 
D3 ratio is more likely to be found in subjects with preterm than with 
term births [21]. These studies highlight the importance of proper VD 
levels in humans, and consequently for analytical methods to measure 
VD in human plasma. Our study provides a rapid and accurate method to 
simultaneously investigate 25(OH)D3 and 1α,25(OH)2D3 levels in 

Fig. 5. Mean plasma concentration–time curves of 1α,25(OH)2D3 before and after the administration of Calcitriol Soft Capsules at a single dose of 4 µg (n = 9).  
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Fig. 6. Plasma 25(OH)D3 concentration (A) subject 1, (B) subject 2, (C) subject 3, (D) subject 4, (E) subject 5, (F) subject 6, (G) subject 7, (H) subject 8, (I) subject 9 
before and after administration of Calcitriol Soft Capsules at a single dose of 4 µg. 
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Fig. 6. (continued). 

S. Xu et al.                                                                                                                                                                                                                                       



Journal of Mass Spectrometry and Advances in the Clinical Lab 24 (2022) 65–79

77

Fig. 6. (continued). 
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clinical samples, and presents a potentially valuable analytical tech-
nique for low concentration measurement of VD. 
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