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Abstract

Background

Interstitial cystitis/bladder pain syndrome (IC) is a multifactorial syndrome of severe pelvic

and genitalia pain and compromised urinary function; a subset of IC patients present with

Hunner’s lesions or ulcers on their bladder walls (UIC). UIC is diagnosed by cystoscopy,

which may be quite painful. The objective of this study was to determine if a calculated Blad-

der Permeability Defect Risk Score (BP-RS) based on non-invasive urinary cytokines could

discriminate UIC patients from controls and IC patients without Hunner’s ulcers.

Methods

A national crowdsourcing effort targeted IC patients and age-matched controls to provide

urine samples. Urinary cytokine levels for GRO, IL-6, and IL-8 were determined using a

Luminex assay.

Results

We collected 448 urine samples from 46 states consisting of 153 IC patients (147 female, 6

male), of which 54 UIC patients (50 females, 4 male), 159 female controls, and 136 male

controls. A defined BP-RS was calculated to classify UIC, or a bladder permeability defect

etiology, with 89% validity.

Conclusions

The BP-RS Score quantifies UIC risk, indicative of a bladder permeability defect etiology in

a subset of IC patients. The Bladder Permeability Defect Risk Score is the first validated

urine biomarker assay for interstitial cystitis/bladder pain syndrome.
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Introduction

Interstitial cystitis/bladder pain syndrome (IC) is a chronic, severely debilitating disease of the

bladder characterized by urinary frequency and urgency, and severe suprapubic, external genita-

lia, and/or pelvic pain [1]. IC severely compromises sexual function, employment, and quality of

life. The estimated prevalence of IC in the U.S. is between 3–8 million women and 1–4 million

men [2–4]. Approximately 10% of IC patients present with Hunner’s lesions or ulcers (UIC),

distinct areas of inflammation on the bladder wall. UIC is usually associated with more severe

symptoms and changes in the urothelium that suggest increased bladder permeability [5].

UIC can often be diagnosed by cystoscopy with hydrodistension demonstrating the distinct

inflammatory lesions typically on the dome or lateral sidewalls of the bladder [6]. Cystoscopy

can be painful in the patient with UIC. Most often, Hunner’s ulcers are identified during a diag-

nostic hydrodistention under general or regional anesthesia. Some patients may experience

painful urination, hematuria, urinary tract infection, and rare risk of bladder wall perforation.

Identifying and treating Hunner’s lesions allows the clinician to use bladder directed therapies

such as electrocautery, resection, or injection of these lesions with steroids. In an effort to limit

invasive testing and to meaningfully classify IC patients, we sought to determine if a urine based

test could be developed to distinguish UIC from IC without Hunner’s lesions (NUIC). We

focused on urinary cytokines given our past expertise and the standardized methodology [7].

Several groups, including ours, have previously published on several urine based proteins

that are altered in IC and UIC. Many of these studies focused on IC and did not specifically

include UIC. Several investigations have focused on increased activity of anti-proliferative factor

(measured by inhibition of thymidine incorporation), increased epidermal growth factor, and

decreased heparin-binding epidermal growth factor-like growth factor (HB-EGF) in IC [8–11].

Pro-inflammatory interleukin (IL)-6 has been reported to be increased in IC patients and has

been positively associated with pain scores [8, 12–14]. IL-8 has also been reported in some stud-

ies to be increased in IC [8, 14]. Ogawa et al demonstrated differential expression of several

mRNAs in the bladder urothelium of UIC compared to controls, including CXCR3 binding

chemokine and TNFSF14 [15]. Recently, metabolite etiocholan-3α-ol-17-one sulfate (Etio-S)

has been described as a potential IC biomarker for females [16]. Others have been reviewed by

Kuo et al [17]. However, none of these possible biomarkers have been used successfully in the

clinic thus far due to 1) overlap between controls, NUIC, and UIC and 2) difficulty of imple-

menting the assay methodology [18]. Lastly, the urine samples for these studies were collected

at academic centers where they could be immediately spun down and frozen for shipment and

storage prior to analysis. This cold chain processing may not always be feasible, thus a solution

where urine samples could be collected, shipped, and stored at room temperature without prior

centrifugation would be ideal. There is currently no commercially available test for IC or UIC.

There are several innovations with this study. First, we validated a urine preservative

method that allowed storage and shipment at ambient temperature. Second, we developed a

crowdsource model in which participants collected and shipped urine samples to our labora-

tory toward joint development of an IC biomarker. Third, we used a machine learning method

and developed a validated urine biomarker score based on a multiplex urine protein assay that

provides UIC risk information independent of traditional clinical data.

Methods

Sample populations

The development of the BP-RS score used midstream urine samples that had a preservative

(Norgen Biotek) added immediately after collection. For the IP4IC study, Norgen custom
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manufactured the preservative in a dried format into the bottom of a 100 mL urine collection

cup so that the preservative would be immediately added to the urine during collection. The

amount of powdered preservative was valid for 10-100mL of urine. All the urine samples col-

lected for this study were in this range. Participants were instructed to invert the urine collec-

tion cup 10-20X until all the powdered preservative was dissolved. The urine was then shipped

and stored at ambient temperature. For the P3 study, urine samples were kept on ice after col-

lection and Norgen’s urine preservative in the liquid format (single dose ampule; Cat. No.

18124) was added to 25-50mL of urine within 30 min of collection and inverted 7X to ensure

complete mixing. Samples were then stored at room temperature. The datasets (IP4IC and P3)

used to develop and validate the final score algorithm respectively included samples from

reported a) IC patients with Hunner’s lesions (UIC), b) IC patient’s without Hunner’s lesions

(NUIC), and c) asymptomatic controls (control) subjects that were age matched. All partici-

pants were over 18 years of age. The Reporting recommendations for tumor MARKer prog-

nostic studies (REMARK) were followed [19].

IP4IC dataset

This study consisted of 448 urine samples from both IC and control participants collected

through a crowdsourcing effort in collaboration with the Interstitial Cystitis Association

(ICA). To evaluate in a more universal target population than just one geographical area and

to collect a large cohort, we conducted a study on crowdsourced control, NUIC, and UIC sam-

ples termed IP4IC. These samples were collected by individuals in their homes and not in a

clinical setting. Controls were age matched.

Study eligibility included a United States mailing address, and the ability and willingness to

provide a urine sample and return it by mail. Exclusion criteria were urinary tract infection or

any surgical prostate therapies (biopsies, microwave, needle ablation, balloon dilation, laser

procedure, cryosurgery) within the last three months, or pregnancy. IC participants reported a

physician diagnosed case for over 6 months. IC participants were also asked if a doctor had

told them they have bladder ulcers, Hunner’s ulcers, Hunner’s lesions, or Hunner’s patches.

Participants were asked to complete a short demographic survey, the Interstitial Cystitis Symp-

toms Index (ICSI) and Problem Index (ICPI), and a voiding diary. This was optional for con-

trols. Participants were excluded from the study if they did not supply a urine sample.

P3 dataset

51 midstream urine samples from IC and control participants were collected at Beaumont

Hospital in Royal Oak, Michigan. All participants provided written consent. IC participants

had a clinical history of IC. Asymptomatic controls had no history of IC, recurrent urinary

tract infection, bladder or prostate cancer, or kidney disease. Exclusion criteria were unable to

complete questionnaires or unable to provide urine specimen. Participants were asked to com-

plete a short demographic survey, the ICSI, and the ICPI.

Measurement of cytokines in urine samples

Expression of a panel of cytokines, chemokines, and growth factors was determined in urine

samples using the commercially available MILLIPLEX MAP Human Cytokine/Chemokine

Multiplex Immunoassay (Millipore) following manufacturer’s protocol and detailed in our

previous publication [7]. No processing of urine samples was required; 25µL urine sample per

well were taken from the middle part of the urine collect cup where it was free from any float-

ing particles or sediment. All samples were run in duplicate or triplicate. Proteins tested

included growth-related oncogene (GRO-α/CXCL1), IL-1 receptor antagonist (IL-1RA),
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Interleukin 6 (IL-6), Interleukin 8 (IL-8), interferon-inducible protein (IP-10/CXCL10),

Monocyte chemoattractant protein-1/ (C-C Motif Chemokine Ligand 2 (MCP-1/CCL2), Reg-

ulated on Activation, Normal T Cell Expressed and Secreted (RANTES/CCL5), Vascular endo-

thelial growth factor (VEGF), and platelet-derived growth factor (PDGF-BB) for the training

data set. For the validation set and a portion of the training set, only GRO, IL-6, IL-8, and

MCP-1 were measured. The assay range for all analytes was 3.2 to 10,000 pg/mL. The reported

assay sensitivities for GRO, IL-6, and IL-8 was 9.9, 0.9, and 0.4 pg/mL respectively. 25 µL of

undiluted urine was mixed with 25 µL of antibody conjugated microspheres (approximately

2,500 microspheres) per well and incubated at 4˚C overnight (16–18 hours) in the dark on a

plate shaker (500 rpm). An automated plate washer (Bio-plex Pro II, BioRad) was used for all

wash steps. Fluorescence intensity of microspheres specific to each proteins of interest was

measured within each sample simultaneously by an automated Bio-Plex1 Luminex1 200 IS

System immunoassay analyzer. The median fluorescent intensity was calculated and compari-

son to a standard curve using a 5-parameter logistic regression to calculate the concentrations

of the samples. Controls and IC samples were analyzed on the same plate. Protein concentra-

tions used were the average of technical duplicates. Each plate was run with a standard curve

and two quality controls to qualify assay performance.

IC prediction

Random Forest classification, a supervised machine learning method, was used to predict

whether patients had Hunner’s lesions or ulcers (UIC). The method selects random subsets of

data in a training set (IP4IC dataset), weighted appropriately according to the frequency of the

different patient groups in this case, and builds decision trees. The decision trees are built by

splitting the data in a way to minimize the gini impurity, a measure of classification accuracy.

The classifier is trained with the levels of the three biomarkers, GRO, IL-6, and IL-8, and is

labeled with the group to which a patient belongs (1 for UIC, and 0 for controls/NUIC). The

biomarker training data are given as concentrations and are not normalized, since this gener-

ally degrades the performance of a random forest algorithm.

Performance and accuracy of machine learning methods is typically assessed with cross-val-

idation. The Random Forest method, however, has an internal validation measure, called the

out-of-bag (OOB) score. This score is continually calculated when building the trained classi-

fier and updated by testing each decision tree on the data that was not included in the random

subset used to build the tree. A higher OOB score corresponds to increased prediction

accuracy.

Random Forests are parameterized, and a script was written to test combinations of reason-

able parameters. A variety of parameters and ranges of values that were tested (Table 1). The

Cartesian product (i.e. all combinations) of each value in all ranges of input variables were

tested to train the classifier. Optimal results were determined (Table 2). The Python 3.6 lan-

guage and Scikit-Learn v0.18 machine learning package were used to build the classifier.

There were 16,000 total combinations tested in this optimization, with each classifier train-

ing taking about 5–15 seconds on an Intel Core i3-540 (3.06 GHz, dual core) processor. Fur-

ther information about these parameters can be found in Pedregosa et al [20].

Validation of the BP-RS score

The BP-RS score algorithm was validated in an independently conducted study, termed the P3

study. P3, another dataset collected in a similar manner to IP4IC but in the clinic, was used for

external validation of the optimal trained classifier. This was used to assess if the accuracy of

the classifier was reasonably close to the OOB score that was calculated. To test the classifier,
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the P3 training set was read into a program blinded, and the protein values were fed into the

trained classifier. The protein data is run through the decision trees, and the average of the

classes of all the decision trees is used to classify the patient. For example, if there are 15 of 22

total trees that classify the patient as having UIC, there is a 15 / 22 = 0.68 probability that the

patient has UIC based on the constructed decision trees. Whenever this average probability is

> = 0.5, the patient is predicted to have (i.e. is assigned the class of) 1 (UIC), otherwise it is

assigned 0 (control or NUIC).

Patients were excluded from both the training and validation sets if protein data was incom-

plete (e.g. analyte detection was out-of-range). During collection of the IP4IC and P3 datasets,

some values for protein levels were marked as being outside detection limits; patients missing

data for even one of the protein analytes were excluded. Not all controls completed the ques-

tionnaires. As such, analysis of control questionnaires was based on the available data.

Table 1. Parameter ranges for optimization of classifier.

Parameter Description Range

n_estimators Number of decision trees in forest. [10, 100], step = 1

criterion Criteria by which to make a decision to split a tree node. [‘gini’, ‘entropy’]

max_features Number of features to consider when splitting data. [1, 2, 3,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n features
p

]

max_depth Maximum depth of tree. [None] (no limit imposed on tree depth)

min_samples_split Minimum number of samples required to split an internal node. [2]

min_samples_leaf Minimum number of samples required to be at a leaf node. [1,30], step = 1

min_weight_fraction_leaf Minimum weighted fraction of the sum total of weights required to be at a

leaf node.

[0]

max_leaf_nodes Limits total number of leaf nodes. [None] (no limit placed on total number of nodes)

bootstrap Whether bootstrap samples are used when building trees. [True]

oob_score Whether OOB score is calculated when building trees. [True]

n_jobs Number of parallel jobs to run. [–1] (uses all available processors/cores)

random_state Seed value for random number generator. By default no random seed is set. [42] (arbitrarily chosen so trees can be rebuilt if

needed)

class_weight Weights associated with each class (ulcerative IC = 1 or no IC/nonulcerative

IC = 0) of data.

[‘balanced_subsample’] &

splits of 0 = X%, 1 = Y% for

(X in 10 -> 90, step = 10 and

Y in 90 -> 10, step = 10)

https://doi.org/10.1371/journal.pone.0185686.t001

Table 2. Optimal parameters that resulted in highest OOB score for training set.

Parameter Value

n_estimators 22

criterion ‘gini’

max_features
ffiffiffi
3
p

max_depth None

min_samples_split 2

min_samples_leaf 3

min_weight_fraction_leaf 0

max_leaf_nodes None

bootstrap True

oob_score True

n_jobs -1

random_state 42

class_weight ‘balanced_subsample’

https://doi.org/10.1371/journal.pone.0185686.t002
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Statistics

Cytokines were initially analyzed independently for statistically significant differences between

UIC compared to NUIC and controls using Prism 6 software (GraphPad). This was done

using Kruskal-Wallis non-parametric ANOVA. Two-tailed unpaired Mann-Whitney test was

used for comparison of 2 groups. Results are expressed as mean ± SEM, and differences were

considered significant at p< 0.05. ROC curve analysis was performed to evaluate the perfor-

mance of the BP-RS in discriminating between UIC, NUIC, and control groups. ROC analysis

plots sensitivity (true-positive rates) versus 1-specifity (false-positive rates). These curves were

calculated separately for each dataset with the sklearn.metrics.roc_curve function from scikit-

learn. The AUC is a measure of the discrimination power of the BP-RS. The AUCs for both

data sets were calculated with the sklearn.metrics.roc_auc_score function.

Study approval

All studies had approval from Beaumont Health System’s Institutional Review Board (IRB).

For the IP4IC study (IRB approval #2015–323), an information sheet outlining the rights of

the participant as it relates to the research and what study participation entails was provided to

participants; full consent was provided by completing an online or mailed survey and submis-

sion of the urine specimen. The online survey for IC participants included two questions to

confirm voluntary participation and desire to enroll in study before proceeding with the rest of

the survey. Control participants were recruited by the IC participants and urine samples and

surveys were filled out anonymously; no names or addresses were collected from controls at

any point. For the P3 study (IRB approval #2014–281), written consent was obtained from all

participants prior to inclusion in the study.

Results

Characteristics of study participants

There were 454 total patients in the final IP4IC training dataset. The samples were sent by

express mail at ambient temperature from 46 states in the US. Four samples were received

after data acquisition had been completed and not included in the training set; only patients

with urine samples were included in the study. Two samples during data acquisition had ana-

lyte measurements that were larger than the upper detection limit and were excluded (Fig 1).

Of the remaining 448 patients, 54 patients had IC with Hunner’s lesions and 394 had either no

IC or IC without Hunner’s lesions. IC patients are primarily women and this was reflected in

our study population (147 women out of 153 IC patients, or 96.1%). As expected, IC patients

reported a higher mean interstitial cystitis symptom index (ICSI) of 14.8 ± 0.6 for UIC partici-

pants and 11.5 ± 0.5 for NUIC participants, compared to asymptomatic controls at 3.0 ± 0.2

(Table 3). IC participants also reported higher interstitial cystitis problem index of 12.2 ± 0.5

for UIC and 9.8 ± 0.4 for NUIC compared to controls at 1.5 ± 0.1.

Urinary cytokines GRO, IL-6, and IL-8 are elevated in UIC patients

compared to controls and NUIC patients

The first step in developing the BP-RS was to determine the urinary expression levels of a

panel of cytokines (Fig 2). Ideally, we wanted to develop a test that could discriminate UIC

from both healthy asymptomatic controls and NUIC patients. Urinary GRO/CXCL-1 and IL-8

were significantly increased 1.63 fold and 2.41 fold respectively in UIC participants compared

to the control and NUIC group (Fig 2A–2D). IL-6 was also elevated, but was not significant.
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We then compared controls to NUIC to UIC for urinary cytokine expression, in which there

was a significant difference across groups for GRO, IL-6, and IL-8 (Fig 2A and 2E–2G).

Development of BP-RS score

Although UIC urine samples had higher expression of GRO, IL-6, and IL-8, there was overlap

in expression across controls, NUIC, and UIC (Fig 2). Measurement on any of these cytokines

alone was insufficient to classify a patient into any of these groups. We therefore sought to

develop a supervised machine learning method using Random Forest Classification (RFC) for

predicting if a person had UIC based on information from urinary expression of more than

one cytokine. RFC has been demonstrated to be a superior classifier to distinguish disease

from non-disease biological samples in previous studies, which extensively compared RFC to

other approaches including k-nearest-neighbor approach (KNN), linear discrimination analy-

sis (LDA), small vector machine (SVM), and others methods [21–23]. RFC utilizes random

sampling and ensemble strategies that have several advantages including good predictive or

Fig 1. Consolidated standards of reporting trials flow diagram for study numbers. UIC = IC with Hunner’s lesions; NUIC = IC without

Hunner’s lesions.

https://doi.org/10.1371/journal.pone.0185686.g001
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classifying accuracy, ability to analyze a mixture of variable types (continuous, binary, and cat-

egorical), does not require fine-tuning of parameters or pre-selection of variables to eliminate

noise, RFC measures variable importance, it does not overfit data, it can handle complex data

structures, and lastly RFC produces smaller biomarker sets compared to other machine learn-

ing methods [21–23]. RFC Classifiers were built and tested using either one (e.g. GRO, IL-6, or

IL-8 alone) or combinations of two of these biomarkers (e.g. GRO + IL-6, GRO + IL-8, IL-6 +

IL-8) using the same parameters, and performance was worse than random guessing (OOB<

50%). The same optimization procedure in Table 1 was also applied to each of these sets indi-

vidually, which resulted in OOB scores between 40–60%. However, only the combination of

all three biomarkers (GRO + IL-6 + IL-8) led to reasonable prediction capabilities (OOB =

81.5%). The final classifier with optimized parameters was termed the Bladder Permeability

Defect Risk Score, or BP-RS (Fig 3).

Using the random forest classifier method, the relative importance of each cytokine used to

make a classification is evident from the composition of the decision trees. IL-8 contributed

most significantly toward the predictions (48%), followed by GRO (33%) and IL-6 (19%),

which made smaller, but still significant contributions.

Validation of BP-RS score

Internal validation, by an out-of-bag (OOB) score, was used to measure the prediction error of

the BP-RS. A higher OOB score corresponds to increased prediction accuracy. The highest

OOB score for the trained classifier with optimal parameters was found to be 81.5%. To further

assess the accuracy of the BP-RS in predicting UIC, we performed receiver operating charac-

teristic (ROC) analysis (Fig 4). The area under the curve (AUC) for the IP4IC dataset = 0.971

and P3 dataset = 0.919. Since the IP4IC data was used to train the classifier model, the high

AUC value and curve shape here is expected. The ROC generated from the P3 validation set

has a lower, but still high AUC, indicating that there may be reasonable diagnostic utility of

the trained classifier (Fig 4). Furthermore, the AUC value for the P3 validation set had poor

performance when only one or two biomarkers were used (S1 Table). A combination of all

three biomarkers was required for a high AUC for the P3 validation set. The external valida-

tion set, P3 (n = 53), consisted of 8 UIC patients and 45 patients that were either NUIC or

Table 3. Participant demographics.

Metric IP4IC P3

UIC NUIC Controls UIC NUIC Controls

(n = 54) (n = 99) (n = 295) (n = 8) (n = 17) (n = 26)

Age (years) 54.4 ±1.7 50.8±0.3 50.5±0.8 61.1±5.1 62.9±3.3 56.6±3.6

Duration of symptoms (mos) 185±13.7 120.1±9.2 n/a 167.4±33.2 236.2±42.2 n/a

IC symptom index (0–20) 14.8±0.6 11.5±0.5 3.0±0.2 14.9±1.3 12.7±0.6 2.0±0.4

IC problem index (0–16) 12.2±0.5 9.8±0.4 1.5±0.1 12.9±1.2 11.5±0.5 1.5±0.9

# AM voids 8.4±0.9 5.5±3.9 2.8±1.3 No voiding diary collected

# PM voids 10.2±1.3 7.3±4.8 3.8±1.9

Total /24 h 18.6±2.1 12.8±8.3 6.7±2.8

Leakage # 1.8±0.9 0.9±2.8 0.0±0.6

Pain # 9.4±2.4 3.9±7.6 0.0±0.3

Avg. AM Pain 5.1±0.4 3.7±2.9 0.1±0.5

Avg. PM Pain 5.5±0.4 4.0±2.9 0.1±0.7

Avg. AM Urgency 6.7±0.4 4.3±3.0 1.4±20.5

Avg. PM Urgency 6.7±0.4 4.3±3.0 1.1±1.8

https://doi.org/10.1371/journal.pone.0185686.t003
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Fig 2. Urinary cytokine levels by group. A) Mean and SEM values for urine cytokines GRO, IL-6, and IL-8.

B-G) Urinary levels of cytokines GRO, IL-6, and IL-8 in groups Control and NUIC compared to UIC (B-D) or

control compared to NUIC compared to UIC (E-F). Error bars are SEM. Statistical differences were determined

using Mann-Whitney test (B-G) or Kruskal-Wallis ANOVA (E-G). * indicates p<0.05, ** indicates p<0.01, ***
indicates p<0.001, **** indicates p<0.0001.

https://doi.org/10.1371/journal.pone.0185686.g002
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controls. 75% (6/8) of the UIC patients were correctly predicted to have UIC (S2 Table). 91.1%

(41/45) of patients with NUIC or controls were correctly predicted, which resulted in 4 pa-

tients with false-positive predictions for UIC. Upon referencing these patients with the dataset,

it was found that two of these patients had NUIC and two were controls. The IP4IC training

set and P3 validation set had a false positive rate of 2.15% and 4.65% respectively, a negative

predictive value of 96.0% and 93.2% respectively, and a positive predictive value of 84.9% and

75.0% respectively (S2 Table). A reasonable false positive rate, negative predictive value, and

positive predictive value were only obtained for the P3 validation set when all three biomarkers

were used (S2 Table). Overall, 88.7% of the entire validation set was correctly predicted. This

result can be expected to converge to the OOB score if more validation test samples were pres-

ent, and it may be possible to increase the OOB score with an expanded training set or an

expanded parameter search.

Fig 3. Average BP-RS probabilities in IP4IC training set and of P3 validation set. The BP-RS is a score that gives the probability

that a patient has UIC. Each of the validation data points were fed into the trained Random Forest Classifier (RFC), and the BP-RS

(probability of UIC) was calculated and plotted for each patient. The bars on the boxes describe the minimum and maximum points, and

the horizontal lines of the box show the 25%, 50% (median), and 75% quartiles. Points outside of the bars are outliers. The individual

probabilities are also plotted (black points). Because we used a binary classifier, all of the points above 0.5 (dotted line) are predicted to

have UIC, and all points below are classified as control or NUIC. In the validation set, two patients from each of the control and NUIC

groups were incorrectly classified as having UIC, and two points from the UIC group were incorrectly classified as not having UIC.

https://doi.org/10.1371/journal.pone.0185686.g003
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Discussion

We hereby demonstrate that applying a machine learning classification model of a combina-

tion of three urinary cytokines we can develop a novel score, the BP-RS, which can distinguish

IC with Hunner’s lesions from IC without Hunner’s lesions or controls. It has been proposed

previously that IC with or without Hunner’s lesions may have distinct pathophysiologies [17],

and that IC with Hunner’s lesions may have a more bladder-centric involvement whereas IC

without Hunner’s lesions may be more systemic. Patients with NUIC can have other comorbid

pain syndromes, such as pelvic floor dysfunction, and respond better to systemic therapy. In

contrast, UIC respond to more localized therapy focused on the bladder with urothelial perme-

ability defect. As such, UIC and NUIC may have different disease etiologies and therefore dif-

ferential biomarkers may be feasible.

We developed a process by which patients can collect urine in their own homes and then

ship the samples to a collection facility/laboratory to be stored at ambient temperature until

analyzed at a later date. Urinary cytokines are measured by Luminex xMAP technology, and a

Random Forest Classification model is applied to the raw data, which provides an IC with

Hunner’s lesions prediction score for each patient. We believe this is the first evidence that

preserved urine stored and shipped at ambient temperature can be successfully used to predict

UIC from both controls and NUIC. This is through the unique use of a classification model

that utilizes a combination of three cytokines, IL-6, IL-8, and CXCL-1/GRO.

Most biomarker testing using urine samples has focused on using frozen urine samples.

Typically this requires urine samples to be placed on ice or refrigerated immediately after col-

lection, spun down in a refrigerated centrifuge to remove cellular debris, then stored at -80˚C

Fig 4. Receiver operating characteristic (ROC) curves. ROC curves for the IP4IC (training set) and P3 (validation set)

using the BP-RS. The AUC for the IP4IC dataset = 0.971 and P3 dataset = 0.919.

https://doi.org/10.1371/journal.pone.0185686.g004
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until use. The thawed sample may be spun down again before data acquisition. This can be

challenging in that the samples must remain cold at all times, and maintaining this cold chain

may not be possible or feasible in all settings. Also, the stability of proteins can be affected by

freeze-thaw cycles or processing delay [24, 25]. The use of a urine preservative circumvents the

need for a cold chain from sample collection to analysis in addition to inhibiting bacteria and

fungi growth, allowing samples to be shipped at ambient temperatures.

We used Random Forest Classification to develop the BP-RS score. RFC provides predic-

tion accuracy and model interpretability without a need to fine-tune parameters, as may be

required by other machine learning methods. RFC is an increasingly popular approach to deal

with complex biological data, including classification of samples based on genetic or proteomic

expression [21]. The BP-RS required all three proteins (GRO, IL-6, and IL-8) to properly clas-

sify a patient’s risk for UIC; using one protein or two proteins in combination was insufficient.

The validation set (P3) has the best performance when all three biomarkers are used for the

area under the curve, false positive rate, negative predictive value, and positive predictive

value. The model presented here was trained on the IP4IC dataset, but an advantage of using

RFC is that it can be regenerated and improved when data is obtained from new patients out-

side the dataset. Additional training data generally results in better prediction accuracy, and

will likely change the optimal parameters of the RFC.

Our model demonstrates that differences in UIC compared to NUIC and controls are

reflective of urinary expression of GRO, IL-6, and IL-8. This may represent a distinct bladder

permeability defect etiology in UIC bladders. IL-8 contributed most significantly toward the

predictions (48%), followed by GRO (33%) and IL-6 (19%). Interestingly, IL-8 and GRO are

both similar in protein structure and can be potent chemoattractants for neutrophils and baso-

phils and promoters of angiogenesis, with IL-8 being the stronger chemoattractant of the two

[26]. Both infiltration of mononuclear cells and angiogenesis are strongly associated with Hun-

ner’s lesions in IC [27, 28]. Although several groups have investigated the expression of IL-8 in

IC [8, 14], GRO has been less studied. IL-6 also is a pro-inflammatory cytokine and has been

previously reported to be elevated in IC [8, 12–14]. It has also been reported to be increased in

other urological disease, such as bacterial cystitis and bladder cancer [29–31]. It had the lowest

expression in UIC of the three cytokines, and contributed the least to the BP-RS. IL-6 expres-

sion may be reflective of general inflammation.

To collect samples that would represent the spectrum of IC disease across the country, we

developed a crowdsource biomarker development model in which participants from 46 states

in the US collected and shipped urine samples to our laboratory at ambient temperature via

express mail. As the urine samples were collected at home and not in a clinical setting, this

introduced some risk of non-standardized sample collection and handling. We took several

steps to minimize possible errors. This included both written instructions contained in the col-

lection kit, as well as online written and video tutorials on how to collect and ship samples

(https://www.youtube.com/watch?v=GL9T7ISyImk). Participants were also provided an email

address and phone number they could use if they had any questions. Lastly, the urine preserva-

tive was manufactured as a powder located on the inside of the collection cup, so there were

no variations in the time between urine collection and addition of preservative. Overall, this

demonstrates patient compliance and downstream testing feasibility in collecting urine sam-

ples at home and shipping back for laboratory testing.

In this study, the majority of the IC patients were female (146/153; 95.4%) which is similar

to what is found clinically. However 45.9% of our control participants were male (130/283).

This did not influence the results as female and male control participants had similar BP-RS

value and distribution.

Interstitial cystitis urine biomarker score

PLOS ONE | https://doi.org/10.1371/journal.pone.0185686 October 31, 2017 12 / 15

https://www.youtube.com/watch?v=GL9T7ISyImk
https://doi.org/10.1371/journal.pone.0185686


One limitation of the study is that UIC and NUIC classifications were self-reported by the

patient for the IP4IC data set and we were not able to confirm these designations in a clinical

setting. Therefore it is possible that some patients may be misclassified according to current

National Institute for Diabetes and Digestive and Kidney Diseases criteria [32]. However, self-

reported patient disease designations have been shown to be sensitive and are commonly used

in disease surveillance [33]. However, the P3 data set was able to be clinically confirmed. Our

study was limited to one urine collection and to participants with a United States address.

Future studies will follow BP-RS scores and symptoms in individuals over time, investigate if

treatments impact the BP-RS in UIC patients, and determine if the BP-RS correlates with ICSI

or ICPI scores. We may also investigate other urological diseases, such as bladder and prostate

cancer, to determine the specificity of BP-RS.

In conclusion, this study demonstrates that BP-RS can classify UIC probability based on

urinary cytokines using preserved urine samples collected, shipped, and stored at ambient

temperature. We achieve diversity in sample source collection from across the US and engaged

the national IC community through a novel crowdsourcing process toward joint disease bio-

marker development. The BP-RS Score provides a new clinical and research tool to phenotype

IC patients without need for hydrodistention and cystoscopy, or a cold-chain from urine sam-

ple collection to data acquisition. It also demonstrates the utility of multiplex assays and ran-

dom forest classification for development of novel and unique scores to classify patients with

complex and overlapping urinary proteomic expression. The Bladder Permeability Defect

Risk Score is the first validated urine biomarker assay for interstitial cystitis/bladder pain

syndrome.
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