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Simple Summary: The solanum whitefly, Aleurothrixus trachoides, is a polyphagous pest known to
attack > 70 crops worldwide. Endemic to the Neotropical region, in the past few years, it has emerged
as a significant pest of several horticultural crops including pepper in the United States. To develop
an eco-friendly sustainable management strategy for this pest, in this study, we evaluated the efficacy
and compatibility of two commercially available biological control agents, predatory beetle Delphastus
catalinae (Dc) and entomopathogenic fungi Cordyceps fumosorosea (Cfr) under laboratory conditions.
Results showed both Cfr, treatments (alone or in combination with Dc) were efficacious, and Cfr did
not negatively impact the beetle longevity. This study’s outcome is important not only for organic
horticultural growers, but also for conventional growers as it offers a low-risk alternative tool for
solanum whitefly integrated pest management in Florida and other affected regions.

Abstract: Aleurothrixus (formerly known as Aleurotrachelus) trachoides Back (Hemiptera: Aleyrodidae),
commonly known as pepper or solanum whitefly, is a new emerging whitefly pest of several
horticultural crops in the United States. During the preliminary survey for pepper whitefly infestation
in Florida, a whitefly-specific predatory beetle Delphastus catalinae Horn (Coleoptera: Coccinellidae)
was observed associated with this pest in the natural ecosystem. The current study was undertaken
to determine the efficacy of this naturally occurring predator, D. catalinae, and an entomopathogenic
fungus, Cordyceps (formerly known as Isaria) fumosorosea (Cfr) (Wize) (Hypocreales: Cordycipitaceae),
alone or in combination, under controlled laboratory conditions. Whitefly mortality for Cfr (88%),
beetle (100%) and Cfr + beetle (100%) treatments were similar and significantly higher compared
to control. In the combination treatment, Cfr did not impact D. catalinae longevity and daily food
intake, indicating a neutral interaction between the two treatments. Results showed that both of these
natural biological control agents could potentially offer an effective alternative in the battle against
invasive whiteflies such as pepper whitefly in U.S. horticulture production, either as a stand-alone
strategy or in an integrated approach. Although these findings are promising, compatibility of the
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two treatments needs to be evaluated further under greenhouse and semi-field conditions before
recommending to commercial growers.

Keywords: biological control; ladybird beetle; insect-pathogenic fungus; multi-trophic interactions;
ornamental pepper; Isaria fumosorosea

1. Introduction

Solanum or pepper whitefly, Aleurothrixus trachoides Back (Hemiptera: Aleyrodidae), is an
emerging pest of Neotropical origin that has continued to spread and cause damage in some areas
of Florida [1]. This whitefly has been in the United States for several decades as an occasional pest
of pepper but was never a major economic concern [1]. Detection records from 1985 to 2015 showed
that A. trachoides had been reported in 16 counties, with 45% of the records belonging to Miami-Dade
County [2]. It has also been confirmed in California, Hawaii, Louisiana, Texas, parts of Africa, and the
Pacific, and recently, in Karnataka, India [3]. Aleurothrixus trachoides is a polyphagous pest, known to
feed on > 70 different crops, with a preference for Solanaceae and Convolvulaceae [3]. List of preferred
hosts include Apium graveolens L. (celery), Capsicum annuum L. (sweet pepper), Capsicum frutescens L.
(chilli pepper), Ipomoea batatas (L.) Lam. (sweet potato), Nicotiana tabacum L. (tobacco), Persea americana
Mill. (avocado), Rosa sp. (rose), Solanum lycopersicum L. (tomato), and Solanum melongena L. (eggplant).
Most of the host records in Florida are from pepper, sweet potato, Cocos nucifera (coconut palm),
and Solanum lycopersicum L. (tomato) [2]. Besides, Duranta erecta L. (pigeon berry), which is commonly
grown as a hedge in the Florida landscape, is severely affected by this pest [1]. Whitefly feeding damage
is inflicted by removal of plant sap, increasing overall stress to the affected plant, with a subsequent
buildup of wax, honeydew, and sooty mold on the plant foliage. Losses from heavy infestations may
lead to stunted growth, lower fruit yield [3], and in some extreme cases, plant death. In addition,
recently Chandrashekar et al. [4] discovered that this whitefly can transmit a begomovirus, Durant leaf
curl virus, from Durant spp. to potato, tomato, and pepper plants which will have a great impact on
solanaceous vegetable cultivation worldwide.

Sparse biological information is available to develop effective management practices for
A. trachoides because it is a relatively recent pest of economic relevance in Florida. However,
the integration of fungal entomopathogens into existing pest control practices might provide an
environmentally friendly alternative to traditional approaches. Past studies have shown that fungal
entomopathogens are critical regulatory factors in managing arthropod pest populations [5–7]. These
biological control agents are also safe for non-target organisms and are compatible with other natural
enemies such as predators and parasitoids [8–10]. Among these fungal entomopathogens, Cordyceps
(=Isaria) fumosorosea (Wize) Kepler, B. Shrestha & Spatafora (Hypocreales: Cordycipitaceae) is regularly
used in greenhouse and nursery production systems where it has proven to be efficacious against
various insect pests and can tolerate climatic conditions in the southern United States [11]. This
entomopathogenic fungus, is available as a commercial product (Ancora® = PFR-97® 20% WDG) for
control of some arthropod pests [12].

Based on the Universal Chalcidoidea Database (Natural History Museum, London, UK), Encarsia
brasiliensis Hempel, Encarsia cubensis Gahan, Encarsia formosa Gahan, Encarsia nigricephala Dozier, Encarsia
pergandiella Howard, Encarsia tabacivora Viggiani, and Eretmocerus gracilis Rose have been observed to
parasitize this species; however, their use as effective biocontrol agents of Aleurotrachelus trachoides is still
a subject of investigation [1]. During the recent surveys for A. trachoides infestations in Florida, we found
two predatory beetles belonging to the genus Delphastus Casey (Coleoptera: Coccinellidae) associated
with this pest in the urban landscape. Beetles of this genus are minute in size and are whitefly-specific
predators. Three beetle species of this genus, Delphastus catalinae (Horn), D. pallidus LeConte,
and D. pussilus LeConte are considered native to the Americas and have a wide distribution in the
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Florida landscape [13–18]. Among these beetle species, D. catalinae has received considerable attention
in the past decade as a potential biocontrol agent of multiple whitefly species, including Trialeurodes
vaporariorum Westwood, Trialeurodes abutiloneus Haldeman, A. floccosus Maskell, and Dialeurodes spp.
as well as Bemisia tabaci [17,19–21]. Furthermore, Hoelmer and Pickett [16] suggested that due to the
uncertainly on the taxonomic status of the of Delphastus spp. in the commercial insectary, most of the
previous interaction studies between B. tabaci and Delphastus pusillus likely was D. catalinae. However,
there is a lack of information on the feeding behavior of D. catalinae on A. trachoides.

The main objectives of this study were to evaluate the efficacy and compatibility of the
entomopathogenic fungus, C. fumosorosea with the lady beetle, D. catalinae alone and in combination
for suppressing infestations of A. trachoides on ornamental pepper plants. The sub-objectives of
these studies were (1) to determine laboratory and potential greenhouse efficacy and compatibility
of C. fumosorosea alone and in combination with the predatory beetle for population suppression of
the pepper whitefly and (2) to assess the potential negative non-target effect of the entomopathogenic
fungus on the predatory beetle egg consumption rate and survival.

2. Materials and Methods

2.1. Plants

The Red Missile plant cultivar of Capsicum annuum (L.) ornamental pepper (OP) were grown at
the ARS Horticultural Laboratory Research Laboratory greenhouse in Fort Pierce, FL as described
in Avery et al. [22]. Potted plants (75 days after planting) were transported to the Hayslip Biological
Control and Containment Laboratory at the University of Florida, in Fort Pierce, FL to be used in
the experiments.

2.2. Insects

The pepper whitefly colony was established using the following technique: OP Red Missile potted
plant with 8–10 healthy similar-sized leaves was placed inside a Dacron chiffon (24 × 24 × 24 inches;
60.9 × 60.9 × 60.9 cm) collapsible cage (BioQuip Products, Rancho Dominguez, CA, USA) containing a
pepper plant heavily infested with whitefly adults for 48 h to allow the whitefly to oviposit on the OP
leaves. After this duration, the OP plant was removed from the cage and the remaining adult whiteflies
found on the leaves were also removed. Some OP leaves containing eggs were used immediately
in the egg consumption experiments. The other OP plants needed for experiments involving the
consumption of whitefly 1st instars were placed in cages in the greenhouse for an additional 6 days.
Predatory adult beetles of D. catalinae were purchased as Delphibug™ (Koppert Biological Systems,
Howell, MI, USA) and used directly as obtained in the dispenser container. Adult beetles’ sexes were
unknown, but ages were similar. Beetles prior to any experiment, were starved for 24 h and allowed to
feed only on a moistened water wick.

2.3. Fungus

The commercially-available formulated fungal biopesticide, PFR-97 20% WDG
(wettable dispersible granule) containing C. fumosorosea (Cfr) blastospores was prepared as
follows: To produce the label rate of 106 blastospores mL−1, 0.1 g of the PFR-97 powder was added to a
150 mL glass beaker with 100 mL of sterile distilled water, covered with aluminum foil and mixed
for 30 min using a magnetic stirring bar. After this duration, the Cfr suspension was allowed an
additional 30 min for the inert material to precipitate out of the suspension, leaving the blastospores
suspended in the supernatant. Spore suspension of 106 blastospores mL−1 in the supernatant
was confirmed using an INCYTO C-Chip™ Improved Neubauer hemocytometer (INCYTO Co.,
Ltd., Chungcheongnam-do, Korea) viewed under a Leica DM500 compound light microscope
(Leica Microsystems Inc., Buffalo Grove, IL, USA) at 400×. Percentage viability of the fungal product
was determined by dividing the number of colony-forming units formed on the potato dextrose
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agar plates with that expected based on the label, times 100 [23]. The viability of the blastospore
formulation was 100% at the time of testing.

2.4. Spray Protocol and Deposition of Blastospores

The spray platform consisted of an orange plastic cafeteria food tray (US Plastic Corporation®,
Lima, OH, USA) with the bottom lined with brown paper towels. Detached leaves or leaf sections cut
out of the leaf of ornamental pepper plants containing whitefly eggs were placed on top of the paper
toweling. In addition, plastic coverslips were randomly dispersed among the leaves or leaf sections
on the spray platform to determine the deposition of blastospores mm−2 area. Separate platforms
containing the leaves or leaf sections were placed inside a spray chamber and then sprayed with either
water only or with the PFR-97 suspension using a Nalgene® aerosol hand pump sprayer (Nalge Nunc
International, Rochester, NY, USA). Leaves or leaf sections were sprayed to the point of runoff and then
allowed to air dry before being placed in the bioassay arenas. Mean spore deposition, determined using
a similar protocol to that of Avery et al. [24] was 157 ± 35.8 blastospores mm−2 for all the experiments.

2.5. Laboratory Protocol for Determining Efficacy of Treatments on the Mortality of Whitefly Populations

Predatory adult beetles were used in replicate experiments directly as obtained in the dispenser
container. Laboratory bioassay arenas for these studies consisted of a Petri™ dish (55 mm diameter)
with screen placed over a hole created in the top cover which provided ventilation. Each dish contained
a moistened filter paper (55 mm) placed in the bottom of the dish and a Red Missile OP leaf or leaf
section containing pepper whitefly 1st instars was placed on top of the filter paper to be exposed to the
beetle. Treatments consisted of a detached leaf totaling 50 whitefly 1st instars (10 per dish): (1) sprayed
with water only and allowed to air dry; (2) sprayed with water and allowed to air dry, and then a
single beetle starved for 24 h was released in the arena; (3) sprayed with the Cfr fungal product PFR-97
at a rate of 106 blastospores mL−1 to the point of runoff and allowed to air dry; and (4) sprayed with the
Cfr fungal product PFR-97 at a rate of 106 blastospores mL−1 to the point of runoff and allowed to air
dry, then a single beetle starved for 24 h was released in the arena (Figure 1). Dishes with un-vented
top covers were sealed with Parafilm™ (Bemis Co., Neenah, WI, USA) for 24 h to allow the fungus
time to germinate and potentially infect the whitefly eggs and 1st instars.
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After this time, vented top covers were placed on top of the dish bottoms and the bioassay arenas
were randomized with each treatment in a row on a single tray; there were 5 rows per tray. Trays
were transferred to a growth chamber set at 25 ◦C with approximately 55 ± 4.2% RH under a 14:10 h
photoperiod. After each daily assessment, filter papers were moistened daily as needed to maintain
a constant relative humidity inside the arenas, sealed with Parafilm and returned to the growth
chamber as above. Nymphs were assessed daily using a Leica EZ4 HD binocular dissecting scope
(Leica MicroSystems, Buffalo Grove, IL, USA), at 40× until all 1st instars were consumed and/or molted
over a 7-day period. There were 5 replicate arenas per treatment and the experiment was conducted
twice for a total of 10 replicate arenas per treatment. Dead beetles were removed from the arenas
daily, surface sterilized, placed in a moistened filter paper chamber, sealed with Parafilm, and then
transferred to the growth chamber. This protocol allowed the fungus to mycose on the beetle and
verify if death was primarily due to Cfr infection. All the nymphs in the combination treatment #4 were
consumed by the beetles; therefore, the assessment for mycosis due to Cfr infection was not necessary.

2.6. Longevity of Adult Beetles after Exposure to Entomopathogenic Fungus

The longevity of beetles in treatment 2 (described above) was compared with those in treatment 4
(described above) to assess the potential infection and negative non-target effect of the entomopathogenic
fungus; however, in this study beetles consumed whitefly eggs. Live beetles in treatments were
removed after their consumption period (24 h) of 50 treated or untreated eggs. After this duration,
the beetles were placed in a new arena and given fresh untreated whitefly eggs every 3 days for 21 days
or until death. Eggs were viewed and counted using a Leica EZ4 HD binocular dissecting scope
(Leica MicroSystems, Buffalo Grove, IL, USA) at 40×. Dead beetles were removed from the arenas
daily, surface sterilized, placed in a moistened filter paper chamber, sealed with Parafilm, and then
transferred to the growth chamber under the same conditions as described above. This protocol
allowed the fungus to mycose on the insect and verify if death was primarily due to Cfr infection.
There were 5 replicate arenas per treatment and the experiment was conducted two times for a total of
10 replicate arenas per treatment.

2.7. Statistical Analysis

To determine if percent mortality of beetles was significantly different among treatments in the
laboratory bioassay study, data were analyzed using generalized linear model with the SAS® procedure
GLIMMIX, with the model distribution statement specified as binomial. Differences among treatment
means were separated using Fisher’s LSD test (α = 0.05). The number of whitefly eggs, 1st instar
nymphs consumed, and daily consumption rate of the adult beetles were compared using a Student’s
t-test (p < 0.05). Untransformed data were presented in the graphs. Survival times of adult beetles were
compared for significant differences between treatments using the Kaplan—Meier survival analysis
(p < 0.05) followed by a log-rank test (SAS JMP Pro 13 for Windows). The Student’s t-test statistical
analysis was conducted using the PROC TTEST program. All statistical analyses except survival of the
beetle were conducted using SAS 9.4 for WINDOWS 2012 (SAS Institute, Inc., Cary, NC, USA).

3. Results

3.1. Efficacy of Treatments on the Mortality of Whitefly Populations

Data for both trials were combined and analyzed together after it was determined that trial x
treatment interaction was not significant (F = 0.30; df = 3, 24; p = 0.8216). Mortality ± SEM of the
whitefly nymphs for Cfr (88%), beetle (100%) and Cfr + beetle (100%) treatments were similar and
significantly higher (F = 3.57; df = 3, 36; p = 0.0233) compared to control (4%) (Figure 2).
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Figure 2. Mean mortality (±SEM) of Aleurothrixus trachoides nymphs after Red Missile ornamental
pepper plant leaves were sprayed with: water only (control), and allowed to air dry; Cordyceps
fumosorosea (Cfr) only; water only, and then one adult Delphastus catalinae (beetle) was released;
and C. fumosorosea, and then one adult D. catalinae beetle was released (Cfr + beetle). Letters above the
bars (±SEM) that are the same are not significantly different (Fisher’s LSD test, p < 0.05).

3.2. Consumption of Fungus-Contaminated Whitefly Eggs by Beetles in No-Choice Arenas

Consumption of eggs sprayed with Cfr (157 ± 35.8) in the no-choice arenas by the beetles was
not significantly different (t = −0.70; df = 1; p = 0.4917) compared to the control (188 ± 25.9) over time
(Figure 3a). In addition, the daily mean consumption rate of whitefly eggs by the adult beetles over
time was not significantly different (t = −0.80; df = 1; p = 0.4323) between the Cfr-treated eggs (12 ± 3.9)
and the control (17 ± 3.6) over time (Figure 3b).
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Figure 3. Total number (±SEM) of Aleurothrixus trachoides eggs consumed (a) and daily mean (±SEM)
consumption rate (b) by an adult Delphastus catalinae beetle after being treated with either Cordyceps
fumosorosea (Cfr) or water (control) on leaves of red missile ornamental plants for 24 h. The daily
mean egg consumption or consumption rate by the adult beetle was not significantly different between
treatments (Student’s t-test, p > 0.05).
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3.3. Longevity of Beetles after Exposure to Fungus-Contaminated Whitefly Eggs

Using the Kaplan—Meier survival analysis, the median survival time of beetles after exposure of
eggs treated with Cfr compared to control was not significantly different (log-rank test: χ2 = 0.5914;
df = 1; p = 0.4419; Figure 4). The daily mean survival time ± SEM of the beetles after exposure to
whitefly eggs contaminated with Cfr (13 ± 2.5) did not differ significantly (t = −0.10; df = 1; p = 0.9204)
compared to the control (13 ± 1.5).
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trachoides eggs treated with either Cordyceps fumosorosea (Cfr) or water (control) on leaves of Red Missile
ornamental plants for 24 h. Fresh untreated eggs were provided to the beetles every 3 days after the
24 h exposure period for 21 days. The median survival times of the adult beetles were not significantly
different between treatments (log-rank test, p > 0.05).

4. Discussion

The current study demonstrated the potential utility of naturally occurring biological control
agents in managing invasive whitefly pests; however, this study was conducted under laboratory
superficial conditions within a closed system. There was 100% whitefly nymphal mortality observed in
D. catalinae treatments alone, and with Cfr, indicating the importance of this predator in implementing
control measures for pepper whitefly. In Florida urban landscapes, the presence of this beetle along
with the pepper whitefly indicated an association between two arthropods, and this prey–predator
interaction has been confirmed from this study. Along with their whitefly specificity, feeding potential,
and reproductive rate, the ability of this beetle genus to avoid parasitized whitefly stages [17,25] is a
boon for the establishment of a biological control program in an urban setting or in organic nurseries
with limited resources available to manage whitefly populations. Moreover, D. catalinae is a generalist
predator and shows a density-dependent feeding response in relation to the fluctuation in the pest
populations, which ensures the long-term presence of this predator in areas of pest infestation [26].

High pepper whitefly mortality (~88%) in the Cfr-alone treatment demonstrated that Cfr could
be an important tool to combat this invasive whitefly. Results of the current study align with several
studies around the globe where Cfr was found efficacious against multiple whitefly species [11,24,27–35].
Given the favorable conditions (temperature 24–30 ◦C + high humidity) [28], the unique mode of action
of Cfr, either by cuticular invasion or ingestion per os, can lead to the death of the organism. It can kill
the pest by mechanical damage to the tissue, depletion of nutritional content, and/or production and
spread of toxins [36,37]. In the past, researchers isolated Cfr from a mycosed hemipteran pest such
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as B. tabaci, and Diaphorina citri Kuwayama, indicating the prevalence of this insect mycopathogen
in the Florida production systems [27,38]. Considering the importance of low-risk pesticides being
applied in regions with infestations of the pepper whitefly, Cfr offers an excellent IPM tool. Our results
demonstrate the potential of this natural enzootic as a microbial candidate, and, thus Cfr should be
tested against pepper whitefly under various production system parameters (controlled greenhouse,
screen house, and open field) as well as variable pest pressure scenarios.

There are three kinds of biotic interactions—antagonistic, synergistic, or neutral, which can be
expected when two different organisms are combined. In the current study, we observed that there
was a 100% mortality in the beetle alone and beetle + Cfr treatment. Although, no adverse interaction
between the two treatments was apparent, their additive response could not be assessed due to the low
initial count of whitefly used in the bioassays. We assume if a higher population of pepper whitefly
was used in this study, a clear differentiation in the activity of the three treatments could be observed.
Our results indicate that the whitefly eggs or nymphal stages sprayed with Cfr did not impact the
daily egg consumption rate or longevity of D. catalinae. Barahona et al. [12] also observed that after
the ladybird beetle, Thalassa montezumae Mulsant consumed green croton scales sprayed with Cfr on
croton plants, the survival rate was similar to those feeding on untreated scale insects. In a recent
unpublished study, the metallic blue beetle, Curinus coeruleus Mulsant consumed Florida red scale
insects sprayed with Cfr at the same rate as those not sprayed with the entomopathogenic fungus [39].
In our study, the predator was only exposed to the residue of the fungus and not to the spray directly as
were the whitefly prey. Therefore, based on the results of this study we can suggest in an IPM scenario
that when both D. catalinae and Cfr are used together, it is best to spray the fungus first, and allow
it to dry prior to releasing the predator. However, in a greenhouse study, Alma et al. [9] observed
that the combination of a mirid predator after being sprayed with Cfr while feeding on greenhouse
whitefly nymphs found on tomato plants, that the efficacy of the predator was not negatively affected
compared to the control. In corroboration with our laboratory study, Poprawski et al. [40] observed
that the adult ladybird beetles (Serangium parcesetosum Sicard) sprayed with Cfr consumed whitefly
nymphs (Bemisia sp.) at a rate similar to the controls and survivorship of the adult beetles did not
significantly differ from the controls. In further support of our results, Zhou et al. [41] in studying the
effects of Cfr applied directly on the adult ladybird beetles (Axinoscymnus cardilobus Pang and Ren)
under laboratory conditions found that the fecundity, longevity, egg viability, and life table parameters
of the females were not significantly different compared the control. Therefore, when both agents are
used in combination, it seems that the use of the fungal entomopathogen, Cfr is compatible and can be
applied in combination with a variety of ladybird beetle predators for managing arthropod pests.

5. Conclusions

This study compared the potential compatibility and utility of a natural predator and enzootic
insect fungal pathogen when used alone or in combination against a new invasive whitefly pest in
Florida under controlled laboratory conditions. Both D. catalinae and Cfr were efficacious against
the pepper whitefly, and Cfr as a residue on the whitefly life stages did not impact the predator’s
longevity. Considering the importance of low-risk alternative management practices needed today,
this study offers a few new potential tools for the IPM of pepper whitefly in Florida and other affected
regions. However, this hypothesis needs to be confirmed using larger-scale trials under greenhouse
and field conditions. Therefore, future studies will focus on evaluating the compatibility of the fungal
entomopathogen Cfr alone and in combination with the ladybird beetle under greenhouse and field
conditions to confirm the laboratory results.
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