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Abstract

Speech is an intrinsically multisensory signal, and seeing the speaker’s lips forms a cornerstone of communication in
acoustically impoverished environments. Still, it remains unclear how the brain exploits visual speech for comprehension.
Previous work debated whether lip signals are mainly processed along the auditory pathways or whether the visual sys-
tem directly implements speech-related processes. To probe this, we systematically characterized dynamic representa-
tions of multiple acoustic and visual speech-derived features in source localized MEG recordings that were obtained
while participants listened to speech or viewed silent speech. Using a mutual-information framework we provide a com-
prehensive assessment of how well temporal and occipital cortices reflect the physically presented signals and unique
aspects of acoustic features that were physically absent but may be critical for comprehension. Our results
demonstrate that both cortices feature a functionally specific form of multisensory restoration: during lip reading,
they reflect unheard acoustic features, independent of co-existing representations of the visible lip movements.
This restoration emphasizes the unheard pitch signature in occipital cortex and the speech envelope in temporal
cortex and is predictive of lip-reading performance. These findings suggest that when seeing the speaker’s lips,
the brain engages both visual and auditory pathways to support comprehension by exploiting multisensory corre-
spondences between lip movements and spectro-temporal acoustic cues.
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(s )

Lip reading is central for speech comprehension in acoustically impoverished environments. Recent studies
show that the auditory and visual cortex can represent acoustic speech features from purely visual speech.
It is still unclear, however, what information is represented in these cortices and whether this phenomenon
is related to lip-reading comprehension. Using a comprehensive conditional mutual information (Ml) analysis
applied to magnetoencephalographic data, we demonstrate that signatures of acoustic speech arise in
both cortices in parallel, even when discounting for the physically presented stimulus. In addition, the audi-
\tory but not the visual cortex activity was related to successful lip reading across participants. /

ignificance Statement

Introduction

Speech is an intrinsically multisensory stimulus that can
be conveyed via acoustic and visual signals. It remains
debated how the brain exploits the information derived
from visual speech (Calvert et al., 1997; Grant and Seitz,
2000; Calvert and Campbell, 2003; Besle et al., 2008).
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One view is that the visual system directly contributes to
establishing speech representations (Bernstein et al.,
2011; O’Sullivan et al., 2017; Ozker et al., 2018), as oro-
facial movements provide temporal information that can
be predictive of concurrent acoustic signals and allow
mapping visual cues onto phonological representations
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(Campbell, 2008; Lazard and Giraud, 2017). The visual
cortex tracks dynamic lip signals (Park et al., 2016)
and, as suggested recently, may also directly “restore”
the acoustic envelope of the visually presented speech
(Hauswald et al., 2018; Suess et al., 2022). Another view is
that visual speech is mainly represented in regions of the
auditory pathways, possibly exploiting speech-specific
processes of this system. Along this line, a recent study
suggested that the early auditory cortex may also be
capable of reflecting the unheard acoustic envelope of
a spoken narrative (Bourguignon et al., 2020). Importantly,
the evidence that visual speech is reflected along both
auditory and the visual pathways may not be mutually
exclusive, as both may contribute to a supramodal
frame of reference for speech (Arnal et al., 2009;
Rauschecker, 2012).

To probe the respective involvement of visual and
auditory cortices in representing visual speech, many
previous studies presented syllables or isolated words
as stimuli (Calvert et al., 1997; Calvert and Campbell,
2003; Pekkola et al., 2005). However, these results
come short of how they translate to continuous or nat-
ural speech. Furthermore, many studies did not probe
a direct link to behavioral performance, leaving it un-
clear whether potential cerebral representations derived
from visual speech are behaviorally relevant (Ludman et al.,
2000; Bourguignon et al., 2020; Mégevand et al., 2020).
The latter can be particularly challenging given that pure
lip-reading performance for everyday speech is often low
(Grant and Seitz, 2000; Altieri et al., 2011).

The present study rests on the assumption that prob-
ing the roles of visual and auditory cortices in repre-
senting visual speech requires data from a paradigm
based on continuous speech with carefully controlled
levels of lip-reading performance. In previous work we
established such a paradigm and collected MEG data
from participants during a word recognition task based
on syntactically similar sentences that were presented
either purely acoustically or purely visually. In the auditory
condition participants were presented with the acoustic
signal embedded in background noise, while in the visual
condition they watched the muted speaker. The individual
sentences were constructed from a closed-set of linguistic
items with a common syntactic structure, similar to ma-
trix-sentences used in standardized hearing assessment
(Hagerman, 1982; Kollmeier et al., 2015). With this we
achieved a comparable level of word recognition perform-
ance during auditory-only and visual-only conditions and veri-
fied that this dataset allows linking neural representations of
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lexical information and speech dynamics to behavior (Keitel
etal., 2018, 2020).

We leverage this paradigm to probe the roles of visual
and auditory pathways in representing visual speech and
facilitating lip-reading performance. This led us to formu-
late the two following questions. First, whether represen-
tations of restored (e.g., unheard acoustic) features are
independent of those physically present (e.g., lip move-
ments). Second, we asked whether these representations
of restored features are tied to word recognition perform-
ance. To be able to compare cerebral signatures of visual
and acoustic speech-derived features, we rooted this
analysis on the following systematic assessment: we
quantified how well source-localized MEG signals track
multiple acoustic and visual speech-derived features in-
dependently of each other, both when these features are
physically present (e.g., the lip contour when watching
the speaker) or absent (e.g., the pitch contour when
watching the speaker). We focused this analysis on two
regions of interest (ROIs) centered on early auditory and
visual cortices, which previous studies have implied in
supporting lip reading (Park et al., 2016; Hauswald et al.,
2018; Bourguignon et al., 2020). The analysis was based
on a mutual information (MI) approach that has been
used in previous work to probe dynamic speech repre-
sentations and which is well suited to address the sta-
tistical dependency between multiple variables (Keitel
et al., 2018; Daube et al., 2019). Our results show that
both occipital and temporal regions reflect unheard
acoustic speech-derived features independently of the
physically present lip movements. This “restoration” of
acoustic information in the temporal, but not the occipi-
tal, cortex is predictive of word recognition perform-
ance across participants.

Materials and Methods

The data analyzed in this study has been collected and
analyzed in previous studies (Keitel et al., 2018, 2020).
The analyses conducted here pose new questions and
provide novel results beyond the previous work.

Participants and data acquisition

Data were collected from 20 native British-English
speaking participants (nine female, age 23.6 = 5.8 years
mean =+ SD). Because of prominent environmental arte-
facts in the MEG recordings, data from two participants
were excluded from further analysis. Thus, the analyzed
data were from 18 participants (seven female, age 24 +
6.0years mean = SD). All participants were screened
to exclude hearing impairment before data collection
using the quick hearing check questionnaire (Koike
et al., 1994), had normal or corrected-to-normal vision
and were all right-handed (Oldfield, 1971). All partici-
pants provided written informed consent and received
monetary compensation of 10 £/h. The experiment was
approved by the College of Science and Engineering,
University of Glasgow (approval number 300140078)
and conducted in compliance with the Declaration of
Helsinki.
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MEG data were collected using a 248-magnetometer
whole-head MEG system (MAGNES 3600 WH, 4-D
Neuroimaging) with a sample rate of 1kHz. Head posi-
tions were measured at the beginning and end of each
run, using five coils placed on the participants’ heads.
Coil positions were co-digitized with the participant’s
head-shape (FASTRAK, Polhemus Inc.). Participants
were seated in an upright position in front of a screen.
Visual stimuli were displayed with a DLP projector at 25
frames per second (fps), a resolution of 1280 x 720 pixels,
and covered a visual field of 25 x 19 degrees. Acoustic stim-
uli were transmitted binaurally through plastic earpieces and
370-cm-long plastic tubes connected to a sound pressure
transducer and were presented in stereo at a sampling rate
of 22,050 Hz.

Stimulus material

The stimulus material comprised two structurally equiv-
alent sets of 90 unique closed-set English sentences.
Specifically, along the idea of matrix-style sentences
using in standardized hearing assessment (Hagerman,
1982; Kollmeier et al., 2015), each sentence was con-
structed with the same sequence of linguistic elements,
the order of which can be described with the following
pattern [filler phrase, time phrase, name, verb, numeral,
adjective, noun]. One such sentence for example was “I
forgot to mention (filler phrase), last Thursday morning
(time phrase) Mary (name) obtained (verb) four (numeral)
beautiful (adjective) journals (noun).” For each element, a
list of 18 different options was created and sentences
were constructed so that each single element was re-
peated ten times. Sentence elements were randomly
combined within each set of 90 sentences. This proce-
dure yielded 180 structurally similar but distinct senten-
ces. To measure word recognition performance for each
sentence, a target word was defined in each sentence: ei-
ther the adjective (first set of sentences) or the numeral
(second set). Sentences lasted on average 54+0.4 s
(mean = SD, ranging from 4.6 to 6.5 s) and lasted a total
of ~22min. The speech material was spoken by a male
British actor, who was tasked to speak clearly and natu-
rally and to move as little as possible while speaking to as-
sure that the lips center stayed at the same place in each
video frame. Audiovisual recordings were gathered with a
high-performance camcorder (Sony PMW-EX1) and an
external microphone in a sound attenuating booth.

Participants were presented with audio-only (A-only),
audiovisual (AV) or visual-only (V-only) speech material in
three conditions (Keitel et al., 2020). However, for the pres-
ent analysis we only focus on the A-only and V-only condi-
tions, as in these, one can best dissociate visual-related
and auditory-related speech representations given that
only one physical stimulus was present. Furthermore,
during the AV condition word recognition performance
was near-ceiling (Keitel et al., 2020), making it difficult to
link cerebral and behavioral data. Because performance
would have been at ceiling with clear speech in the A-
only condition, the acoustic speech was embedded in
environmental noise. This noise for each trial was gener-
ated by randomly selecting 50 individual sounds from a
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set of sounds recorded from natural, everyday sources
or scenes (e.g., car horns, talking people, traffic). These
sounds were then added together to create a distracting
noise scene for the duration of each trial. For each partic-
ipant the individual noise level was further adjusted, as
described previously (Keitel et al., 2020). This resulted in
an average performance of ~70% correct for both A-
only and V-only conditions and allowed us to dissociate
between correct and incorrect word recognition.

Experimental design

Each participant was presented with each of the 180
sentences in three conditions (A-only, V-only, and AV).
The order of the conditions was fixed for all participants
as A-only, AV and then V-only. This order exposed the
participants to the stimuli twice before the lip-reading
task, which helped to increase performance and render it
comparable to the A-only task. Each condition was di-
vided into four blocks of 45 sentences each, with two
blocks being “adjective” and two “number” blocks. For
each participant, the order of sentences within each
block was randomized. The first sentence of each block
was a “dummy” trial that was subsequently excluded
from analysis. During each trial, participants either fix-
ated a dot (in A condition) or a small cross overlaid onto
the mouth of the speaker’s face (in V condition). In the A
condition, each sentence was presented as the respec-
tive audio recording, i.e., the spoken sentence, together
with the background noise. In the V condition, only the
video of the speaker’s face was presented clearly and no
sound was present. After each trial, four words were pre-
sented as response options (either four adjectives or four
written numbers) on the screen and participants had to
indicate using a button press which word they had per-
ceived. Intertrial intervals were set to last about 2 s.

Preprocessing of stimulus material

From the stimulus material, we extracted the following
auditory and visual features. Based on previous literature
that demonstrated robust encoding of the amplitude en-
velope, its temporal derivative and the fundamental fre-
quency of speech, we derived these features from the
acoustic speech recordings (Oganian and Chang, 2019;
Teoh et al., 2019; Brohl and Kayser, 2021). To derive the
broadband envelope, we filtered the acoustic waveform
into 12 logarithmically spaced bands between 0.1 and
10kHz (zero-phase third order Butterworth filter with
boundaries: 0.1, 0.18, 0.3, 0.46, 0.68, 0.98, 1.39, 2.0,
2.73,3.79, 5.25, 7.25, 10 kHz) and subsequently took the
absolute value of the Hilbert transform for each band.
The broadband amplitude envelope (hereon termed aud
env) was then derived by taking the average across all 12
band-limited envelopes and was subsequently down-
sampled to 50 Hz. We computed the slope of this broad-
band envelope (hereon termed aud slope) by taking its
first derivative. To characterize the pitch contour, we ex-
tracted the fundamental frequency (hereon termed aud
pitch) over time using the Praat software (“to Pitch”
method with predefined parameters; Boersma and van
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Heuven, 2001). This was done using the original acoustic
waveform at a sampling rate of 22,050 Hz. The resulting
pitch contour was again down sampled to 50Hz. All
three acoustic features together are labeled AudFeat in
the following.

In a similar fashion, we derived the horizontal opening
of the lips, the area covered by the lip opening, and its de-
rivative from the video recordings. The lips were detected
based on the color of the lips in the video material using a
custom-made algorithm. From these we determined the
contour of the lip opening based on luminance values and
deriving connected components from these (Giordano et
al., 2017). The results were visually inspected to ensure
accurate tracking of the lips. From this segmentation of
the lip opening, we derived the total opening (in pixels;
hereon termed lip area) and estimates of the respective
diameters along the horizontal axis (hereon termed lip
width): these were defined between the outermost points
along the horizontal axis. These signals were initially
sampled at the video rate of 25 fps. Similar to the auditory
features, we computed the slope of the lip area (hereon
termed lip slope). The time series of these visual features
were then linearly interpolated to a sample rate of 50 Hz.
Because the horizontal and vertical mouth openings are
partially correlated with each other and with the total
mouth opening, we selected the total area and the hori-
zontal width as signals of interest, as the latter is specifi-
cally informative about the acoustic formant structure
(Plass et al., 2020). We grouped the total lip area, its tem-
poral derivative, and the lip-width as signatures of lip fea-
tures (LipFeat), which are of the same dimensionality as
the acoustic features (AudFeat) described above.

For comparison with previous studies (Chandrasekaran
et al., 2009; Park et al.,, 2016; Giordano et al., 2017;
Hauswald et al., 2018) we quantified the power spectra
of these features and their cross-coherences using
MATLAB’s ‘pwelch’ and ‘mscoher’ functions using a
window length of 1 s with 50% overlap and otherwise
predefined parameters. The resulting spectra were log
transformed and averaged across sentences. To visu-
alize the cross-coherences we first obtained key frequency
ranges from our main results (Fig. 3) and averaged the co-
herences within two ranges of interest (0.5-1 and 1-3 Hz).

MEG preprocessing

Preprocessing of MEG data was conducted using
custom MATLAB scripts and the FieldTrip toolbox
(Oostenveld et al., 2011). Each experimental block was
processed separately. Individual trials were extracted
from continuous data starting 2 s before sound onset and
until 10 s after sound onset. The MEG data were denoised
using a reference signal. Known faulty channels (N=7)
were removed. Trials with SQUID jumps (3.5% of trials)
were detected and removed using FieldTrip procedures
with a cutoff z-value of 30. Data were bandpass filtered
between 0.2 and 150 Hz using a zero-phase fourth order
Butterworth filter and subsequently down sampled to
300 Hz before further artifact rejection. Data were visually
inspected to find noisy channels (4.37 + 3.38 on average
across blocks and participants) and trials (0.66 = 1.03 on
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average across blocks and participants). Noise cleaning
was performed using independent component analysis
with 30 principal components (2.5 components removed
on average). Data were then bandpass filtered between
0.8 and 30 Hz using a zero-phase third order Butterworth
filter and further down sampled to 50 Hz for subsequent
analysis.

MEG source reconstruction

Source reconstruction was performed using Fieldtrip,
SPMB8, and the Freesurfer toolbox based on T1-weighted
structural magnetic resonance images (MRIs) for each
participant. These were co-registered to the MEG coordi-
nate system using a semi-automatic procedure (Gross et
al., 2013; Keitel et al., 2017). MRIs were then segmented
and linearly normalized to a template brain (MNI space).
We projected sensor-level time series into source space
using a frequency-specific linear constraint minimum var-
iance (LCMV) beamformer (Van Veen et al., 1997) with a
regularization parameter of 7% and optimal dipole orien-
tation (singular value decomposition method). The grid
points had a spacing of 6 mm, thus resulting in 12,337
points. For whole-brain analyses, a subset of grid points
corresponding to cortical gray matter regions only was
selected (using the AAL atlas, Tzourio-Mazoyer et al.,
2002), yielding 6490 points in total. Within these we de-
fined temporal and occipital ROIs based on the brainne-
tome atlas (Yu et al.,, 2011). The individual ROIs were
chosen based on previous studies that demonstrate the
encoding of acoustic and visual speech features in occipi-
tal and superior temporal regions (Giordano et al., 2017;
Di Liberto et al., 2018; Teng et al., 2018; Keitel et al.,
2020). As temporal ROI, we included Brodmann area 41/
42, caudal area 22 (A22c), rostral area 22 (A22r), and
TE1.0 and TE1.2. As occipital ROI, we defined the middle
occipital gyrus (mOccG), occipital polar gyrus (OPC), infe-
rior occipital gyrus (iOccG), and the medial superior occi-
pital gyrus (msOccG).

MEG analysis

The questions outlined in the introduction require quan-
tifying how well the source reconstructed MEG data re-
flect the visual and or acoustic features. For this we relied
on a previously established and validated MI framework
(Ince et al., 2017). The analysis relies on the notion that a
significant temporal relation between a cerebral signal
and sensory features is indicating the cerebral encoding
(or tracking) of the respective features in temporally en-
trained brain activity (Park et al., 2016; Keitel et al., 2018;
Brohl and Kayser, 2021). In the following we use the term
“tracking” when referring to such putative cerebral repre-
sentations characterized using Ml (Obleser and Kayser,
2019). To quantify the tracking of a given stimulus feature,
or of a feature group, we concatenated the trial-wise MEG
data and features along the time dimension and filtered
these (using third order Butterworth IIR filters) into typical
frequency bands used to study dynamic speech encod-
ing: 0.5-1, 1-3, 2-4, 3-6, and 4-8Hz (and 0.5-8Hz).
These were chosen to cover the typical modulation
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Figure 1. Stimulus material and experimental methodology. Acoustic and visual features were extracted from audiovisual speech
material and were used to quantify their cerebral tracking during audio-only and visual-only presentations. A, The stimulus material
consisted of 180 audiovisual recordings of a trained actor speaking individual English sentences. For visualization, here only the
mouth is shown, but participants were presented with the entire face. From the video recordings, we extracted three features de-
scribing the dynamics of the lip aperture: the area of lip opening (lip area), its slope (lip slope), and the width of lip opening (lip
width); collectively termed LipFeat. From the audio waveform, we extracted three acoustic features: the broadband envelope (aud
env), its slope (aud slope), and a measure of dominant pitch (aud pitch), collectively termed AudFeat. B, Trial-averaged percent cor-
rectly (PC) reported target words in auditory (A-only) and visual-only (V-only) conditions, with dots representing individual partici-
pants. C, Logarithmic power spectra for individual stimulus features. For reference, a 1/f spectrum is shown as a dashed gray line.
D, Coherence between pairs of features averaged within two predefined frequency bands (0.5-1 Hz left; 1-3 Hz right; for details, see
Materials and Methods).

spectra of these features (Fig. 1C,D) and similar to previ-  range of stimulus-to-brain lags from 60 to 140 ms after
ous work (Etard and Reichenbach, 2019; van Bree et al.,  stimulus onset. As a second step, we then quantified the
2020; Brohl and Kayser, 2021; Zuk et al., 2021). The first  tracking of auditory or visual features and their dependen-
500 ms of each sentence were discarded to remove the cies specifically within these ROIs and individual fre-
influence of the transient sound-onset response. To com-  quency bands (Figs. 3-5). To facilitate these analyses, we
pute the MI between filtered MEG and stimulus features, first determined the optimal lags for each feature, ROl and
we relied on a complex-valued representation of each sig-  frequency band, given that the encoding latencies may
nal, which allowed us to include both the amplitude and  differ between features and regions (Giordano et al.,
phase information in the analysis: we first derived the ana-  2017). For this, we determined at the group-level and for
lytic signal of both the MEG and stimulus feature(s) using  each set of features (i.e., AudFeat and LipFeat) and for
the Hilbert transform and then calculated the Ml using the ~ each ROI and frequency band the respective lag yielding

Gaussian copula approach including the real and imagi-  the largest group-level Ml value (across participants and
nary part of the Hilbert signals (Ince et al., 2017; Daube et  both A-only and V-only trials). This was done by comput-
al., 2019). ing the MI between each set of features and the MEG in a

In a first step, we used this framework to visualize the  range of lags between 0 and 500 ms in 20-ms steps. For
tracking of AudFeat and LipFeat within the entire source  the subsequent analyses, we used these optimal lags and
space (Fig. 2A,B). This was mainly done to assert that the = computed averaged Ml values in a time window of —60-
predefined ROIs used for the subsequent analysis indeed 60 ms around these lags (computed in 20-ms steps).
covered the relevant tracking of these features. This anal- The first question of this study as outlined in the intro-
ysis relied on a frequency range from 0.5 to 8Hz and a  duction concerns the tracking (M) of individual feature
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groups in temporal and occipital ROls and the two experi-
mental conditions, respectively, and more so if a given
ROl reflects a given feature (e.g., the unheard acoustic en-
velope) independently of the physically present other fea-
ture (e.g., the visible lip movements in the visual-only
condition). To quantify whether the tracking of each fea-
ture group (in a given ROI and frequency band) is statisti-
cally redundant with (or possibly complementary to) the
other group, we calculated the conditional MI (CMI) be-
tween MEG and one feature group, partialling out the re-
spective other group (Fig. 3, CMI values; Giordano et al.,
2017; Ince et al., 2017). Specifically, the CMI measure al-
lows us to quantify the unique information shared between
a variable and the MEG while controlling for the information
provided by the conditional variable. Mathematically, it can
be described as the following:

IX;Y|1Z) = H(X,Z) + H(Y,Z) — H(X,Y,Z) — H(Z),

where | denotes the CMI and H the joint entropies be-
tween combinations of variables X, Y and the conditional
variable Z. Similarly, we also determined the CMI between
the MEG and each individual feature, obtained by partial-
ling out all other visual and auditory features (Fig. 4). To
be able to compare the Ml and CMI estimates directly, we
ensured that both estimates had comparable statistical
biases. To achieve this, we effectively derived the Ml as a
conditional estimate, in which we partialled out a statisti-
cally-unrelated variable. That is, we defined

Mi(feature ; MEG) = Mil(feature ; MEG|
time_shifted _feature).

Here, time_shifted_feature is a representation of the re-
spective feature(s) with a random time lag and hence no
expected causal relation to the MEG. Each MI estimate
was obtained by averaging this estimate over 2000 repeti-
tions of a randomly generated time-shifted feature vector.
To render the (conditional) MI estimates meaningful rela-
tive to the expectation of zero Ml between MEG and stim-
ulus features, we furthermore subtracted an estimate of
the null-baseline of no systematic relation between sig-
nals. This was obtained by computing (conditional) Ml val-
ues after randomly time-shifting the stimulus feature(s)
and averaging the resulting surrogate MI estimates over
100 randomizations.

Relating Ml to word recognition performance

The behavioral performance for each participant and
condition was obtained as the percent correctly (PC) re-
ported target words (obtained in a four-choice task). To
probe the second question of whether the tracking of re-
stored features relates to word recognition performance
we relied on partial regression. Specifically, we probed
the linear relation of word recognition performance and
feature tracking across participants while accounting for
potential spurious correlations between these because of
variations in the individual signal-to-noise ratio in each
participants’ MEG data. We predicted the PC in the vis-
ual-only trials based on (1) the individual Ml for aud env in
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the temporal ROl and the Ml for aud pitch in the occipital
ROI as the primary variables of interest, (2) the tracking of
LipFeat (MI) in the occipital ROI in visual trials, and (3) the
tracking of AudFeat in the temporal ROI in auditory trials.
The last two serve as potentially confounding variables,
as they provide a proxy to the overall SNR of the speech
and lip tracking in the respective dataset. By focusing on
aud env/aud pitch in the temporal/occipital ROIs respec-
tively, we predicted task performance based on the indi-
vidual features that were most associated with the
tracking of AudFeat (compare Fig. 4C,D). To establish
these regression models, we z-scored the Ml values of in-
terest (variables 1-3) and the PC across participants. For
the confounding variables, we applied the z-scoring for
each frequency band and subsequently averaged the z-
scored values across bands. For each frequency band,
we created a single model containing all target and con-
founding variables. From the respective models we ob-
tained the significance of each predictor of interest.
Furthermore, we compared the predictive power of this
full model with that of a reduced model not featuring the
predictors of interest (variable 1). From the likelihoods of
each model, we derived the relative Bayes factor (BF) be-
tween these based on the respective BIC values obtained
from each model. For visualization we used partial resid-
ual plots using the procedure described by Velleman and
Welsch (Velleman and Welsch, 1981). This procedure was
applied to each individual feature of interest (i.e., aud env
and aud pitch).

Statistical analysis

Statistical testing of MI data was based on a nonpara-
metric randomization approach incorporating corrections
for multiple comparisons (Nichols and Holmes, 2003). To
test whether the group-level median Ml (or CMI) values
were significantly higher than expected based on the null
hypothesis of no systematic temporal relation between
sensory features and MEG, we proceeded in a similar
fashion as in previous work (Giordano et al., 2017; Brohl
and Kayser, 2021): we obtained a distribution of 2000 Ml
values between randomly time-shifted MEG and the stimu-
lus vectors, while keeping the temporal relation of individu-
al features to each other constant. This distribution was
obtained for each participant, frequency band, feature
group (AudFeat and LipFeat), ROl (temporal, occipital),
and condition (A-only, V-only) separately. To correct for
multiple comparisons, we generated a single random
distribution by pooling the randomly generated Ml values
across all dimensions except frequency bands, given
that the Ml values decreased considerably across bands
(Fig. 3), and selecting the maximum 2000 values, thereby
creating a random maximum null distribution (Nichols
and Holmes, 2003). We then tested the group-level me-
dian against the 99th percentile of this maximum distri-
bution as a significance threshold, which effectively
implements a one-sided randomization test at p <0.01
corrected for all dimensions except frequency bands. To
test for differences between MI and CMI values for a
given condition, band and ROI, we also used a permuta-
tion approach combined with a Wilcoxon signed-rank test;
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first, we established the respective true Wilcoxon z-statistic
between Ml and CMI values; then we created a distribution
of surrogate z-statistics under the null hypothesis of no
systematic group-level effect, obtained by randomly per-
muting the labels of Ml and CMI values 5000 times. From
this, we obtained the maximum across features, bands,
ROIs and conditions to correct for multiple comparisons
and used the 99th percentile of this randomization distribu-
tion to determine the significance of individual tests.

The CMI values for individual features in Figure 4 were
compared using a one-way repeated measure Kruskal-
Wallis rank test, followed by a post hoc Tukey-Kramer
multiple comparison. We used the same procedure to test
for differences between CMI values in the subareas com-
posing each ROI (Table 1). To test CMI values between
hemispheres, we used a Wilcoxon signed-rank test
(Table 2). The resulting p-values were corrected for
false discovery rate using the Benjamini-Hochberg pro-
cedure within each set of comparisons (Benjamini and
Hochberg, 1995). In all tests, an « level of @ < 0.01 was
deemed significant. For all statistical tests we provide
exact p-values, except for randomization tests where
the approximate p-values were smaller than the inverse
of the number of randomizations.

Data and code availability

Data and code used in this study are publicly available
on the Data Server of the University of Bielefeld (https://
gitlab.ub.uni-bielefeld.de/felix.broehl/fb02).

Results

Acoustic and visual features are tracked in temporal
and occipital cortices

Participants were presented with either spoken speech
(in A-only trials) or a silent video of the speaking face (in V-
only trials) and were asked to report a target word for
each sentence in a four-choice word recognition task.
The behavioral data show that participants were well able
to detect the correct word both during acoustic speech
embedded in noise and during lip reading and achieved
overall similar levels of performance in both conditions
(Fig. 1B, median fraction correct responses for A-only =
0.7, V-only =0.71; n=18). To quantify the tracking of rele-
vant features, we defined three auditory (AudFeat) and
three visual (LipFeat) features respectively based on the
acoustic waveform and the lip trajectory (Fig. 1A). An
analysis of their temporal coherences revealed that they
were coherent in the frequency bands of interest (e.g., 1-
3 Hz, envelope-lip area coherence of ~0.2; Fig. 1D). The
overall pattern of coherence and the degree of temporal
relation between acoustic features and lip movements in
the present material is comparable with those in other da-
tasets (Chandrasekaran et al., 2009; Park et al., 2016;
Giordano et al., 2017; Hauswald et al., 2018).

Previous work has shown that in the dataset analyzed
here temporal and occipital brain regions reflect auditory
and visual speech signals respectively (Keitel et al., 2020).
We extend this observation to the entire group of acoustic
(AudFeat; Fig. 2A) or lip features (LipFeat; Fig. 2B) using a
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MI approach. The whole-brain maps show the expected
prevalence of acoustic (visual) tracking in temporal (occi-
pital) regions. Given that our main questions concerned
the tracking of features specifically in occipital and tem-
poral brain regions, we focused the subsequent work on
atlas-based ROlIs (Fig. 2C; the temporal ROl shaded in
mint and the occipital ROl shaded in purple; for details,
see Materials and Methods).

Temporal and occipital cortex represent acoustic
speech features during silent lip reading

To address the question of whether temporal and occi-
pital cortices represent auditory and visual speech fea-
tures during lip reading, we performed a comprehensive
analysis of the tracking of both sets of features across a
range of frequency bands during auditory (A-only) and vis-
ual (V-only) conditions (Ml values; Fig. 3). To further quan-
tify whether the tracking of each feature group is possibly
redundant with the tracking of the respective other feature
group, we derived CMI values for each feature group, ob-
tained by partialling out the respective other group (CMI
values). By comparing MI and CMI values we can test, for
example, whether the temporal ROI tracks the unheard
speech envelope during silent lip reading also when dis-
counting for the actually presented lip trajectory. In the fol-
lowing we discuss the results per sensory modality and ROI.

As expected, when listening to speech (A-only), the
temporal ROI significantly tracks auditory features
(AudFeat) in all frequency bands tested (Fig. 3, top
row, red MI data; nonparametric randomization test, all
bands: p <5 x107°). This tracking persists when dis-
counting potential contributions of the not-seen visual
features (red CMI data all individually significant: p <5 x
10~°), though in some bands the CMI values were signifi-
cantly lower than the unconditional MI (Wilcoxon signed-
rank test comparing Ml vs CMI, 2-4 Hz: z=3.59, 3-6 Hz:
z=38.68, 4-8Hz: z=3.42, all comparisons: p <2 x 107°).
During the same auditory trials, lip features are only mar-
ginally reflected in the temporal ROI, as shown by low but
significant Ml and CMI values above 1 Hz (Fig. 3, top row,
cyan Ml and CMI data; all bands above 1Hz: p <5 x
107°). This tracking of visual features was significantly re-
duced when partialling out the physically presented audi-
tory features (2-4Hz: z=3.59, 3-6Hz: z=3.68, 4-8Hz:
z=3.42, all comparisons: p <2 x 107°).

During lip reading (V-only), the temporal ROI tracks the
unheard auditory features, particularly below 1 Hz (Fig. 3,
second row, red Ml data; all bands: p <5 x 10~°). Except
in the 2-4 Hz range, the temporal ROI tracks the unheard
AudFeat to a similar degree as when discounting the
actually presented visual signal (significant red CMI val-
ues, all bands: p <5 x 10°) as there were no significant
differences between Ml and CMI values except one band
(2-4Hz: z=8.42, p <1 x 107*, see asterisks). The physi-
cally presented lip movements during these V-only trials
were also tracked significantly in the temporal ROI (Fig. 3,
second row; cyan Ml and CMI data, 1-6 Hz: p <5 x 10*5)
but the CMI values were only marginally above chance
level, suggesting that genuine visual representations in
the temporal region is weak.
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Figure 2. Tracking of auditory and visual features in MEG source space. The figure shows group-level median Ml values for auditory
(AudFeat; A) and lip features (LipFeat; B) in the frequency range from 0.5 to 8 Hz (n =18 participants). C, Colored shading indicates
ROls: temporal region in mint includes Brodmann area 41/42, caudal area 22 (A22c), rostral area 22 (A22r), and TE1.0 and TE1.2;
occipital region in purple includes middle occipital gyrus (mOccG), occipital polar gyrus (OPC), inferior occipital gyrus (iOccG), and

medial superior occipital gyrus (msOccG). Unit for Ml is in bits.

As expected, during lip reading (V-only), the occipital
ROI tracks lip features (LipFeat) across frequency bands
(Fig. 3, bottom row, cyan MI values; all bands: p <5 x
107°). Again, this tracking persists after partialling out
the nonpresented acoustic features (cyan CMI values; all
bands: p <5 x 10~°), although the CMI values were sig-
nificantly lower than the MI (all bands above 1Hz: z>
3.72, p <2 x 1075). This indicates some redundancy be-
tween the tracking of the physically present lip trajectory
and that of the unheard auditory features. Confirming this,
occipital tracking of the physically presented lip signals
emerges in parallel with that of the nonpresented auditory
features (Fig. 3, bottom panel, red MI data; all bands:
p <5 x107°). This occipital tracking of unheard auditory
features was significantly reduced when partialling out the
lip signal (Ml vs CMI data; all bands above 1Hz: z>3.72,
p<2x107° but remained statistically significant (red
CMI data; all bands: p <5 x 107°).

Finally, when listening to speech (A-only), the occipital
ROI shows significant but weak tracking of auditory (Fig.
3, third row, red Ml data; 1-6 Hz: p <5 x 10*5) and visual
features (cyan MI data; only 3-6 Hz: p <5 x 107°), sug-
gesting that purely acoustic signals have a weak influence
on the occipital brain region.

Collectively, these results show the expected represen-
tations of auditory features in temporal cortex during lis-
tening to speech and of lip features in occipital cortex
during lip reading. In addition, they reveal that during lip
reading, both temporal and occipital regions represent
unheard auditory features and do so independently of co-
existing representations of the physically presented lip
movements. In the auditory cortex, this “restoration” of
auditory signals prevails in the low delta band (0.5-1 Hz);
in the visual cortex, this emerges in multiple bands.

May/June 2022, 9(3) ENEURO.0209-22.2022

To obtain an estimate of the effect size of the restoration
of the unheard AudFeat during lip reading, we expressed
the respective CMI values relative to those of the tracking
of the respectively modality-preferred inputs of each ROI
(Fig. 4A,B): for the temporal region the tracking of
AudFeat during A-only trials and for the occipital region
the tracking of LipFeat during V-only trials. In the tem-
poral ROI, the restoration effect size, i.e., the tracking of
AudFeat during lip reading, was about a third as strong
as this feature’s tracking while directly listening to
speech (Fig. 4A; AudFeaty_ony/AudFeata_gniy; 0.5-1 Hz:
median=0.37, 1-3Hz: median=0.24). In the occipital
ROI, the tracking of AudFeat was about half as strong
or stronger compared with the tracking of lip features
when seeing the speaker (Fig. 4B; AudFeaty_gn,/
LipFeaty._ony; 0.5-1 Hz: median=0.84, 1-3 Hz: median=0.4).
Albeit smaller than the tracking of the respective modality-
preferred sensory inputs, the restoration of unheard auditory
features still results in a prominent signature in temporally
aligned brain activity in both cortices.

Feature tracking is bilateral and prevails across
anatomic brain areas

Having established the tracking of auditory and lip fea-
tures in both temporal and occipital ROls, we probed
whether this tracking is possibly lateralized in a statistical
sense and whether it potentially differs among the individ-
ual anatomic areas grouped into temporal and occipital
ROIs respectively. While these analyses do not directly
concern our main hypotheses outlined in the introduction,
the issue of lateralization is pervasive in the literature on
speech, and hence is addressed here for the sake of com-
pleteness. For this analysis we focused on the conditional
tracking of each feature group. Comparing CMI values
among anatomic areas (averaged across hemispheres)

eNeuro.org



eMeuro

Research Article: New Research 9 of 15

0.5-1Hz 1-3Hz 2-4Hz 3-6Hz 4 -8 Hz
. 015 — 008 == ooaf T
> |l . 02 0.06| [, - < s
= ! ' A .. [ 0.1 . . s : 3 . a4 L] wxx
(o] 2 & 0.04 . Y — 0.02 : e MM
< os| ¥ ¥; 01| ¥ ¥ oos| ¥ 8 . o02|%F 8 o } b}
oh ob A SO B X o} of -l
0 0 0 0 0
R 0.3 0.8 0.08 0.04
Temporal = 1 0.2 0.1 0,05
5 . - 0.08
O3 0s él & 0.1 0.05[ — T 0o 002 oo
\ P it S B o@i@l@t@. oo b cp [ o)-of-oh on )
0.6 0.6 0.2 0.08
2y 03 bk 0.4 ' 0.06
5 02 0.1 0.08
< 01 0:2 b2 0.02
0 oLCe Ce o o glep-Ed e Ge L0 08 Ge G
Y <, 0.6 P T, 0.08 L
> 03 ¢ 1 : : 02 ‘006 ‘
Occipital g A ; g4 $oe e o 8
ROl @ 92| g froue | Y R IS] IS W el B } A
> 04 W-W-TeT§ 02 T o I Sl D ﬁz e t Hro.02 ¥
0 i i i e a4

\

MI CMI MI CwMI
AudFeat LipFeat

Figure 3. Feature tracking across ROIs and conditions. For both conditions (A-only and V-only) and ROls (temporal and occipital)
the figure illustrates the strength of feature tracking for presented and physically not-present features (Ml values) and the strength of
tracking after partialling out the respective other feature group (CMI values). Each panel depicts (from left to right) the MI for
AudFeat, the CMI for AudFeat partialling out LipFeat, the Ml for LipFeat, and the CMI for LipFeat partialling out AudFeat. Dots repre-
sent individual participants (n=18). Bars indicate the median, 25th and 75th percentiles. The gray dashed line indicates the 99th
percentile of the frequency-specific randomized maximum distribution correcting for all other dimensions. Conditions below a
group-level significance threshold of 0.01 are greyed out. Brackets with asterisks indicate significant differences between Ml and
CMI values, based on a Wilcoxon signed-rank test (o < 0.01, **p < 0.005, ***p < 0.001). Units for Ml and CMI are in bits.

for each ROI (occipital, temporal), frequency band (0.5-1
and 1-3 Hz), condition and feature group revealed a signif-
icant effect of area for AudFeat tracking in the temporal
ROI during A-only trials (Table 1; 0.5-1Hz: y?(3)=27.02,
p=47x107% &% = 0.35; 1-3Hz x?(3)=29.62, p=2.7 x
107%, &2 = 0.39; p-values FDR-corrected). Post hoc com-
parisons revealed that in both bands, tracking of AudFeat
was higher in A41/42 and A22c compared with TE1.0/1.2
and A22r (Tukey-Kramer test, all tests p < 10°). The effect
of Area was close to but not significant for LipFeat tracking
in the occipital ROl during V-only trials (0.5-1Hz:
x2(3)=12.3, p=0.026, £ = 0.14; 1-3Hz: x*(3)=14.57,
p=0.012, £2 = 0.17). Importantly, these results suggest
that while the tracking of auditory features was stron-
ger in the early auditory region during A-only trials, the

May/June 2022, 9(3) ENEURO.0209-22.2022

restoration of unheard auditory features during lip reading
emerges to a similar degree among the individual temporal
and occipital areas.

We performed a similar analysis comparing the CMI
values within temporal or occipital ROls between
hemispheres. This revealed no significant effect of
hemisphere (Table 2), hence offering no evidence for a
statistical lateralization of feature tracking in the pres-
ent data.

Occipital cortex reflects pitch more than other
acoustic features during lip reading

Having established that occipital and temporal regions
track unheard auditory features, we then asked how
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Figure 4. Modality dominance and tracking of individual auditory features during lip reading. A, B, Comparison of the tracking of un-
heard AudFeat over the tracking of the modality-preferred sensory input in each ROI (i.e., AudFeat during A-only trials in the tempo-
ral ROI; LipFeat during V-only trials in the occipital ROI). C, D, Tracking of individual auditory features during V-only trials
conditioned on all other auditory and lip features in temporal (C) and occipital (D) ROIs. Brackets with asterisks indicate levels of sig-
nificance from one-way Kruskal-Wallis rank test with post hoc Tukey-Kramer testing (*p < 0.01, **p < 0.005, ***p < 0.001). Dots rep-
resent individual data points. Bars indicate the median, 25th and 75th percentiles. The gray dashed line indicates the 99th
percentile of the frequency-specific randomized maximum distribution correction for all other features. Units in A, B are a ratio; in C

and D, units are in bits.

individual features contribute to these representations.
For this we focused on the following condition: the track-
ing of AudFeat in the delta range in V-only trials (Fig. 4C,
D). We quantified the CMI for each individual feature,
while discounting the evidence about all other left-out vis-
ual and auditory features, hence focusing on the unique
tracking of each individual acoustic feature.

For the temporal ROI this revealed the prominent track-
ing of aud env (Fig. 4C). In the 0.5-1 Hz band only the CMI
for aud env was above chance (p <5 x 107°) and there
was a significant effect of feature (Kruskal-Wallis rank test
X?(2)=9.27, p=9.1 x 1074, £% = 0.14). Post hoc tests re-
vealed that the CMI for aud env differed significantly from
that of aud slope (Tukey—Kramer test, p=6.2 x 10~%; the
other comparisons were not significant; p=0.35 for env
vs slope and p=0.22 for slope vs pitch). In the 1-3 Hz
band, the tracking of all auditory features was significant
(all features: p <5 x 10~°) and there was no significant ef-
fect of features (y?(2) =4.14, p=0.13, £2 = 0.04).

For the occipital ROI, this revealed a dominance of aud
pitch (Fig. 4D). In the 0.5-1 Hz band, only the CMI of aud
pitch was above chance (p <5 x 10~°), a direct compari-
son revealed a significant effect of features (0.5-1Hz:
X?(2)=18.28, p=1.07 x107%, &% = 0.32) and post hoc
tests revealed a significant difference between aud pitch
and aud slope (p=7.03 x 10~°), while the other compari-
sons were not significant (p=0.26 for pitch vs env and
p =0.02 for env vs slope). In the 1-3 Hz range, the tracking
of all features was significant (all features: p <5 x 107°),
there was a significant effect of feature (x%(2)=19.2,
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p=6.77 x 1075, £2 = 0.34), and post hoc tests revealed a
significant difference between pitch and slope (p=3.61
x 107°), while the other comparisons were not significant
(p=0.05 for pitch vs env and p=0.12 for env vs slope).
Collectively these results suggest that the restoration of
acoustic signals in the occipital region emphasizes spectral
pitch, while in the temporal region this emphasizes the tem-
poral speech envelope.

Tracking of auditory features is associated with lip-
reading performance

Finally, we probed the second main question of whether
the restoration of unheard auditory features during silent
lip reading relates to word recognition performance. For
this, we probed the predictive power of the Ml about spe-
cific auditory features in either ROI for word recognition
performance during V-only trials (Fig. 5). We specifically
focused on the tracking of aud env in the temporal ROI
and of aud pitch in the occipital ROl as the dominant fea-
ture-specific representations (compare Fig. 4C,D). Using
linear models, we predicted word recognition scores
across participants based on the tracking indices of inter-
est and while discounting for potential confounds from
differences in signal-to-noise ratio in the MEG data.

The results show that variations in word recognition
scores are well predicted by the collective measures of
feature tracking (0.5-1Hz: R? = 0.74, 1-3Hz: R® = 0.8).
Importantly, the tracking of aud env in the temporal
ROI was significantly predictive of lip-reading performance
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Table 1: Feature tracking in individual anatomic areas within temporal and occipital ROls
0.5-1 Hz 1-83 Hz
ROI Anatomical area AudCMI Chisq; pval LipCMI Chisq; pval AudCMI Chisq; pval LipCMI Chisq; pval
A-only trials
Temporal A41/42 0.97 27.02; 4.7e-05 0.096 2.47;0.59 0.19 29.62; 2.7e-05 0.032 5.14;0.32
TE1.0/1.2 0.56 0.099 0.11 0.028
A22c 0.86 0.098 0.18 0.033
A22r 0.5 0.093 0.095 0.029
Occipital mOccG 0.1 3.50; 0.47 0.073 0.66;0.88 0.025 2.71;0.58 0.02 1.97; 0.66
OPC 0.09 0.069 0.025 0.02
iOccG 0.11 0.068 0.027 0.021
msOccG 0.11 0.074 0.029 0.021
V-only trials
Temporal A41/42 0.33 4.59; 0.36 0.1 5.14;0.32 0.034 5.24;0.32 0.027  1.00;0.85
TE1.0/1.2 0.25 0.088 0.031 0.028
A22c 0.34 0.1 0.035 0.027
A22r 0.22 0.085 0.028 0.029
Occipital mOccG 0.13 3.90; 0.44 0.17 12.30; 0.026 0.045 8.20;0.13 0.15 14.57;0.012
OPC 0.14 0.19 0.06 0.2
iOccG 0.14 0.2 0.048 0.17
msOccG 0.11 0.11 0.039 0.082

The table lists CMI values of either set of features (AudCMI, LipCMI) and a statistical comparison between the individual atlas-defined areas of the temporal and
occipital ROIs [Kruskal-Wallis tests, reporting chi-squares (Chisq) and p-values (pval)]. Bold numbers indicate statistically significant results. P-values are FDR-

corrected within this table.

(Fig. 5, 0.5-1Hz: B = 0.6, p=0.037; 1-3Hz: aud env B =
0.6, p=2.8 x 10~%), while tracking of pitch in the occipital
ROI was not (0.5-1Hz: B = —0.13, p=0.56; 1-3Hz: B =
—0.026, p =0.91). This conclusion is also supported by BFs
for the added predictive power of aud env and aud pitch to
these models (aud env in the temporal ROI; 0.5-1Hz:
BF=3.12; 1-3Hz: BF=26.34; aud pitch in the occipital
ROI; 0.5-1Hz BF =0.3; 1-3Hz BF =0.24).

Discussion

Natural face-to-face speech is intrinsically multidimen-
sional and provides the auditory and visual pathways with
partly distinct acoustic and visual information. These path-
ways could in principle focus mainly on the processing of
their modality-specific signals, effectively keeping the two
input modalities largely separated. Yet, many studies high-
light the intricate multisensory nature of speech-related
representations in the brain, including multisensory con-
vergence at early stages of the hierarchy (Schroeder et

Table 2: Feature tracking in each hemisphere

al., 2008; Schroeder and Lakatos, 2009; Bernstein and
Liebenthal, 2014; Crosse et al., 2015) as well as in classi-
cally amodal speech regions (Scott, 2019; Keitel et al.,
2020; Mégevand et al., 2020). However, as the present re-
sults suggest, the auditory and visual pathways are also
capable of apparent “restoring” information about an ab-
sent modality-specific speech component; while seeing a
silent speaker, both auditory and visual cortices track the
temporal dynamics of the speech envelope and the pitch
contour respectively, in a manner that is independent
on the physically visible lip movements. These “restored”
representations of acoustic features relate to participants’
word recognition, suggesting that they may form a central
component of silent lip reading.

Auditory and visual cortex reflect acoustic speech
features during lip reading

We systematically quantified the tracking of auditory
and visual speech features during unisensory auditory

0.5-1 Hz 1-83Hz
ROI Hemisphere AudCMI  z; pval LipCMI  z; pval AudCMI  z; pval LipCMI  z; pval
A-only trials
Temporal  Left 0.8 1.20; 0.59 0.094 —0.33;0.74 0.13 —0.81;0.59 0.028 —1.11;0.59
Right 0.64 0.099 0.15 0.031
Occipital Left 0.1 -0.37;0.74 0.07 —0.33; 0.74 0.027 0.81; 0.59 0.021 0.63; 0.65
Right 0.1 0.072 0.025 0.02
V-only trials
Temporal  Left 0.31 0.89; 0.59 0.098 0.76; 0.59 0.035 0.85; 0.59 0.025 —1.85;0.26
Right 0.26 0.091 0.03 0.03
Occipital Left 0.11 —2.24;0.2 0.14 —2.98;0.046 0.043 —1.68; 0.3 0.13 —2.07; 0.21
Right 0.15 0.2 0.054 0.18

The table lists CMI values of either set of features (AudCMI, LipCMI) and a statistical comparison between hemispheres of each ROI [Wilcoxon signed-rank tests,
reporting z values (z) and p-values (pval)]. P-values are FDR-corrected within this table.
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Figure 5. Association between lip-reading performance and tracking of auditory features. Across participants the tracking of aud
env during V-only trials in the temporal ROI but not the tracking of aud pitch in the occipital ROl was significantly associated with
word recognition performance (PC). Graphs show partial residual plots, dots represent individual data points and the line indicates

the linear fit to the target variable from the full regression model.

and visual (lip reading) conditions in dynamically entrained
brain activity. As expected, this confirmed that early audi-
tory and visual regions reflect acoustic and visual features
respectively at the time scales of delta (<4 Hz) and theta
(4-8 Hz) band activity, in line with previous work (Aiken
and Picton, 2008; Giraud and Poeppel, 2012; Doelling et
al., 2014; Haegens and Zion Golumbic, 2018; Obleser and
Kayser, 2019; Bauer et al., 2020). In addition, we found
that during lip reading both regions contained signifi-
cant information about unheard auditory features, also
when discounting for the physically presented lip move-
ments. This representation of acoustic features pre-
vailed in low delta in auditory and delta and theta bands
in visual cortex. Interestingly, this representation em-
phasized the temporal speech envelope in auditory cor-
tex and spectral pitch in visual cortex. These results not
only support that both regions are active during lip read-
ing (Calvert et al., 1997; Ludman et al., 2000; Calvert and
Campbell, 2003; Besle et al., 2008; Luo et al., 2010), but
directly show that they contain temporally and feature-
specific representations derived from lip movements that
are relevant for comprehension.

These results advance our understanding of how the
brain exploits lip movements in a number of ways. The
restoration of auditory features during silent lip reading
has been suggested in previous studies, one quantifying
the coherence of temporal brain activity with the nonpre-
sented speech envelope (Bourguignon et al., 2020) and
others quantifying the coherence between occipital activity
and the envelope (Hauswald et al., 2018; Suess et al., 2022).
Yet, these studies differed in their precise experimental
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designs, their statistical procedures revealing the “restora-
tion” effect, and did not probe a direct link to behavioral per-
formance. The present data demonstrate that such tracking
of auditory speech-derived features indeed emerges in par-
allel and in the same participants. Our data reveal the resto-
ration of unheard acoustic features also when discounting
the physically present lip signals (i.e., when using CMI). This
finding is important, as the mere coherence of brain activity
with the acoustic speech envelope may otherwise simply re-
flect amodal information contained in the physically-present
visual speech that is directly redundant with the acoustic
domain (Daube et al., 2019).

Furthermore, they show that this effect is largely bilat-
eral and emerges across a number of anatomically-identi-
fied areas, suggesting that it forms a generic property of
the respective pathways. Interestingly, the unheard audi-
tory features during V-only trials were restored dominantly
in the lower frequencies (0.5-3 Hz), similarly to recent re-
sults (Bourguignon et al., 2020). In principle, activity at
these slow timescales may possibly reflect oro-facial
cues such as head, eye or eyebrow movements (Munhall
et al., 2004; Schroeder et al., 2008). We aimed to mitigate
such confounds by instructing the speaker to move their
head as little as possible and to avoid gestures, and by in-
structing participants to focus their gaze on the speaker’s
lips. Moreover, our results align with recent work showing
the restoration of the unheard acoustic envelope even
when controlling for the speaker’s movement during visual
presentation (Bourguignon et al., 2020). One may specu-
late whether this restoration reflects the synthesis of
speech-specific elements. However, linguistic elements at
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this time scale mostly encompass phrasal structures, pros-
ody or speech rhythm (Gross et al., 2013; Meyer et al.,
2017; Keitel et al., 2018) and few of these are probably re-
stored during lip reading in detail. Possibly, the restoration
of the unheard envelope based on lip movements reflects
processes for the temporal segmentation of speech-re-
lated information based on low-frequency activity (Doelling
et al., 2014; Ghitza, 2017; Nidiffer et al., 2021).

These results come with an important caveat: the capa-
bility to read from lips alone is generally low in naive listen-
ers (Grant and Seitz, 2000; Altieri et al., 2011), which
poses an intricate problem when studying the cerebral
basis of lip reading. To solicit a sufficient number of trials
with successful lip reading and to balance word recogni-
tion performance between visual-only and auditory-only
trials, we relied on a specifically designed experimental
paradigm with two critical features. First, this paradigm
relied on sentences constructed based on a repeating set
of linguistic elements and a forced-choice task with a
closed set of options. This limits the generalizability of the
results toward naturally-produced everyday speech, as
participants could in principle learn the mapping of only
target words onto lip movements and choose the most
likely one during the course of the experiment. Although
we did not strictly control for this, both the chosen ele-
ments in each sentence as well as the target and distrac-
tor words were chosen randomly. Second, to familiarize
participants with the material, the A-only condition pre-
ceded the V-only condition during the experiment. This
may allow for memory-related processes to contribute to
the observed restoration effects. However, the use of 180
syntactically similar but unique sentences makes it in our
view highly unlikely that participants solely relied on the
stimulus repetition and memory to solve the word recog-
nition task. Rather, we believe that the restoration in the
occipital cortex reflects the active parsing of the lip move-
ment signal and engages specific visuo-phonetic trans-
formations, as speculated previously (Hauswald et al.,
2018; Nidiffer et al., 2021). This poses a possible solution
to how the brain finds the best match between visually
perceived speech and a word from a limited set of op-
tions. Nevertheless, the visual system might be primed to
perceive visual speech after being familiarized with the
underlying acoustic stimulus in a previous condition. Even
in naturalistic listening situations one is likely to do so
when observing a moving face. Therefore, we do not ex-
pect any priming of the visual system to confound the na-
ture of lipreading in this paradigm compared to real-life
situations. More so, this alludes to the origin of speech-
related information during lip reading in general, as bottom-
up processes may be aided by sentence-level predictions
or expectations that contribute in a top-down manner and
partially predict acoustic and lexical information based
on the immediately preceding material (Cope et al., 2017).
Given that lip-reading performance was higher than in
other studies or real-life circumstances (Grant and Seitz,
2000; Altieri et al., 2011), it is possible that top-down proc-
esses exerted a stronger influence on early visual and
auditory cortices in these data compared with real-life
circumstances.
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Lip reading activates a network of occipital and
temporal regions

Previous work has shown that lip movements activate a
network of temporal, parietal, and frontal regions (Calvert
et al.,, 1997; Paulesu et al., 2003; Pekkola et al., 2005;
Capek et al., 2008; O’Sullivan et al., 2017; Ozker et al.,
2018; Bourguignon et al., 2020) and that both occipital
and motor regions can align their neural activity to the dy-
namics of lip movements (Park et al., 2016, 2018). The
present data substantiate this, but also show that the rep-
resentation of the physically visible lip trajectory along vis-
ual pathways is accompanied by the representation of
spectral pitch, a type of selectivity not directly revealed
previously (Suess et al., 2022). Spectral features are vital
for a variety of listening tasks (Ding and Simon, 2013;
Tivadar et al., 2018, 2020; Albouy et al., 2020; Bréhl and
Kayser, 2021), and oro-facial movements provide con-
cise information about the spectral domain. Importantly,
seeing the speaker’s mouth allows discriminating form-
ant frequencies and provides a comprehension benefit
particularly when spectral features are degraded in the
underlying acoustic speech (Plass et al., 2020). This sug-
gests a direct and comprehension-relevant link between
the dynamics of the lip contour and spectral speech fea-
tures (Campbell, 2008). Hence, a representation of acous-
tic features during silent lip reading may underlie the
mapping of lip movements onto phonological units such
as visemes, a form of language-specific representation
emerging along visual pathways (O’Sullivan et al., 2017;
Nidiffer et al., 2021). This emphasizes the role of the visual
system as an active agent during audiovisual speech
processing.

Our results corroborate the notion that multisensory
speech reception is not contingent only on high-level
and amodal representations. Rather, they suggest that
the brain likely exploits cross-modal correspondences be-
tween auditory and visual speech along a number of dimen-
sions, including basic temporal properties (Chandrasekaran
et al., 2009; Bizley et al., 2016) as well as mid-level features,
such as pitch or visual object features, whose repre-
sentation is traditionally considered to be modality
specific (Schroeder et al., 2008; Zion Golumbic et al.,
2013; Crosse et al., 2015; Plass et al., 2020). Previous
work has debated whether visual speech is mainly en-
coded along the auditory pathways or whether occipital
regions contribute genuine speech-specific representa-
tions (O’Sullivan et al., 2017; Ozker et al., 2018). Our
results speak in favor of occipital regions supporting
speech reception by establishing multiple forms of
speech-related information, including those aligned
with the acoustic domain revealed here, and those es-
tablishing visemic categories based on complemen-
tary visual signals (Nidiffer et al., 2021; Suess et al.,
2022). Which precise occipital areas and by which patterns
of connectivity they contribute to comprehension remains to
be investigated, but both kinds of representations may well
emerge from distinct temporal-occipital networks (Bernstein
and Liebenthal, 2014). While visemic information may be
driven by object-related lateral occipital regions, the more
auditory-aligned representations such as the restoration of
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spectral signatures may be directly driven by the con-
nectivity between occipital areas and superior temporal
regions, which play a key role for audiovisual speech in-
tegration (Arnal et al., 2009; Lazard and Giraud, 2017).
In the auditory cortex, the alignment of neural activity
to the unheard speech envelope may reflect the predic-
tive influence of visual signals on guiding the excitabil-
ity of auditory pathways via low frequency oscillations
(Schroeder et al., 2008). This alignment of auditory cort-
ical activity to attended or expected sounds is well
documented and has been proposed as a cornerstone
of multisensory speech integration in general (Lakatos
et al., 2008; Schroeder and Lakatos, 2009; Stefanics et
al., 2010), and as shown here, directly relates to partici-
pants comprehension performance.
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