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INTRODUCTION

Diffusion‑weighted (DW) magnetic resonance imaging (MRI) 
has become a valuable technique for the detection and 
follow‑up of cerebral and cardiac ischemia.[1‑5] In addition, 
many of studies have been performed on the anisotropic 
character of diffusion in brain,[6,7] muscle,[8‑10] bone.[11‑15] 
These studies were very informative about the dependence 
of water diffusion on the architecture of the tissues.[7,12,16‑19] 
Diffusion in an isotropic medium strongly influences 
contrast in DW images acquired by introducing diffusion 
weighting gradients before and after the 180° pulse of a 
spin‑echo MRI sequence. Combining images corresponding 
to a fixed diffusion gradient direction, but variable strengths, 
an apparent diffusion coefficient map or ADC map can be 
calculated.

“Apparent” because the presence of cellular structures 
influences the random motion of the water molecules and 
leads to a diffusion coefficient that is smaller than that of 
pure water.

A B S T R A C T

Diffusion weighted imaging uses the signal loss associated with the random thermal motion of water molecules in the presence of 
magnetic field gradients to derive a number of parameters that reflect the translational mobility of the water molecules in tissues. With 
a suitable experimental set‑up, it is possible to calculate all the elements of the local diffusion tensor (DT) and derived parameters 
describing the behavior of the water molecules in each voxel. One of the emerging applications of the information obtained is an 
interpretation of the diffusion anisotropy in terms of the architecture of the underlying tissue. These interpretations can only be made 
provided the experimental data which are sufficiently accurate. However, the DT results are susceptible to two systematic error sources: 
On one hand, the presence of signal noise can lead to artificial divergence of the diffusivities. In contrast, the use of a simplified model 
for the interaction of the protons with the diffusion weighting and imaging field gradients (b matrix calculation), common in the clinical 
setting, also leads to deviation in the derived diffusion characteristics. In this paper, we study the importance of these two sources of 
error on the basis of experimental data obtained on a clinical magnetic resonance imaging system for an isotropic phantom using a 
state of the art single‑shot echo planar imaging sequence. Our results show that optimal diffusion imaging require combining a correct 
calculation of the b‑matrix and a sufficiently large signal to noise ratio.
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For an isotropic medium, the measured ADC is expected to 
remain the same if we change the direction of the diffusion 
weighting gradients.[20,21] In order to characterize the 
diffusion behavior in an anisotropic medium, it is necessary 
to determine six independent elements of the symmetric 
3  ×  3‑diffusion tensor  (DT) D.[17,21] This means that the 
experiment described earlier needs to be repeated for 
six independent choices for the direction of the diffusion 
weighting gradients. The derived DT components are 
rotationally variants, i.e., they are dependent on the 
directions of the applied diffusion gradients (i.e.,  the 
orientation in the laboratory frame[17,21]). From the DT 
components; however, we are able to derive rotationally 
invariant (RI) tissue characteristics.[17,18,21] These quantities 
include the three sorted eigenvalues and trace of the 3 × 3 
symmetric DT D, the anisotropy ratio index and the volume 
ratio (VR) index.[18]

The accuracy of both the rotationally variant and rotationally 
invariant quantities is limited by the propagation of signal 
noise in the course of the calculations of the required quantities 
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starting from the initial DW image data, i.e., the DW magnetic 
resonance images.[18] Another source of inaccuracy is the 
method used for expressing the impact of the sensitizing and 
imaging gradients on the signal measured.[12,16‑18]

The goal of this paper is to compare the relative importance 
of these two factors in the determination of the DT D and 
the derived rotationally invariant quantities. Two schemes 
for the calculation of the b‑matrix elements for a single shot 
echo‑planar MRI sequence have been considered:
•	 Only the diffusion gradients with their ramp‑up 

and ramp‑down times are taken into account in the 
calculation of the b‑matrix elements, which we denote 
b0. This is the approach that is most often used in the 
clinical applications[4‑10,13‑15]

•	 All diffusion and imaging gradients are taken into 
account in MRI sequence, including the sinusoidal 
readout gradients, the ramp‑up and ramp‑down times 
of all the gradients and the existence of cross terms. We 
denote the corresponding b‑matrix b1.

We have calculated b‑matrix elements using both methods 
and compared the diffusion results derived from data 
with varying signal to noise ratio (SNR) for each case. The 
experiments were carried out on an isotropic phantom, 
which should in principle lead to a DT with a single 
independent element.

DT imaging is considered as a relevant means for assessing 
the healthy and diseased tissues such as the alterations 
occurring in the pediatric brain myelination process, 
demyelization disorder, neoplasm involving white matter 
tract and stroke. It was found in studies involving patients 
with focal ischemia that the anisotropy ratio for healthy 
and diseased tissue was not significantly different, or 
slightly elevated during the 1st  day post‑occlusion, then 
decreased during the latter chronic phase, when diffusion 
is less impeded through cell membrane degeneration. 
However, a statistically significant increase was found in 
several rotationally variant indices of diffusion anisotropy 
measured in regions of small cortical and lacuna strokes in 
eight patients presenting 1‑5 days post‑occlusion.[22‑24]

THEORETICAL BACKGROUND

Background of the DT Theory

The diffusion phenomenon is a physical process involving the 
random motion of water molecules in a given medium while 
being driven by kinetic energy theory. The statistical physics 
described the phenomenon by the first law of Fick:[6,7,16‑23]

J = −D∇c� (1)

This law supports that a difference in concentration of a 
given moving molecules is creating a net flux from regions 

with a high concentration into the direction of regions 
with low concentration. Where J is the full flux, ∇c is the 
gradient of concentration and D is the diffusion coefficient. 
This, the diffusion coefficient D dependents on factors 
including dimensions of the diffusing molecule and the 
microstructure characteristics constituting the diffusion 
medium and the temperature of the medium. The diffusion 
coefficient is given by the Einstein equation:

D
k T

r
B=

6πη
� (2)

Where kB is the Boltzmann constant, T and  are the 
temperature measured in Kelvin and viscosity of the 
diffusion medium respectively, r is the radius of the diffusing 
molecule.

The net flux vanishes when concentration gradient become 
null, however molecules do continue moving to support the 
thermodynamic equilibrium.

This phenomenon is known as Brownian motion and was 
not been described as a stochastic motion mode. Molecules 
movement could be represented by a Gaussian distribution 
displacement model depending on D.

The probability for a given molecule to travel a distance x in 
the time t is defined by:

P x t
x

( , )
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)
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π
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Indeed, the mean square displacement during the time Δt 
is given by:

〈 〉 =x2 2D t∆ � (4)

The x distance was travelled by the diffusing molecule 
during Δt. When there are not any boundaries for molecules 
motion, diffusion is described as free and follows the 
random Brownian motion model. This diffusion model is 
called isotropic.

For an isotropic medium, the DT becomes:

D = D0.I� (5)

Where Do is the scalar diffusion coefficient and I is the unity 
matrix given by:

I =














1 0 0

0 1 0

0 0 1

A normalized DT D/D0 = Dnorm should reflect the specific 
constraint for an isotropic medium, namely that the three 
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diagonal elements must be equal to each other (D/D0 = 1) 
and the off‑diagonal elements should cancel to zero. 
Significant deviations from this property are to be 
ascribed to systematic differences in sensitivity of the 
various MRI sequences to diffusion phenomena. Indeed, 
connecting the observed anisotropy for isotropic media 
to errors in calibration, misalignment and cross‑talk 
between the  imaging and diffusion gradients has to be 
assessed.[6,7,16‑23]

Nevertheless, when molecules movement is hindered 
by obstacles, the diffusion will demonstrate preferential 
direction that is not associating barrier and the diffusion 
is said to be anisotropic. This last case is particularly 
important when studying the diffusion of water within 
human biological tissue, since composed by organized 
structures that are guiding the water movement which 
is not diffusing in free mode. Often these structures are 
not visible with conventional MRI techniques since their 
dimensions magnitudes are smaller than the resolution of a 
magnetic resonance image.

These aspects are important when interested by brain tissue 
magnetic resonance images. Thus, various brain tissues 
are highly characterized by their diffusion properties 
including white matter, gray matter  and  cerebrospinal 
fluid.[6,7,16‑23]

Expression for the b Matrix and DT

From the signal intensity in the DW magnetic resonance 
images, we can compute the DT elements:[25,26]

ln
I(b)
I(0)

2

0
F( ) 2 ( ) f D F( ) 2 ( ) f

T



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The b matrix can be calculated as follows:

b F= ⋅ −[ ] − ⋅[ ]⋅ ⋅ ⋅∫bγ ξ ξ2

0
( ) 2 ( ) f F( ) 2 ( )TTE
t tt t t df � (7)
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2
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0
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and g is the gyromagnetic ratio, G (t) = [Gx (t), Gy (t), Gz (t)] 
the column vector representing the gradient pulses in the 
diffusion imaging sequence, TE the echo time and x (t) the 
Heaviside function with:

ξ ξ( )=0 when <
1

2
TE and ( )=1 when 

1

2
TEt t t t ≥  

The DT D is expressed in the laboratory frame x, y, z as 
follows:

D=
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 a symmetric 3 × 3 tensor.

In the same frame of reference expression[5] can be rewritten 
under the form:[25]
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I (b) is the signal intensity for particular diffusion gradient 
sensitization and I (0) is the signal intensity measured in the 
absence of the diffusion gradient sensitization.

The b0 matrix elements are calculated using the following 
approximated expression:[25]

b = (
1
3

)
1

30
1
6ij
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d is the duration of the applied trapezoidal diffusion 
gradients, D the delay between the start times of the 
symmetric diffusion gradients before and after the 180° 
pulses, e represents the fixed ramp‑up and ramp‑down time 
of the trapezoidal diffusion gradients.

The elements of the b matrix b1, are computed from Eqs. (7) 
and (8), with a G (t) that accurately reflects all gradients 
switched on at any time during the run of the DT MRI 
sequence.

Eigenvalues Sorted and the Trace

In the previous section DT, D, was expressed in the 
laboratory frame of reference. After diagonalization of the 
DT and sorting of the eigenvalues, we obtain a diagonal 
diffusivity tensor, l, expressed in the following:

λ
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For an isotropic medium Eq. (11) becomes l=λ0I, where I is 
the unit tensor and

λ λ
0 k

k = 1

3

kk
k = 1
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3
Tr D= ∑ = ∑ =  � (12)

where we have introduced the trace of the DT:



Journal of Medical Signals & Sensors

Vol 4  | Issue 2  |  Apr-Jun 201488

Boujraf: Assessing diffusion anisotropy on the basis of magnetic resonance images

Tr D= Dk
k=1

3

kk
k=1

3

 λ∑ = ∑ � (13)

Anisotropy Indices

In order to express quantitatively the degree of anisotropy 
in the tissue studied, a set of indices derived from the 
sorted eigenvalues can be used:[16‑18,25]

The anisotropy ratio, AR, compares the largest diffusivity to 
the mean of the two others:

AR =
+ )/2

1

2

l
l l( 3

� (14)

The anisotropy ratio index is equal to 1 for a fully isotropic 
medium.

The VR, is the volume of an ellipsoid the main axes of which 
are the three sorted eigenvalues of the DT D, divided by the 
volume of a sphere with radius equal to the mean diffusivity.[18]

VR =
[ / 3]

1 2 3

1 2 3
3

λ λ λ
λ λ λ

⋅ ⋅
+ +( )

� (15)

VR varies from 0 for strong anisotropy to 1 for complete 
isotropy.

MATERIALS AND METHODS

Numerical Calculation of the b Matrix Elements

Mathcad Software (Math Soft International, UK) running on 
a personal computer, was used to perform the calculation of 
the b‑matrix elements for the two schemes considered. b0 
was computed from the approximated Eq. (10), whereas b1 
was compute shot DW echo planar imaging sequence (EPI) 
following a Stejskd from the integral expression of the 
b matrix, using the numerical integration for Eq. (7).[27]

Data Acquisition of the DW MRI

The DW MRI were obtained using a 1.5 Tesla Magnetom 
Vision whole body imager  (Siemens, Erlangen, Germany). 

The system was equipped with an actively shielded 
gradient system with maximum gradient strength 25 mT/m. 
An isotropic phantom composed by water doped with 
NiSO4 × 6H2O. All experiments were carried out at a fixed 
temperature of ~ 22°C. The isotropic phantom considered 
was positioned in a manufacturer supplied head coil used 
for routine head clinical examinations. The DW MRI was 
performed using a single al‑Tanner approach.[28,29] The pulse 
sequence is illustrate in Figure 1.

The MRI parameters were, echo time TE = 123 ms, field 
of view = 240 mm, square matrix size = 128 × 128, slice 
thickness = 5 mm. The duration of each diffusion gradient 
d = 26 ms, the time between the starts of each of the two 
symmetrical consecutive diffusion gradients D = 59.7 ms. The 
rise times of the diffusion gradients were fixed to e = 700 
ms. The trapezoidal diffusion gradients strengths were 0, 11 
and 22 mT/m. The single slice orientation was transverse, 
i.e. perpendicular to the external magnetic field. The basic 
measurement lasted 38 s, yielding a series of 13 images. Each 
series consisted of one image without diffusion weighting 
and one weakly and one strongly DW image for each of 
six non‑collinear magnetic field gradient directions: {(0, 0, 
0), (1, 0, 0), (0, 1, 0), (0, 0, 1), (1/ 2 , 1/ 2 , 0), (1/ 2 , 0, 1/ 2
), (0, 1/ 2 , 1/ 2 )}. In those experiments we have increased 
the SNR of the DW‑EPI images by averaging over multiple 
acquisitions, which is commonly done in the clinical practice. 
This consisted of repeating the entire imaging experiment 
number of acquisitions times and averaging the signal 
over these number of acquisitions measurements. As it is 
difficult to attach a single meaningful SNR to the 13 images 
comprising a DT measurement, we have preferred to report 
the results as function of the number of acquisitions, which is 
the same for all these images.

Data Post‑processing

The echo‑planar diffusion magnetic resonance images data 
was transferred from the scanner to a personal computer 
running Linux for off‑line post‑processing, using C‑programs 
developed in our group for this purpose (30). From the 13 
DW magnetic resonance images measured for each slice 
considered, we derived the six independent elements of 

Figure 1: Schematic diagram of the diffusion-weighted echo-planar imaging sequence
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the DT.[30] After diagonalization of the DT, a sorting routine 
produced the sorted eigenvalues. Finally, we calculated the 
trace of the DT and two anisotropy indices: The anisotropy 
ratio AR and the VR. All calculations were carried out on a 
pixel by pixel basis. We evaluated the different parameters 
in a fixed Region of Interest (ROI) on the phantom images.

RESULTS

in the following, all quantities derived from an analysis using 
b matrix models b0 and b1 will carry the superscripts 0 and 1 
respectively. All errors correspond to one standard deviation.

Numerical Calculations of the b Matrix Elements

As you can be seen in Table 1 the b matrix elements calculated 
for three values of the diffusion gradients for six independent 
choices of the gradient direction of the MRI sequence using 
both algorithms are compared. The systematic deviation 
between the elements of b0 and those of b1 varies from less 
than 1‑7% and depends strongly on the gradient directions.

The Diagonal Elements of the DT

As shown in Figure 2a and b, the number of acquisitions 

dependence of the diagonal elements of the DT for an 
isotropic phantom in the laboratory frame derived using 
both b matrix models is shown and compared to λ0.

With low number of acquisitions, the values of Dii
0 and 

Dii
1 (i: x, y and z) deviate significantly from the reference 

value λ0 = 2.17 × 10‑3 mm2/s, defined as the asymptote of 
the arithmetic mean of the λk

1 in function of number of 
acquisitions (k = 1, 2 and 3). Although the elements Dii

1 
are found to converge to λ0 with increasing number of 
acquisitions, this is not the case for Dii

0, even at the highest 
number of acquisitions.

The Sorted Eigenvalues

Figure  3a and b describe corresponding results for the 
sorted eigenvalues, as it was the case for the diagonal 
elements of the DT. At low number of acquisitions, the 
values of λk

0 and λk
1 (k = 1, 2 and 3) deviate significantly 

from the reference value λ0. The deviations are found to 
be similar for λk

0 and λk
1. Again, while the elements λk

1 are 
found to converge with increasing number of acquisitions 
to the known common value of reference λ0, this is not the 
case for λk

0 even at the highest number of acquisitions. The 
deviation of λk

0 from λ0 at highest number of acquisitions is 
stronger in comparison to Dii

0.

The Trace and the Anisotropy Ratio Index

As shown in Figure  4a, at high number of acquisitions, 
Trace1 has the same values as λ0, as expected, whereas it 
deviates from λ0 by less than 2% at the lowest number of 
acquisitions. Trace0 deviates from λ0 by an extra 1% with 
respect to Trace1 at all values of number of acquisitions.

Figure  4b shows the AR dependence on number of 
acquisitions. At low number of acquisitions the values of 
AR0 and AR1 deviate from the isotropic value by 10% and 5% 
respectively, while their deviations are 5% and 2% at higher 
number of acquisitions. However, AR0 and AR1 deviate from 
each other by 5% at the lowest number of acquisitions 
while this deviation remains stable  (3%) at number of 
acquisitions >20.

Table 1: Percentage of deviation between both sets of 
b-matrix elements, b0 and b1. The elements in the table 
marked by (0) correspond to a value that is <1%
Gradient components 
in mT/m

bxx % byy % bzz % bxy % bxz % byz %

(0, 0, 0) 0 0 0 0 0 0
(11, 0, 0) 7 0 0 0 1.32 0
(22, 0, 0) 2.44 0 0 0 0 0
(0, 11, 0) 0 1.40 0 2.40 0 1
(0, 22, 00 0 0 0 1.20 0 0
(0, 0, 11) 0 0 1.64 0 1.40 0
(0, 0, 22)
(11/21/2, 11/21/2, 0) 7 1 2.25 3 2 1
(22/21/2, 22/21/2, 0) 3.45 0 3.45 0 0 1
(11/21/2, 0, 11/21/2) 7 0 2.25 0 0 0
(22/21/2, 0, 22/21/2) 3.45 0 1 0 0 0
(0, 11/21/2, 11/21/2) 0 1 2.25 3.40 2 2.10
(0, 22/21/2, 22/21/2) 0 0 1.17 1.72 1.06 1.50

Figure 2: Diagonal elements of the diffusion tensor (mean ± standard deviation) × 10−3 mm2/s

ba
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Figure 4c shows that the variation of VR0 and VR1 is within 
1% for almost all values of number of acquisitions. This 
variation is practically negligible.

DT Maps and Indices

Figure  5 demonstrates maps of the diagonal element of 
the DT  (Dxx, Dyy, Dzz) calculated using 20 averages in the 

first row and one acquisition in the second row (a). In (b) 
the eigenvalues of the DT  (λ1, λ2, λ3) are derived from 
DT calculated using 20 averages in the first row and one 
acquisition in the second row. All maps were calculated 
from DW images of the same phantom. Indeed the maps 
acquired using higher number of acquisitions demonstrates 
converging contrast in this isotropic phantom. This 
reflects reduced systematic errors as function of number 

Figure 5: Maps of the diagonal element of the diffusion tensor (Dxx, Dyy, Dzz) calculated using 20 averages in the first row and one acquisition in the second row 
(a). In (b) the eigenvalues of the diffusion tensor (λ1, λ2, λ3) are derived from diffusion tensor calculated using 20 averages in the first row and one acquisition 
in the second row. All maps were calculated from diffusion weighted images of the same phantom

ba

Figure 4: Mean ± standard deviation of the trace, anisotropy ratio and volume ratio as function of number of acquisitions in an isotropic phantom

c

ba

Figure 3: Sorted eigenvalues (mean ± standard deviation) × 10−3 mm2/s

ba
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of acquisitions. Similarly, Figure  6 demonstrates Trace of 
the DT, Anisotropy ration (AR) and VR indices derived from 
DT calculated using 20 averages in the first row and one 
acquisition in the second row. All maps were calculated 
from DW images of the same phantom. Indeed the maps 
of indices acquired using higher number of acquisitions 
demonstrate converging contrast in this isotropic phantom. 
This reflects reduced systematic errors as function of 
number of acquisitions.

DISCUSSIONS

When producing normative data for characterizing the 
anisotropy and fiber orientation in specific anatomic 
regions, accurate diffusion anisotropy maps are essential in 
achieving significant results.[31,19] Any error in the calculated 
diffusion quantities reflecting the anisotropy could make 
an isotropic medium appear to be anisotropic and vice 
versa. Our data reflects the impact of the two main types 
of systematic error on the DT elements and derived indices.

Firstly, systematic errors those are due to neglecting the 
imaging gradients of the pulse sequence when calculating 
the b‑matrix elements. Eqs (1) and (4) show that for a given 
number of acquisitions significant deviations between the 
diagonal elements of the DT for an isotropic phantom could 
be a consequence of the b‑matrix being incorrectly calculated. 
The error in the calculations of the different diagonal 
and off‑diagonal elements of the b‑matrix is expected to 
vary because of the varying role played by the diffusion 
and imaging gradients in each of the various laboratory 
frame directions for diffusion weighting. Furthermore, the 

interaction between imaging and diffusion gradients is very 
complicated, especially when measuring diffusion along 
directions that do not coincide with the principal axes of the 
laboratory frame (e.g. xy, xz and yz). On the basis of computer 
simulations, Mattiello et al.,[26] have been reported that a given 
percentage of error in b‑matrix elements produces the same 
percentage of error but of opposite sign in corresponding 
elements of the statistically estimated DT elements.

Secondly, systematic errors could also be caused by other 
factors such as signal noise, eddy currents, susceptibility 
effects and the calculation process that starts from the 
initial DW‑imaging data and finishes at the desired diffusion 
parameter. In practice, diagonalizing the DT and sorting the 
eigenvalues is susceptible to accumulation of errors. Our 
data reflects error in DT elements due to the propagation of 
noise present in the acquired DW images.[32,33] Using Monte 
Carlo simulations, Pierpaoli and Basser[18] and Bastin et al.,[34] 
have predicted that the effect of noise on the diffusion 
quantities (diagonal elements of the DT, eigenvalues sorted 
and the reported anisotropy indices) could be drastically 
reduced when measuring at high number of acquisitions. 
Our experimental results corroborate this finding.

The importance of the deviations of the diffusion parameters 
from λ0 is not easy to assess, as the random errors on the 
mean values of the parameters is smaller than the standard 
deviations plotted in Figures 2‑4 by a factor  (Number of 
pixels in the ROI)‑1/2.

A comparison with the uncertainty in diffusion quantities 
due to the temperature fluctuation with 1°C shows that the 

Figure 6: Trace of the diffusion tensor, anisotropy ration index and volume ratio index derived from diffusion tensor calculated using 20 averages in the first 
row and one acquisition in the second row. All maps were calculated from diffusion weighted images of the same phantom
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average values of the ADCs and diffusivities obtained using 
the full b‑matrix deviate by less than this uncertainty for 
number of acquisitions ≥5. When using the approximated 
b‑matrix, this observation remains valid for the ADCs while 
the diffusivities exhibit larger deviation, even at the largest 
number of acquisitions.

The difference between the use of b0 and b1 for calculating 
the DT elements and derived quantities is most obvious 
at high number of acquisitions where only the effect of 
ignoring imaging gradients remains and the impact of noise 
is minimized. Even at the highest number of acquisitions 
considered, deviations up to 5% from λ0 are caused by using 
b0 instead of b1.

When using b1, the only systematic deviations that remain 
are due to noise  [Figures  2b, 3b and 4]. In this case, at 
highest number of acquisitions, the Dii and λk deviate from 
λ0 by at most 2%. The effects of all systematic errors are 
less visible on Trace and VR than for AR. This means that 
the errors are not transmitted in the same way to these 
parameters. Figure  4 shows also that an estimate of the 
diffusion anisotropy can be made within the same margin of 
deviation as for Dii and λk.

Finally, DTI results obtained by combining number of 
acquisitions ≥5 and the use of the full b‑matrix (b1) lead 
to the same level of deviation from λ0 as temperature 
fluctuations by 1°C.

CONCLUSIONS

To perform a measurement of diffusion anisotropy in 
non‑homogeneous tissues like brain white matter, in which 
the fibers are oriented in complex way, is a challenging 
task. It requires performing the DW imaging with very high 
accuracy.

Due to image noise and b‑matrix approximations systematic 
errors can produce erroneous conclusions of anisotropy. 
With correct calculation of b‑matrix and sufficiently 
large number of acquisitions spurious anisotropy can be 
avoided.
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