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Abstract
Purpose of Review Cardiac cell-based therapy represents a promising approach for cardiac repair. However, one of the main
challenges is cardiac arrhythmias associated with stem cell transplantation. The current review summarizes the recent progress in
model systems for addressing mechanisms of arrhythmogenesis in cardiac repair.
Recent Findings Animal models have been extensively developed for mechanistic studies of cardiac arrhythmogenesis.
Advances in human induced pluripotent stem cells (hiPSCs), patient-specific disease models, tissue engineering, and gene editing
have greatly enhanced our ability to probe the mechanistic bases of cardiac arrhythmias. Additionally, recent development in
multiscale computational studies and machine learning provides yet another powerful tool to quantitatively decipher the mech-
anisms of cardiac arrhythmias.
Summary Advancing efforts towards the integrations of experimental and computational studies are critical to gain insights into
novel mitigation strategies for cardiac arrhythmias in cell-based therapy.

Keywords Cardiac arrhythmias . Cardiac cell-based therapy . Human-induced pluripotent stem cells . Animal models of cardiac
arrhythmias . Patient-specific diseasemodels . Genome editing . Cardiac hypertrophy . Heart failure

Introduction

Cardiovascular disease is the leading cause of morbidity and
mortality worldwide and causes more deaths than all cancers

combined [1]. Despite significant advances in therapy and
management, heart failure (HF) remains a life-threatening dis-
ease with a 5-year mortality rate of 45–60% [1]. Therefore,
there is a compelling need to seek new options for patients
suffering from HF. Since adult cardiac myocytes are unable to
proliferate sufficiently to replace the damaged tissue, stem cell
therapy represents a promising approach for the treatment of
end-stage HF, since it aims at generating new functional myo-
cardium and inducing neoangiogenesis. However, therapeutic
strategies using cell-based therapy have not produced full re-
storative functions [2, 3]. A high rate of transplanted stem cell
loss (90% within the first few days) has been observed [4, 5].
Moreover, stem cell transplantation has been shown to be
associated with occurences of cardiac arrhythmias [6•, 7••, 8,
9], which represents one of the main challenges in the field of
cardiac cell-based therapy.

Animal models have been extensively developed for mech-
anistic studies of cardiac arrhythmogenesis [10•, 11–13], en-
abling genetic modification using gain- and loss-of-function
strategies. However, limitations exist including significant
electrophysiological differences between human and animal
hearts, costs, as well as ethical considerations. To circumvent
some of these shortcomings, cellular and multicellular models
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for arrhythmogenesis have been widely used, which are fur-
ther enhanced by advances in human-induced pluripotent
stem cells (hiPSCs), tissue engineering [14–19], and gene
editing. The hiPSC-derived cardiomyocytes (hiPSC-CMs)
can be obtained from healthy or diseased individuals, and
provide the inexhaustible source for human disease modeling.
Finally, recent development in multiscale computational stud-
ies provides yet another powerful tool to quantitatively test the
mechanisms of cardiac arrhythmias in cardiac repair [20••].

The current review will summarize the recent progress in
model systems for addressing mechanisms of cardiac
arrhythmogenesis, and serve as a discussion platform to gain
insights into mechanistic underpinnings and novel mitigation
strategies for arrhythmogenesis in cardiac repair.

Animal Models for Cardiac Arrhythmias

Numerous species have been utilized to study the underlying
mechanisms of arrhythmogenesis, ranging from small animals
such as zebrafish to large animal models such as pigs and
nonhuman primates (Fig. 1). Although no animal models per-
fectly replicate arrhythmogenesis seen in humans, the multi-
tudes of animal models have substantially advanced our un-
derstanding of different aspects of arrhythmogenesis. Small

animal models are generally used for mechanistic discoveries,
drug screening, and testing, while larger animals are reserved
for validation of these key findings and to further establish
drug safety profiles.

Cardiac Hypertrophy

Electrical and structural remodeling in pathological car-
diac hypertrophy has been shown to increase patient’s
susceptibility to ventricular arrhythmias (VAs) and sud-
den cardiac death (SCD). Electrical remodeling in car-
diac hypertrophy is well documented and includes ac-
tion potential (AP) prolongation [21] and conduction
delay [22]. One of the most commonly used animal
models of cardiac hypertrophy is surgical aortic con-
striction, which elevates afterload and consequently in-
duces adverse structural and electrical remodeling.
Aortic constriction is commonly used in mouse models
due to the ease of genetic manipulation; however, it has
been adapted to rats [21], guinea pigs [23], rabbits [24],
and pigs [25]. Additionally, animal models with volume
overload can induce pathological remodeling of the
heart that result in cardiac hypertrophy, such as
arterio-venous shunt formation and aortic regurgitation
[26].

Fig. 1 Summary of the model
systems for investigating the
mechanism of arrhythmogenesis
in cardiac repair demonstrating
the reiterative process for the
research strategies (figure
generated using BioRender)
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Myocardial Ischemia and Infarction

Coronary artery disease (CAD), leading to myocardial ische-
mia and infarction, is a frequent cause of cardiac arrhythmia.
Cardiac ischemia and infarction result in complex electro-
physiological remodeling [27•]. In murine models, myocardi-
al infarction is typically induced by ligation of the left anterior
descending (LAD) coronary artery. In larger animal models,
ligation of other coronary arteries such as the left circumflex
or right coronary artery has also been used [28].

Atrial and Ventricular Tachyarrhythmia

Atrial fibrillation (AF) is the most prevalent cardiac arrhyth-
mia seen clinically [29]. A commonly used model of AF is
atrial tachypacing. Although it is employed in dogs [30],
sheep [31], pigs [32], and rabbits [33], its usage has not been
extended over to smaller animals due to their significantly
higher heart rates [34]. Tachypacing may also be used on the
ventricles to study HF-induced arrhythmogenesis [35].

Heart Failure

Heart failure (HF) occurs when the cardiac output is no longer
able to meet the metabolic demands of the body, and is fre-
quently associated with cardiac arrhythmias [36]. Animal
models of cardiac hypertrophy, myocardial ischemia/infarc-
tion, and atrial and ventricular tachypacing [35] can produce
HF when the intervention is prolonged, combined, and/or se-
vere. Although not necessary in smaller animals, larger ani-
mals may require more than one intervention to induce HF.
For instance, a commonly used rabbit model of HF involves
aortic valve cusp perforation, followed by aortic constriction,
to create a volume and subsequent pressure overload [26].
These multiple interventions are required since HF is uncom-
mon with pressure overload in rabbits, but they may induce an
increase in mortality.

Genetic Models

Gene-targeted animal models predominantly in mice have
greatly expanded our mechanistic understanding of long QT
syndrome (LQTS), short QT syndrome (SQTS), Brugada syn-
drome, catecholaminergic polymorphic ventricular tachyar-
rhythmia (CPVT), sick sinus syndrome, cardiac conduction
disease, and familial AF [37]. Genetic manipulation in larger
animals have also been described including LQTS 1 and 2
models in rabbits, overexpression of TGFB1 in goats, and
mutated SCN5A in pigs [10•]. Indeed, emerging technologies
for genome editing, including clustered regularly interspaced
short palindromic repeats (CRISPR)-Cas9 mediated gene
editing, have enabled the generation of genetic models for
arrhythmias in larger animals.

Animal models have significantly expanded our under-
s t a nd i ng o f t h e mechan i s t i c unde r p i nn i ng o f
arrhythmogenesis, but there exist advantages and limitations
that should be considered. Besides the obvious issues with
costs and the length of time required for model generation,
there are inherent species-dependent differences at the molec-
ular and cellular levels that impact pathophysiology. Indeed,
these differences must be evaluated and understood in order to
translate therapeutic findings to clinical practice. Advantages
of using small animal models are their relatively inexpensive
costs, short gestational period and large litter size, and relative
ease of genetic manipulation. However, small animals possess
cardiovascular anatomy and physiology that are substantially
different from humans [34]. For instance, AP profiles, electro-
cardiograms, and heart rate are significantly different between
humans and rodents [10•]. These differences make larger an-
imal models more suitable for cardiac electrophysiology and
arrhythmia studies. Nonetheless, the usage of small animal
models in arrhythmia research provides valuable insights,
guides the design of studies in larger animals, and eventual
translation to humans.

Ex Vivo Models for Cardiac Arrhythmias

Studies in cardiac arrhythmogenesis have also taken advantage
of the ex vivo Langendorff-perfused heart (Fig. 1). Isolated
hearts from rabbits, guinea pigs, sheep, and mice have been
extensively used to investigate cardiac repolarization [38, 39],
AF [40, 41], ventricular fibrillation (VF) [42–44], torsades de
pointes (TdP) [45], AV node conduction [46, 47], and
hypokalemia-induced arrhythmia [38, 48, 49]. Explanted hu-
man hearts from patients who undergo heart transplantation
have been invaluable in cardiac arrhythmia studies [44].
Additionally, ex vivo Langendorff-perfused hearts are
employed for drug testing [46, 50–54]. The ex vivo studies
enable regional-specific interrogations including cardiac con-
duction systems, sinoatrial and atrioventricular nodes, regional
heterogeneity, and cell-cell interactions. Finally, advanced im-
aging techniques such as optical or electrical mapping, two-
photon microscopy, and optogenetics have greatly enhanced
the impact of these ex vivo models [55–60]. One main pitfall
of the model is the absence of cardiac innervation, which is a
critical factor for arrhythmogenesis.

Cellular and Tissue Models
for Arrhythmogenesis

For deciphering the mechanisms of arrhythmogenesis, in vitro
models are useful tools that can simplify experiments by
restricting the factors of interest to be tested independently.
The models vary from murine to human cardiomyocytes and
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from single cells to multi-cellular preparations (Fig. 1). Each
of these models is associated with distinct advantages and
disadvantages.

Cardiomyocytes From Animal Models

Primary cardiomyocytes can be harvested from animalmodels
and are critical for our understanding of mechanisms of ar-
rhythmias at the cellular and subcellular levels. The source of
focal arrhythmic activity—spontaneously generated or trig-
gered AP—either due to ion channelopathies, altered ion
channel expression, subcellular localization, or post-transla-
tional modifications, and drug-modulated channel function,
can be readily deciphered using patch-clamp and imaging
techniques. Myocardial infarction models exhibiting arrhyth-
mias in vivo that have been attributed to reduced Ca2+ or K+

currents were determined in single cardiomyocytes [61, 62].
Underlying cellular mechanisms of arrhythmias in atrial and
ventricular tachycardia models were similarly determined in
isolated single cells [63]. Studies using single cardiomyocytes
enable focused experiments on the cellular and subcellular
mechanisms in the absence of other contributing pro-
arrhythmic factors, such as fibrosis.

Cell Lines of Cardiomyocytes

A readily available source of cardiomyocytes is highly desir-
able for in vitro studies; however, the lack of regenerative
capability of adult cardiomyocytes requires that primary cul-
ture is used as the main source. To circumvent limited prolif-
erative potential of cardiomyocytes, cell lines have been gen-
erated by restoring the proliferative ability. This can be
achieved by infecting cardiomyocytes with simian virus
(SV) 40, a type of DNA tumor virus, that expresses large
and small T antigens, which cooperatively inhibit tumor sup-
pressors and transform the cells to escape senescence [64].
HL-1 cells are commercially available, immortalized murine
atrial cardiomyocytes that originated from a subcutaneously
engrafted atrial tumor, AT-1 expressing SV40 large T-antigen
under the atrial natriuretic factor promoter, in C57BL/6J mice
[65]. The ability of this cell line to expand indefinitely in vitro
and to allow cryo-storage, while maintaining the characteris-
tics and function of cardiomyocytes, make this cell line an
attractive alternative to primary cardiomyocytes. Since its der-
ivation, this line has been used in a large number of studies,
including those investigating reentry spiral waves [66]. A hu-
man cardiomyocyte line, AC16, has been similarly generated
through fusion of primary ventricular cardiomyocytes with a
SV40-immortalized human fibroblasts [67]. Although this cell
line expresses cardiomyocyte-specific markers and exhibits
outward currents, it is unable to generate APs due to its defi-
ciency in inward currents. This caveat in electrophysiological
characteristic makes it unsuitable for arrhythmia studies.

HiPSC-Derived Cardiomyocytes

Considerable insights in cardiac arrhythmias have been de-
rived from various species. However, the mechanisms respon-
sible for arrhythmogenesis in the context of human electro-
physiology may be significantly different from animal models
with differing electrophysiology. Therefore, human
cardiomyocytes remain the most reliable model for investigat-
ing the mechanisms of human arrhythmias. Primary human
cardiomyocytes are not easily obtainable. Their laboratory
usage is further limited by the difficulty of maintenance in
culture. HiPSCs that can differentiate into all somatic cell
types, including cardiomyocytes, have garnered great
interest in recent years as a readily available option. These
cells not only open the possibility of having an unlimited
cell source as well as genetic modification or imposed
environmental conditions but hiPSCs can also be generated
from patients suffering from cardiac arrhythmias to generate
patient-specific in vitro models. To date, numerous LQTS-,
SQTS-, Brugada syndrome-, and CPVT-hiPSC lines have
been generated to study the channelopathies [68–73].
Cardiomyocytes differentiated from these diseased lines faith-
fully exhibit abnormal APs and arrhythmias as expected. The
predictive value of hiPSC-derived cardiomyocytes for drug
testing and safety screening has also been demonstrated
[74–76]. Additionally, this model has been utilized to itera-
tively improve the moiety of a target compound, mexiletine,
for therapeutic potency and safety [77].

HiPSC-derived cardiomyocytes are not, however, with-
out disadvantages. There are two key issues associated
with using these cells for studying arrhythmias: (1) the
heterogeneity of cardiomyocyte subtypes in the differen-
tiated population and (2) immaturities of hiPSC-derived
cardiomyocytes. Widely used cardiomyogenesis protocols
to differentiate hiPSCs yield a heterogeneous population
of pacemaker-, atrial-, and ventricular-like subtypes, as
classified by the AP profiles [78]. The heterogeneity in
electrophysiology among the subtypes can mask dysfunc-
tional effects due to differential expression of ionic cur-
rents. Indeed, only the atrial and ventricular subtypes dif-
ferentiated from LQT1-patient hiPSCs exhibit significant-
ly prolonged AP duration, while the electrophysiology of
the pacemaking subtype appears normal [79]. The results
highlight the importance of using the appropriate subtype
for studying the arrhythmia in question.

A few strategies have been devised to minimize sub-
type impurities. Enrichment of desired cardiomyocyte
subtype requires a surface marker with high specificity
for the subtype. Ventricular cardiomyocyte enrichment
by selecting CORIN-positive or CD77-positive/CD200-
negative cardiomyocytes has been reported, but the spec-
ificity could still be improved [80, 81]. An alternative
strategy to reduce undesired cardiomyocyte subtype is
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direct differentiation to a specific subtype. Directed dif-
ferentiation protocols that promote a higher fraction of
ventricular, atrial, or pacemaking subtype have been re-
ported [82–88]; however, none of the protocols could at-
tain 100% yield of the desired subtype.

Immaturity of hiPSC-derived cardiomyocytes compared to
adult cells, from excitation to contraction, is another issue that
may confound experimental results. For instance, the pace-
making, hyperpolarization-activated cyclic nucleotide-gated
(HCN4) channels that are absent in the adult working
cardiomyocytes are present in all hiPSC-derived
cardiomyocytes [89]. Conversely, inwardly rectifying Kir2.1
channels that are present to stabilize the membrane potential in
adult working cardiomyocytes are largely absent in hiPSC-
derived cardiomyocytes [90]. Consequently, all hiPSC-
derived cardiomyocytes exhibit automaticity or phase-4 depo-
larization, both of which can be a trigger for arrhythmia.
Therefore, only a preparation with stable baseline response
should be used for the experiments. Whenever possible, the
baseline response should also be recorded for comparison
against induced dysfunction. The lack of Kir2.1 also means
that cardiomyocytes differentiated from a LQT7 patient-
specific hiPSC line are unlikely to be good candidates to study
this particular channelopathy until these cells further mature.

To remedy this developmental deficiency, maturation strat-
egies have been devised, which range from electrical, mechan-
ical, to metabolic conditioning [90–95]. Significant improve-
ments in all functional aspects have been observed with mat-
uration conditioning, but none can attain the characteristics
matching the adult cells. Despite immaturities, hiPSC-CMs
have been used to study numerous channelopathies and for
drug screening with expected presentation of dysfunction and
accuracy [68–76]. Of note, immature hiPSC-derived
cardiomyocytes have been reported to exhibit greater sensitiv-
ity to pro-arrhythmogenic drugs than those that have under-
gone the maturation process. Increased rate of false-positive
arrhythmic events needs to be taken into account when using
these cells for drug screening.

Tissue Models

One arrhythmogenicmechanism that fails to be captured at the
single cell level is the impulse propagation in arrhythmia for-
mation. Ectopic beats triggered by automaticity, early or de-
layed after depolarizations (EADs or DADs) are focal events
that only lead to arrhythmia if these are propagated to the
neighboring cells. Consequently, arrhythmias can only be ob-
served in multi-cellular tissue models. Besides cellular contri-
bution of abnormal electrophysiology, cell-cell electrical cou-
pling affecting the conduction velocity is another factor that
dictates the wave length of the AP wave front. Additionally,
electrophysiological heterogeneities, including dispersion of

repolarization or source-sink mismatch, are triggers for ar-
rhythmias that only become apparent at the tissue levels.

Conduction velocity and wave front reentry can be ob-
served in either 2D or 3D tissue models composed of a syn-
cytium of cardiomyocytes via optical mapping. Since primary
adult cardiomyocytes from animals do not formmonolayers in
culture, most in vitro tissue models have relied on primary
neonatal or hiPSC-derived cardiomyocytes that retain mor-
phological plasticity to reorganize and allow electrical cou-
pling with neighboring cells. For the 2D model,
cardiomyocytes plated in typical cell cultureware exhibit ran-
dom cellular orientation unlike the anisotropic alignment of
the myocardium. Conduction pattern is affected by the cardio-
myocyte alignment, which is reflected in the increased inci-
dence of arrhythmic events even in healthy monolayer of
hiPSC-derived cardiomyocytes, making this model less accu-
rate for testing pro-arrhythmic triggers. With advances in
microfabrication technology, patterned surface to induce
aligned monolayers of hiPSC-derived cardiomyocytes has
been shown to reduce the incidence of arrhythmia, creating a
more stable baseline tissue model for assessing pro-
arrhythmic factors [96, 97].

While 2D hiPSC-cardiomyocyte-based tissue models can
display arrhythmic events, there are limitations in the organi-
zation and maturity of cardiomyocytes. Specifically, 3D tis-
sues in a patch configuration have been reported to be neces-
sary in modeling arrhythmic phenomenon such as torsade de
pointes with fluctuating excitation intervals that can only be
recreated in the presence of a meandering wave origin [98].
This is not possible in a 2D configuration with a stationary
wave center. Other 3D hiPSC-derived cardiomyocyte-based
tissue configurations for testing arrhythmic events include lin-
ear or circular strips, small microtissues, and organoid cham-
bers [16, 99–103]. These tissue models present a more mature
cardiomyocyte phenotype than the 2D counterpart. However,
most 3D cardiac tissues in the literature have added fibroblasts
to facilitate tissue compaction. Depending on the fibroblast
type, the electrical coupling with the cardiomyocytes may
differ, which may result in different source-sink ratio that
can af fec t the conduct ion pa t te rn and in t r ins ic
arrhythmogenicity [104]. Therefore, there are many factors
to consider when choosing a tissue model for in vitro arrhyth-
mia studies.

Mathematical Models for Addressing
the Mechanisms of Arrhythmogenesis

Since cardiac excitability is sculpted by the beat-to-beat feed-
back among three nonlinear dynamic processes including
Ca2+ dynamic, APs, and mechanical contractions, multiscale
computational modeling offers unparalleled advantages in
deciphering cardiac arrhythmia mechanisms (Fig. 1). The
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fundamental question is how to fully integrate experimental
and clinical information and mathematical modeling to accu-
rately simulate cardiac structural and electrophysiological
properties at subcellular, cellular, tissue, and organ levels.
This multiscale modeling is a challenge considering the com-
plexity and heterogeneity of cardiac tissues. With the recent
development of computational techniques, research in cardiac
computational modeling has greatly expanded with the sup-
port from experimental and clinical investigators [105–109].
Computational models of different cell types including sino-
atrial node (SAN) cells, atrial myocytes, atrioventricular (AV)
node cells, Purkinje fibers, and ventricular myocytes have
been developed. For understanding human cardiac diseases,
many computational models across species have been devel-
oped using experimental data from animal studies for valida-
tion and comparison. Here, we will focus on the human car-
diac models.

Atrial and AV Node Models

The early mathematical models of the AP from adult human
atrial cells were developed by Nygren et al. and
Courtemanche et al. in 1998 [110, 111]. With accumulation
of human atrial experimental data, several human atrial
models have been refined including the AV node [112–120].
The significance of these models was demonstrated by simu-
lating the AP alternans, AF, conduction block, and AF-
associated electrical remodeling in single cells, one-, two-,
and three-dimensional tissues [112, 116, 121–124].
Computational models are powerful tools to study the mech-
anism of AF, and have the potential to guide clinical treatment
of AF using catheter ablation [125, 126]. In the past decade,
3D computational modeling has been used to guide and opti-
mize AF ablation and therapy to minimize the ablation lesions
and improve clinical outcomes [107].

Ventricle Models

The first mathematical model of the AP from human ventric-
ular myocytes was reported by Priebe and Beuckelmann in
1998 [106, 127]. The models for ventricular myocytes and
tissues were further refined using larger human dataset [106,
128–133]. The models have been used to explore and predict
the mechanism of initiation, maintenance, and termination of
ventricular arrhythmias, including simulations of triggered ac-
tivities, AP and conduction velocity restitutions, inherited ar-
rhythmias, prediction of AP alternans, the vulnerable window,
and efficacy of antiarrhythmic drugs [106]. More recently,
computational models have been developed and applied to
characterize ventricular arrhythmias under different clinical
settings and diseased states including heart failure, cardiac
ischemia, and maintenance of torsades de pointes [107,
134–138]. Multiscale modeling has been successfully used

to demonstrate the origins of ECG morphology and abnormal
ECG features resulted from diseases [139–143]. With the aid
of the advanced computational techniques, modeling of
patient-specific cardiac diseases becomes feasible with suc-
cessful applications in predicting patient’s risk for ventricular
arrhythmias and SCD [144, 145]. Treatment of ventricular
tachycardia and defibrillator implantation have also been fa-
cilitated by using computational modeling to predict the opti-
mal ablation targets and defibrillation locations [146, 147].

Purkinje Fiber Models

Purkinje fibers play critical roles as initiating sites for ventric-
ular tachycardia and fibrillation. An AP model of human
Purkinje fibers was first developed by Tusscher and Panfilov
[148]. Based on detailed biophysical kinetic analysis of the
ion channels in human Purkinje fibers, a new computational
model was proposed and applied to simulate LQTS [149,
150]. The 3D Purkinje fiber network model was established
based on imaging data, which integrates the Purkinje fibers
with the ventricle to simulate the electrical activation se-
quences in the ventricle [151]. Recently, ionic currents of
human Purkinje-related electrophysiology, pacemaker activi-
ty, and arrhythmogenicity were further revealed by incorpo-
rating Purkinje-specific ionic currents and Ca2+ handling
[152]. The structural and functional integration of ventricular
and Purkinje fiber models will significantly improve our un-
derstandings of the mechanisms of ventricular arrhythmias.
Additionally, the structural and functional contribution of car-
diac fibroblasts also needs to be considered [153].

SAN Models

Because of the very limited experimental data from human
SAN, the development of mathematical model for human
SAN lags behind the model development for human atrial
and ventricular myocytes. Seemann et al. published the first
human SAN AP model as part of a 3D human atria model
[154]. This is followed by an AP model based on the mRNA
expression of ion channels in healthy adult human SAN tis-
sues [155]. A recent study integrates the membrane and Ca2+

clock and constructs a comprehensive mathematical model for
SAN cells [156].

Virtual Heart Models

Onemajor advantage of computational modeling is the expan-
sion of personalized medicine by integrating patient informa-
tion and clinical data into the model to develop personalized
treatment strategies [157]. A recent virtual heart technology
for guiding the ablation of ventricular tachycardia demon-
strates the highly promising future for treatment of cardiac
arrhythmias [158]. The incorporation of machine learning
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and artificial intelligence in the diagnosis and treatment of
cardiac arrhythmias will provide powerful tool sets for the
prevention, prediction, and treatment of cardiac arrhythmias
(Fig. 1) [159]. Indeed, multiscale 3D whole-heart modeling
has recently been developed to determine how varying param-
eters of cell delivery and transdifferentiation could result in
focal ectopy, heart block, and reentry [20••].

Finally, the innervation, spatial, and temporal dynamic
feedback at tissue and organ levels are required to be integrat-
ed into the models for understanding the beat-to-beat electrical
excitability in the heart. Therefore, joint efforts of computa-
tional biologists, experimental biologists, and physicians are
necessary to integrate the multi-discipline knowledge in com-
putational modeling. Additional validation with experimental
and clinical data followed by reiterative refinement of the
computational models will help to pave the way for deeper
understandings of the complex mechanisms of cardiac
arrhythmogenesis, assist the diagnosis, and guide the
treatment.

Conclusions and Perspectives

The mechanistic understanding of cardiac arrhythmogenesis
is critical for the development of cardiac cell-based therapy.
Animal models from multiple species provide experimental
platforms for mechanistic hypothesis testing. Ex vivo and
in vitro models enable the application of several cutting-
edge techniques including the development of patient-
specific hiPSC-CMs and CRISPR-Cas9 gene editing. Recent
advances in multiscale computational models for
arrhythmogenesis represent the joint efforts by computational
biologists, biophysicists, experimental biologists, and physi-
cians, and provide quantitative and powerful tools for the
mechanistic understanding of arrhythmogenesis in cardiac
cell-based therapy. Further integrations of experimental, com-
putational, and the virtual heart model will provide critical
insights into novel mitigation strategies for cardiac arrhyth-
mias in cell-based therapy.
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