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Mutations of the proto-oncogene KRAS are the most frequent gain-of-function alterations
found in cancer. KRAS is mutated in about 30% of all human tumors, but it could reach
more than 90% in certain cancer types such as pancreatic adenocarcinoma. Although
historically considered to be undruggable, a particular KRAS mutation, the G12C variant,
has recently emerged as an actionable alteration especially in non-small cell lung cancer
(NSCLC). KRASG12C and pan-KRAS inhibitors are being tested in clinical trials and have
recently shown promising activity. Due to the difficulties in direct targeting of KRAS, other
approaches are being explored. The inhibition of target upstream activators or
downstream effectors of KRAS pathway has shown to be moderately effective given
the evidence of emerging mechanisms of resistance. Various synthetic lethal partners of
KRAS have recently being identified and the inhibition of some of those might prove to be
successful in the future. The study of escape mechanisms to KRAS inhibition could
support the utility of combination strategies in overcoming intrinsic and adaptive
resistance and enhancing clinical benefit of KRASG12C inhibitors. Considering the role of
the microenvironment in influencing tumor initiation and promotion, the immune tumor
niche of KRAS mutant tumors has been deeply explored and characterized for its unique
immunosuppressive skewing. However, a number of aspects remains to be fully
understood, and modulating this tumor niche might revert the immunoresistance of
KRAS mutant tumors. Synergistic associations of KRASG12C and immune checkpoint
inhibitors are being tested.

Keywords: KRAS, NSCLC, pancreatic cancer, colon cancer, G12C mutation
INTRODUCTION

Using an oversimplified description, cancer could be defined as a disease caused by the
accumulation of alterations in genes coding for proteins involved in cell growth induction or
control defined oncogenes or tumor suppressor genes, respectively. In the last half-century, the
largest efforts made in the field of experimental targeted therapeutics have been mainly focusing
towards the development of therapeutic agents capable of inhibiting oncogenes or restoring the
function of tumor suppressor genes. The most important successes in cancer treatment have been,
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indeed, represented by experimental therapeutics able to
effectively interfere with the product of some of the most
relevant oncogenes in human cancers. In this regard, those
human cancers for which the development of appropriate
targeted therapeutics has been most frustrating are sustained in
their proliferation by altered genes whose function is essential for
the integration and the transduction of physiologic signals in
normal cells.

KRAS has been the first oncogene identified in human cancer
in 1982 (1). Mutations affecting members of the RAS family
genes (KRAS, HRAS, NRAS) are the most frequent genetic
alterations in human cancers accounting for about 27% of all
tumors. KRAS mutations are involved in the pathogenesis of
different epithelial cancer histotypes, including lung and
colorectal cancer, but its role has been especially investigated
in pancreatic ductal adenocarcinoma, which is considered the
type of tumor mostly dependent on KRAS for its development,
metastatic progression, and treatment resistance (2–5).

Because of its high incidence in different tumors and its role
in cancer initiation and progression, many efforts have been
made in finding effective treatments directly or indirectly
targeting KRAS. However, due to the lack of accessible binding
pockets and its complex downstream signaling, most of the
efforts in targeting KRAS have failed, and mutated KRAS still
remains an undruggable target.

Here, we describe and discuss the most recent efforts aimed to
identify novel therapeutic approaches of mutated KRAS-
driven tumors.
THE RAS/MAPK PATHWAY

KRAS gene encodes for a small GTPase that in normal cells
functions as a molecular switch between an active and an inactive
state. In quiescent cells, KRAS is inactive and GDP-bound, while
in cells receiving extracellular stimuli it is active and GTP-bound.
KRAS in its active state leads to the activation of a number of
different intracellular transduction signaling pathways, including
MAPK and AKT pathways. The switching between inactive and
active state is mediated by the guanine nucleotide exchange
factors (GEFs) which allow GTP loading. Conversely, the
inactive state is mediated by GTPase-activating proteins
(GAPs) through GTP hydrolysis (6). GTP-bound RAS
interacts and recruits RAF, promoting its accumulation at the
plasma membrane and inducing its dimerization and activation
of RAF kinases. Activated RAF phosphorylates MEK1 and
MEK2 kinases, that consequently phosphorylate and activate
ERK1 and ERK2 kinases. ERK1/2 translocate into the nucleus
where they phosphorylate several transcription factors that
regulate the expression of genes involved in proliferation and
cancer progression. MAPK pathway is a linear cascade
characterized by complex regulatory mechanisms and feedback
loops controlling several kinases. The attempt of inhibiting
MAPK pathway, in order to block proliferation signaling,
generates cross-talk between different pathways and the
activation of compensatory pathways such as the PI3K-AKT-
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mTORC1 signaling. Noteworthy, PI3K-AKT-mTORC1
pathway, unlike MAPK pathway, can also be activated
independently from KRAS, by receptor tyrosine kinases
(RTKs) or G-protein coupled receptors (GPCR) and integrin
signaling (7).

KRAS mutated cancer cells carry mostly missense mutations
causing single amino-acid substitutions in three hotspots,
glycine12 (G12), glycine13 (G13), and glutamine61 (Q61). These
mutations prevent GAPs from accessing GTP so that hydrolysis is
blocked, resulting in a persistently activated GTP-bound state.
KRAS activity becomes therefore independent from extracellular
stimuli, resulting in overstimulation of downstream pathways and
induction of signals for cell proliferation, migration, and
metastasis (8). Interestingly, different KRAS mutations can
reflect differences in signaling and oncogenic mechanisms, that
can have a role in tailoring treatments. In an in vitro colorectal
cancer study, phosphotyrosine proteomic profiles comparison
between the two most frequent KRAS mutations, KRASG12D and
KRASG13D, has been performed. KRASG12D mutation enhances
membrane and adherens junct ion signal ing, whi le
KRASG13Dactivates signaling molecules such as MAPK kinases,
non-receptor tyrosine kinases, and regulators of metabolic
processes (9).
DIRECT TARGETING OF KRAS

KRAS mutations types and incidence vary among epithelial
cancer histotypes. Whereas KRASG12C mutations are frequent
in lung adenocarcinoma, they are rare in pancreatic ductal
adenocarcinoma (PDAC). PDAC are enriched in KRASG12D,
KRASG12V, and KRASG12R point mutations (10). These
differences are crucial for the development of new potential
therapeutic strategies.

Recently, encouraging results using direct KRASG12C

inhibitors have been reported. KRAS mutation G12C is present
in about 13% of lung cancer, 3% of colorectal cancer, and in a
smaller percentage of other epithelial tumors (11). The mutant
cysteine-12 is located next to a cryptic pocket (SWII) in GDP-
KRAS. The proximity of this cryptic pocket (SWII) to cysteine-
12 has driven the development of covalent inhibitors targeting
SWII, getting an allosteric inhibition of cysteine-12. ARS-1620
was the first covalent inhibitor binding SWII pocket of
KRASG12C-GDP complex developed (12). Starting from this
pioneering milestone, many efforts have been made in order to
improve potency, drug permeability, solubility, and oral
bioavailability and create suitable drugs for clinical use. As a
result of these efforts several drugs have been developed and
tested in preclinical and clinical studies, including AMG 510 (or
sotorasib) and MRTX849 (or adagrasib). Sotorasib was
developed by Amgen. Improvements in drug potency have
been achieved by taking advantage of an alternative orientation
of His95, located in the switch II pocket. The alternative
orientation creates a larger surface groove which guarantees an
irreversible interaction between KRASG12C and its inhibitor. The
almost complete inhibition of pERK observed upon sotorasib
March 2021 | Volume 11 | Article 638360
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treatment confirmed its enhanced potency (13). Interestingly,
while durable responses were obtained in immune-competent
tumor-bearing murine models, this activity was not durable in
immune-deficient models. Further studies demonstrated that
sotorasib induces a pro-inflammatory microenvironment
through the expression of chemokines, such as CXCL10 and
CXCL11. These chemokines attract tumor-suppressive immune
cells, including T cells, macrophages, and dendritic cells, leading
to long-term anti-tumor T cells responses. This observation
suggested that a more significant and prolonged tumor
response could be induced by a combination therapy with
immune checkpoint inhibitors (14).

The small molecule covalent inhibitor sotorasib is currently
under active clinical development for the treatment of KRASG12C

mutated tumors. Successful results have been recently reported
in the phase 1 CodeBreaK100 trial, that investigated sotorasib in
patients with advanced and pretreated solid tumors, mainly
NSCLC and colorectal cancer, harboring a KRASG12C mutation
(15). About one third of NSCLC patients responded to therapy.
Disease control rate was remarkable in both NSCLC (88.1%) and
colorectal cancer (73.8%). Median progression free survival was
6.3 months for NSCLC patients and 4.0 months for colorectal
cancer patients. Some patients exhibited a rapid disease
progression after an initial response, but a group of patients
presented durable responses. The lower response rate in
colorectal cancer patients (7.1%) suggests a different KRAS
dependency across diverse tumor types harboring the same
mutation. Sotorasib showed a good safety profile, with
diarrhea, fatigue, and nausea as the most common adverse
events, and no dose-limiting toxic effects have been observed.
Combination treatments of sotorasib with immunotherapy are
currently under clinical evaluation and invested of great
expectations (NCT04303780, NCT04185883).

A different KRASG12C covalent inhibitor, named adagrasib,
has been developed by Mirati Therapeutics Inc. Adagrasib also
binds SWII pocket of GDP-KRAS, inhibiting KRAS pathway and
inducing in turn a potent anti-tumor response, as demonstrated
in different in vivo models. Nonetheless, resistance mechanisms
emerged early through the activation of other pathways and
activation of compensatory mechanisms, leading to transient or
submaximal response to adagrasib. Indeed, high expression or
activated mutations of RTKs can activate feedback mechanisms
reactivating RAS and stimulating mTOR pathway. Similarly, the
co-occurrence of alteration in genes involved in cell cycle
regulation, such as CDKN2A and CDK4/6, can induce Rb
phosphorylation and cell cycle transition. Based on these
evidences, the combination of adagrasib with different drugs,
such as EGFR, SHP2, and mTORC inhibitors have been tested in
different in vivo murine models. The combination of adagrasib
with afatinib, RMC-4550, and vistusertib respectively, obtained a
stronger inhibition of ERK and S6 phosphorylation than did any
single agent treatment with an improved anti-tumor activity.
Moreover, the combination of adagrasib and palbociclib
decreased Rb and E2F family target genes expression levels,
reduced S6 phosphorylation level, and induced major tumor
regression, especially in CDKN2A altered models (16). In the
Frontiers in Oncology | www.frontiersin.org 3
phase 1/2 multi-expansion cohort KRYSTAL-1 trial
(NCT03785249), adagrasib has been evaluated in patients with
advanced solid tumors harboring KRASG12C mutations,
demonstrating an acceptable safety profile and promising
clinical activity. In NSCLC patients previously treated with
chemotherapy and anti-PD-1/PD-L1 therapy the disease
control rate was 96% and objective response rate (ORR) was
45% (https://cm.eortc.org/cmPortal/Searchable/ENA2020/
config/normal#!abstractdetails/0000902150). The only
commonly reported (>2%) grade 3/4 adverse event was
hyponatremia. Disease control was observed in 94% of
colorectal patients. Confirmed partial responses (PRs) were
observed in a patient with endometrial cancer and a patient
with pancreatic cancer (https://cm.eortc.org/cmPortal/
Searchable/ENA2020/config/normal#!abstractdetai ls/
0000902140). The most commonly reported adverse events
included diarrhea, nausea, fatigue, and vomiting. Other trials
have been designed to evaluate the combination of adagrasib
with other drugs, such as EGFR, SHP2, or PD1 inhibitors
(KRISTAL-1, -2, -7). Among clinical trials conducted in
patients with cancers harboring KRASG12C, ARS-3248/JNJ-
74699157, LY3499446, and GDC-6036 are being investigated
(NCT03114319, NCT04165031, NCT04449874).

PanKRAS inhibitors represent a different category of drugs that
do not target a single KRAS isoform selectively but aim to inhibit a
broader spectrum of targets. Among these molecules, we count BI
2852, which binds between switch I and switch II pocket and
inhibits KRAS interactions with GEFs, GAPs, and its downstream
effectors. BI 2852, indeed, effectively reduces pERK and pAKT
levels, achieving antiproliferative effects on KRAS mutant cell lines.
Because of the high conservation of the SI/II-pocket across RAS
isoforms, this molecule can bind with similar affinity most of them
(17). SOS1 inhibitors are also panKRAS inhibitors. These drugs,
indeed, do not bind directly to KRAS but inhibit the interaction
between KRAS: SOS1, preventing KRAS GTP loading and its
switching in to the active state. The main representatives are BI
3406 and BI 1701963. BI 3406 has been proven to be active in in
vitro and in vivo murine models, harboring KRAS G12 and G13
codon mutations, but not G12R mutation. SOS1 can be
downregulated by ERK-mediated phosphorylation, representing
an important negative feedback modulator of KRAS pathway.
During treatment with MEK inhibitors, pERK levels reduction
induces a decrease of SOS1 phosphorylation, resulting in RAS
pathway activation. These observations suggest that inhibition at
both levels represents a good strategy to efficiently block KRAS
pathway and prevent escape. The combination treatment of SOS1
with MEK inhibitor achieved good results in vitro and in vivo
murine models, with robust pathway inhibition and tumor
regression (18). Based on these preliminary preclinical results, BI
1701963, the second representative of SOS1 inhibitors, is being
tested, alone and in combination with MEK inhibitor trametinib,
in a phase I clinical trial in cancer patients carrying pan-KRAS
mutations (NCT04111458).

RAS direct targeting has also been investigated in several
studies. The bacterial Ras/Rap1-specific endopeptidase (RRSP)
represents a good candidate for RAS direct targeting therapy.
March 2021 | Volume 11 | Article 638360
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RRSP induces a proteolytic cleavage of RAS proteins between
residues Tyr-32- and Asp-33 in SWI pocket, this cleavage alters
RAS SWI structure, blocking the interaction of RAS with GEFs
and preventing the transition of RAS into the active state. It also
prevents the interaction with RAF and the downstream signaling
pathway (19). RRSP can disrupt both wild type and mutant RAS
proteins (including KRAS, HRAS, and NRAS). This blockage
allows the inhibition of signal transduction depending from
various RAS mutations, overexpression of upstream receptor
tyrosine kinases (RTKs), or amplification of wild-type RAS as it
happens in head and neck squamous cell carcinoma, esophageal
and gastric carcinoma, ovarian adenocarcinoma, and triple-
negative breast cancer. To enable the migration of RRSP
through the biological membrane, a chimeric toxin formed by
RAS/Rap1 specific endopeptidase and the translocation
machinery of diphtheria toxin has been developed. The use of
this engineered chimeric toxin has achieved good results in vitro
and in vivo murine models, especially in lung and colorectal
tumor cell lines and in cells expressing high levels of HB EGF. In
human cells HB EGF is highly represented and this could
represent a limit for its clinical application, influencing the
dose limiting toxicities (DLT). Further engineering steps could
allow to overcome this possible limit, aiming to vehicle RRSP
across tumoral membrane cells only and sparing normal
human cells.
INDIRECT TARGETINGOF KRAS SIGNALING

In the attempt of inhibiting KRAS signaling, different strategies
intended to target upstream activators or downstream effectors
of KRAS pathway have been developed (Figure 1). Because of the
redundancy of the intracellular networks involved, the initial
enthusiasm for the development of a single target therapy has
been mitigated by evidence of emerging mechanisms of
resistance. The combination of different drugs targeting
different signal pathways could prevent or delay the
development of resistance mechanisms, often, however, at cost
of increased toxicities.

Inhibiting KRAS Processing and Activation
Different critical steps are necessary for KRAS activation:
nucleotide exchange, localization, processing, effector binding.
The blockage of each of them could prevent KRAS activation.

- Nucleotide exchange: The previously described pan-KRAS
inhibitors should belong to this category despite their name,
since their function is linked to SOS1 (GEF) binding and not
KRAS directly. Nucleotide exchange is also favored by SHP2,
across their binding to GRB2 and SOS1. Different SHP2
inhibitors, including TNO155 and RMC-4630, directed versus
non-receptor protein tyrosine phosphatase, are being clinically
evaluated in combination therapies in advanced solid tumors
(20, 21).

- Processing: prenylation–proteolysis–methylation.
Many efforts have been made to inhibit RAS farnesylation,

aiming to prevent its membrane localization. These efforts led to
Frontiers in Oncology | www.frontiersin.org 4
the development of tipifarnib, a small molecule farnesyl
transferase inhibitor (22). However, tipifarnib has been
evaluated in HRAS mutated cancers only, since KRAS is
prenylated by geranylgeranyl transferase and does not need
farnesylation for membrane localization. Unfortunately, a dual
inhibition of both transferases did not inhibit KRAS prenylation
in human patients (23).

- Localization: KRAS splices into KRAS 4A and KRAS 4B.
KRAS4B needs a chaperone, PDE6d, to translocate to the
membrane surface. Deltarasin, a PDE6d inhibitor, prevents
PDE6d from binding to KRAS, causing accumulation of KRAS
4B onto endomembranes (24). It is not clear yet if the cellular
effects are due to KRAS inhibition or to other PDE6d
effectors inhibition.

Targeting Downstream Mediators of
Intracellular Signaling
Activated KRAS induces RAF proteins phosphorylation and
dimerization with consequent activation of their kinases. There
are three isoforms of RAF, represented by BRAF, RAF1/CRAF,
and ARAF. Numerous studies conducted on BRAF, which is the
best characterized isoform, have led to the development of
therapies targeting V600E mutation specifically. These targeted
therapies are widely used in melanoma and recently have been
approved for the treatment of BRAF mutated NSCLC.
Unfortunately, the application of BRAF inhibitors vemurafenib,
dabrafenib, and encorafenib has failed in KRAS driven tumors,
because of the paradoxical activation of ERK1/2. BRAF inhibitors,
indeed, bind to BRAF and induce the heterodimerization BRAF/
RAF1. The binding of BRAF inhibitors to BRAF mediates an
allosteric activation of RAF1, with consequent MEK/ERK
activation (25). Novel panRAF inhibitors, known as paradox
breakers, have been developed to overcome this effect. Among
these panRAF inhibitors we count PLX8394, which seems to have
higher affinity with BRAF homodimers and BRAF/RAF1
heterodimers (26, 27), and LY3009120, which blocks the kinase
activity of RAF dimers (28). Despite the promising data seen in
preclinical studies (29, 30), LY3009120 failed to demonstrate
efficacy in early clinical trials as monotherapy. A phase I study
conducted in patients affected by RAS or BRAFmutated advanced
tumors reported as best response stable disease in 8 of 51 patients
(15%) with no complete or partial response achieved (31).
LXH254 and belvarafenib are panRAF inhibitors also in active
clinical development. A phase I clinical trial with LXH254 alone
and in combination with an anti PD1 antibody is ongoing
(NCT02607813). Belvarafenib has been tested in a phase I study
including patients affected by advanced solid tumors harboring
RAS or BRAF mutations, demonstrating good safety profile and
antitumor activity (32). A study exploring its use in combination
with anti-MEK agents is ongoing (NCT03284502).

MEK inhibitors, such as selumetinib, have been tested in
KRAS mutated NSCLC as single agents and in combination with
chemotherapy, without showing any clinical benefit (33). The
same results have been seen with trametinib (34) and
pimasertinib (35) in pancreatic cancer. This failure has been
attributed partially to vertical compensation mechanisms of
March 2021 | Volume 11 | Article 638360
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upstream elements, such as RTKs, BRAF, or KRAS, that lead to
ERK reactivation, or alternative compensatory mechanisms as
the activation of PI3K-AKT-mTORC1 pathway.

ERK inhibitors, such as ulixertinib/BVD523 and LY3214996,
have been tested in phase I clinical trials (NCT02608229,
Frontiers in Oncology | www.frontiersin.org 5
NCT02857270). Ulixertinib has recently moved to phase II
clinical development. The frequent reactivation of ERK
observed during treatment with MEK or BRAF inhibitors calls
for a better characterization of ERK inhibitors. This class of
inhibitors is being studied accurately, to evaluate their
FIGURE 1 | KRAS signaling cascade. Inhibitors of KRAS and upstream and downstream mediators of KRAS are reported.
March 2021 | Volume 11 | Article 638360
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employment in vertical combination (2, 36). Other strategies
have been tested to target simultaneously different molecules
aiming to vertical combination (NCT01229150, NCT02230553,
NCT02258607, NCT04185883, NCT04330664) (Table 1).

The other pathway activated by KRAS is the PI3K-AKT-
mTORC1 pathway, important for cellular proliferation, motility,
and survival. Its persistent activation due to KRAS mutation
contributes to cancer progression. Class I PI3K phosphorylates
PIP2, which attracts AKT to plasma membrane and induces
mTOR activation. Inhibition of PI3K pathway using AKT
inhibitors failed in in vitro and in vivo trials, perhaps because of
the activation of other signaling pathways. The compensatory
mechanisms between the two pathways, MAPK and PI3K
pathway, that emerge blocking one of them, led to the idea of
blocking both pathways simultaneously. The combination ofMEK
inhibitors and AKT inhibitors showed promising results in
pancreatic cancer in in vitro and in vivo studies (37). In a
similar way, the combination of PI3K inhibitors with ERK
inhibitors (38), MEK inhibitors (NCT01363232, NCT01337765,
NCT01392521, NCT01390818) or RAF inhibitors are being tested
with promising results in early clinical trials. However, at cost of
higher toxicity associated to the double treatment (39).
Frontiers in Oncology | www.frontiersin.org 6
SYNTHETIC LETHAL PARTNERS OF KRAS

Since direct inhibition of KRAS has been proven to be
exceptionally challenging, one potential strategy to target tumors
dependent upon this oncogene has been through the identification
of its synthetic lethal partners. Synthetic lethal partners are genes
that if mutated individually are compatible with viability, but the
simultaneous perturbation of their expression or pharmacological
inhibition of their products determines cell death (40). Synthetic
lethality can be exploited in order to target tumor cells harboring
undruggable mutations. An example of synthetic lethality is
represented by the sensitivity of BRCA mutant cells to PARP
inhibition (41). Synthetic lethal partners of KRAS could be
downstream of its pathway or acting in parallel adaptative
signaling. Targeting synthetic lethal partners should reduce the
risk of adverse events because mutated cancer cells are more
sensitive to this strategy compared to normal cells (42).

Among the different methods used to identify novel KRAS
synthetic lethal partners, RNA interference has been the approach
initially andmore frequently applied (42). Unfortunately, evidence
suggests that the reproducibility of this technology could be
limited by the library quality and off target effects (43). More
TABLE 1 | Clinical trials investigating combination treatments reported as “Drug 1” and “Drug 2” that target effectors of the same pathway (vertical combination). For
each trial the study phase and the setting of patients is indicated.

Clinical trial Phase Drug 1 Drug 2 Indication

NCT04185883
(CodeBreak101)

1 AMG510 or sotorasib (KRAS-G12C inhibitor) PD1 inhibitor
PD1 inhibitor
MEK inhibitor
SHP2 inhibitor
pan-ErbB inhibitor
EGFR inhibitor + chemotherapy
EGFR inhibitor + chemotherapy
PDL1 inhibitor
Chemotherapy
MEK + EGFR inhibitor
mTOR inhibitor
CDK inhibitor

Solid tumors
NSCLC
Solid tumors
Solid tumors
NSCLC
Solid tumors
Colorectal cancer
NSCLC
NSCLC
Colorectal cancer
Solid tumors
Solid tumors

NCT04330664
(KRISTAL-2)

1/2 MRTX849 or adagrasib (KRASG12C inhibitor) TNO155
(SHP2 inhibitor)

Solid tumors

NCT03785249
(KRISTAL-1)

1/2 MRTX849 or adagrasib (KRASG12C inhibitor) Pembrolizumab
Cetuximab
Afatinib

NSCLC
Colorectal cancer
NSCLC

NCT04613596
(KRISTAL-7)

2 MTRX849 or adagrasib (KRASG12C inhibitor) Pembrolizumab NSCLC

NCT04111458 1 BI 1701963
(pan-RAS inhibitor)

Trametinib
(MEK inhibitor)

Solid tumors

NCT01229150 2 AZD6244
(MEK inhibitor)

Erlotinib
(EGFR inhibitor)

NSCLC

NCT02230553 1/2 Trametinib (MEK inhibitor) Lapatinib
(ErbB1-2 inhibitor)

NSCLC

NCT02857270 1 LY3214996 (ERK inhibitor) Encorafenib + Cetuximab
Abemaciclib
Chemotherapy

Solid tumors

NCT03284502 1 HM95573 or belvarafenib (RAF inhibitor) Cobimetinib
(MEK inhibitor)

Solid tumors
March 2021 | Volume 11
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recently, CRISPR-Cas9 screening technology has been applied to
loss-of-function genetic screening, enabling the complete knockout
of target genes, that has been useful in identifying essential genes in
KRAS mutant cancer cells (44). Results from different studies
looking for synthetic lethal partners are scarcely overlapped and
attempts to reproduce published KRAS synthetic lethal targets
failed (45, 46). The novel CRISPR-Cas9 technology improves
genetic perturbation but is not able alone to overcome limitations
associatedwith different cellular and genetic contexts. Interestingly,
a meta-analysis of published synthetic lethal screens highlighted
that different studies’ results overlap at the pathway rather than at a
gene level (47). Furthermore, these differences have beenascribed to
changes in genetic context or cellular conditions.

Several studies have identified different putative KRAS
synthetic lethal partners (Table 2). Inhibitors of the MAPK
pathway showed greater sensitivity in KRAS mutated cancers
compared to the wild-type ones (58). Probably because of their
sole cytostatic effect, MEK inhibitors have proved no clinical
efficacy as single agents in RAS mutant cancers (59). The
combination of a MEK inhibitor with an inhibitor of the
antiapoptotic BCL-XL led to increased apoptosis in many KRAS
mutant cell lines from different histologies, and tumor regression
in in vivo lung cancer mouse models (48). A phase 1b/2 trial is
investigating the safety, pharmacokinetics, pharmacodynamics,
and clinical activity of the combination of the MEK inhibitor
trametinib and the BCL2-family inhibitor navitoclax (ABT-263) in
patients with KRAS or NRAS mutated advanced solid tumors
(NCT02079740). An interim analysis showed a good safety profile
and initial signs of efficacy, in particular in gynecologic tumors.
Evidence coming from other in vitro and in vivo studies
demonstrated efficient induction of apoptosis in KRAS or BRAF
mutant colorectal cancer cell lines treated with navitoclax in
combination with the TORC1/2 inhibitor AZD8055 but not in
the wild-type controls. Similar results were obtained in murine
models (60). IGF1R and MEK inhibition resulted in growth
inhibition of KRAS muted NSCLC cell lines and murine tumors
Frontiers in Oncology | www.frontiersin.org 7
(61). FGFR1 inhibition combined with the MEK inhibitor
trametinib has shown to mediate cell death in KRAS-mutant
lung cancer both in vitro and in vivo (49).

CDK4 has been proposed as synthetic lethal partner in KRAS
mutant NSCLC. This synthetic lethal interaction was observed only
in lung cancer, not in colon or pancreatic cancer, pointing to a
different tissue specificdependencyofKRASsignaling (50).Targeting
AKT and the glutathione antioxidant pathway mimicking Nrf2
ablation inhibited pancreatic adenocarcinoma tumors ex vivo and
in vivo (51). NF-kB pathway has a central role in KRAS mutated
cancers (62, 63). RAL-GEF family is one of the effectors of KRAS and
mediates the activation of NF-kB, contributing to oncogenesis (64).
NF-kB inhibition in a mouse model of lung adenocarcinoma
expressing KRASG12D and lacking p53 has been demonstrated to
reduce tumor development (65).

Another putative synthetic lethal partner of oncogenic KRAS
is represented by the IkB kinase (IKK)–related kinase Tank-
binding kinase-1 (TBK1). TBK1 is activated by RalB, a small
GTPase downstream of KRAS belonging to the Ral signaling
pathway, and Sec5, a component of the exocyst (66). TBK1
regulates an autocrine CCL5 and IL-6 signaling, inducing
carcinogenesis in KRAS mutated cancer (52). Furthermore,
activated TBK1 promotes NF-kB signaling through BCL-XL
and the c-Rel protooncogene. Inhibiting TBK1 induces cell
death in KRAS driven NSCLC adenocarcinoma murine models.

The JAK-STAT signaling pathway has a recognized role in
pancreatic cancer development. In KRAS driven pancreatic cancer
models, inhibiting JAK1/2 and TBK1 with momelotinib showed
preclinical efficacy in vitro and in vivo (52).Nevertheless, todate it has
not exhibited signs of activity in human pancreatic cancer (67).

XPO1 has also been proposed as synthetic lethal partner of
KRAS. XPO1, overexpressed in many types of human cancers, is
an export receptor in charge of the nuclear-cytoplasmic
transport of many proteins. XPO1 has been proposed as a
therapeutic target in several tumors including KRAS-mutant
lung cancer. The effect of XPO1 inhibition consists in the
accumulation of nuclear IkBa and consequent suppression of
NFkB activity. Studies conducted on KRAS-mutant NSCLC cells
showed that inhibition of the nuclear export XPO1 leads to a
synthetic lethal interaction with oncogenic KRAS (53).

TAK1 has been suggested as mutant KRAS synthetic lethal
target in colon cancer (54). In APC/KRAS mutant cells, KRAS
mediates TAK1 activation and enhances Wnt activity by
stimulating BMP-7 secretion and BMP signaling. TAK1
inhibition prompted apoptosis in KRAS-dependent colon cancer
cells. However, TAK1 dependency may not be restricted to colon
cancer, and approaches in targeting TAK1 have shown activity in
other KRAS dependent tumors as well (68–70).

The transcription factor YAP1 is sustained by TAK1 and
mediates KRAS independent growth (71, 72). YAP1 has been
shown to overcome KRAS blockade to prompt pancreatic cancer
growth in murine models (55). Representing a central hub in
resistance to RAF and MEK inhibition, targeting YAP1 could
represent a combination therapy in KRAS mutated cancers (73).

Loss of the transcription factor Wilms tumor 1 (WT1) has
been correlated with decreased proliferation and increased cell
TABLE 2 | RAS synthetic lethal partners and KRAS mutant cell lines in which
they have been identified. Synthetic lethal gene inhibition is reported if tested.

Synthetic lethal
genes or pathways

Cell lines Drug inhibition

BCL-XL (BCL2L1) (48) KRAS mutant cell lines from
different histologies

MEK inhibitor plus BCL-
XL inhibition

FGFR1 (49) KRAS mutant lung cancer MEK inhibitor plus
FGFR1 inhibition

CDK4 (50) KRAS mutant NSCLC Not tested*
AKT (51) KRAS mutant pancreatic

cancer
AKT and glutathione
synthesis inhibition

TBK1 (52) KRAS mutant NSCLC TBK1 inhibition
XPO1 (53) KRAS mutant NSCLC XPO1 inhibition
TAK1 (54) KRAS mutant colon cancer 5Z-7-oxozeaenol
YAP1 (55) KRAS pancreatic cancer Not tested*
WT1 (55) KRAS mutant lung cancer Not tested*
GATA2 (56) KRAS mutant NSCLC Not tested*
SNAI2 (57) KRAS mutant colon cancer Not tested*
*Drug inhibition of the correspondent synthetic lethal gene has not been tested in in vitro or
in vivo studies.
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senescence in KRAS driven cancer cell lines (55). However, WT1
remains not druggable to date (74).

The transcription factor GATA2 has been identified as a
synthetic lethal target in RAS pathway mutant NSCLC models.
However, GATA2 itself remains undruggable (56).

Deficiency of the DNA repair machinery has been described
in KRAS mutant cells (47). BRCA1 is a strong synthetic lethal
partner of PARP inhibition. PARP inhibition has also been
proposed as a putative effective strategy in KRAS mutant cells.

RAS signaling is a known mediator of epithelial-mesenchymal
transition (EMT). Thus, EMT regulators could represent
therapeutic targets in KRAS driven tumors (75). The SNAI2
gene encoding SNAIL, a transcription factor and regulator of
EMT, has been identified as a KRAS synthetic lethal target in
colorectal cancer cell lines (57).

Direct targeting of KRAS has been approached and the need
for targeting synthetic lethal partners could be questioned.
However, synthetic lethal partner inhibitors could be used in
the future in combination with direct inhibition in order to
overcome possible escape mechanisms.
TARGETINGMETABOLIC REPROGRAMMING
INKRASMUTANTCANCERS

Studies conducted using murine pancreatic cancer models have
shown that KRASG12D stimulates the expression of glucose
transporter 1 (GLUT1) and glycolytic enzymes and conveys
glucose intermediates into the hexosamine biosynthesis pathway
(HBP) and non-oxidative pentose phosphate pathway (PPP). The
inhibition of the HBP gene (Gfpt1) or non-oxidative PPP genes
(Rpia or Rpe) suppresses the KRAS dependent tumor growth (76).
It has been shown that an increase in glucose uptake through
enhanced GLUT1 expression is dependent on KRAS and BRAF
mutation in colorectal cancer cell lines and sustained their survival
(77). Furthermore, glucose deprivation with a glycolysis inhibitor
suppressed tumor growth. Mutated KRAS determines higher 18F-
fluorodeoxyglucose accumulation possibly by upregulation of
GLUT1 (78). A retrospective study reported a significantly higher
18F-fluorodeoxyglucose accumulation detected with positron
emission tomography in KRAS mutant colorectal cancer patients
compared with wild-type ones (79). High levels of vitamin C have
been found to selectively kill colorectal cancer cells harboringKRAS
or BRAF mutations. The increased uptake of the oxidized form of
vitamin C through GLUT1 causes oxidative stress and cell death
only in KRAS or BRAF mutant cells (80).

Cancer cells are characterized by increased anabolic
metabolism, which requires the use of the amino acid glutamine.
It has been demonstrated that oncogenic KRAS mediates the
reprogramming of glutamine metabolism in pancreatic
adenocarcinoma cells by modifying the transcription of
metabolic enzymes in a noncanonical pathway of glutamine
(81). However, the tissue of origin and the microenvironment
can impact on metabolic features. For example, pancreatic cells do
not depend on the branched-chain amino acid (BCAA) processing
enzymes Bcat1 and Bcat2, which enables BCAAs to be utilized as a
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nitrogen source, contrary to NSCLC (82). In KRAS mutated
colorectal cancer cells the pentose phosphate pathway has been
demonstrated to be essential for the growth in aerobic conditions
and glutamine conversion into a-ketoglutarate and alanine
aminotransferase for KRAS induced anchorage-independent
growth (83). In KRAS driven lung cancer mouse models
mitochondrial metabolism and mitochondrial reactive oxygen
species generation, which is allowed by glutamine conversion
into a-ketoglutarate, are essential for KRAS induced
tumorigenicity (83). Models obtaining the suppression of KRAS
led to reveal potential KRAS independent escape mechanisms. In
KRAS G12D mouse model of pancreatic cancer surviving cells
responsible for tumor relapse rely on oxidative phosphorylation,
making the combined inhibition of the KRAS pathway and
mitochondrial respiration a possible therapeutic strategy (84).

Autophagy is a mechanism characterized by degradation of
intracellular components. It is stimulated by oxidative stress,
nutrient shortage, and protein damage through inhibition of the
AMPK and mTOR pathways and the activation of the unfolded
protein response system (85). Pancreatic adenocarcinoma tumors
show raised autophagy, whose inhibition demonstrated to reduce
tumor growth (86). However, the role of KRAS in autophagy
remains controversial. In a study conducted in different cancer
cell lines, KRAS mutation was not correlated with the dependance
to autophagy (87). The use of hydroxychloroquine, that inhibits
autophagy preventing lysosome acidification, failed to show
therapeutic activity in pancreatic cancer patients (88). However,
several studies are ongoing to investigate hydroxychloroquine in
combination with chemotherapy in pancreatic cancer
(NCT04524702, NCT04132505). The deficiency of atg7, an
essential autophagy gene, in KRASG12D mutated NSCLC mouse
models determined the accumulation of dysfunctional
mitochondria and inhibited cancer growth (89).

RAS proteins have been demonstrated to enhance
macropinocytosis, a process by which extracellular fluid and
extracellular proteins are internalized through vesicles.
Macropinocytosis inhibition with amiloride blocked the growth
of KRAS mutated pancreatic cancer xenografts (90).

The metabolism of fatty acids has been correlated with KRAS
mutation in NSCLC. It has been shown that KRAS regulates lipid
homeostasis and Acyl-coenzyme A synthetase, an enzyme
involved in fatty acid metabolism, essential for mutant KRAS
lung cancer tumorigenesis in vivo (91). Furthermore, KRAS has
been reported to promote lipogenesis through the induction of
fatty acid synthase in lung cancer (92).

In KRAS/p53 mutant lung cancer mouse models the
inhibition of HSP90 combined with rapamycin was shown to
promote endoplasmic reticulum stress and mitochondrial
damage and tumor regression (93).
PUTATIVE ESCAPE PATHWAYS TO
KRAS INHIBITION

Although a clinically relevant strategy for effectively targeting
KRAS in all of its mutated status seems still far to be developed,
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potential mechanisms of resistance for KRAS inhibition have
been already explored in several preclinical models.

KRASG12C inhibitors bind specifically to inactive GDP-bound
form of KRAS. Thus, the potency of KRASG12C inhibition is
reduced by increased RTK activity, that promotes cycling of
KRASG12C to its active GTP-bound form, hindering KRASG12C

drug inhibition (94). Furthermore, the suppression of nucleotide
exchange activity downstream of tyrosine kinases enhances
KRASG12C inhibition, suggesting possible combination strategies.

By targeting KRASG12C with ARS-1620, the phosphorylation
of multiple RTKs was augmented in different ways across diverse
KRASG12C mutant models (95). Synergistic effects of RTK
inhibitors combined with KRAS blockade may vary across
different tumor cell types (96).

KRASG12C inhibitors induce growth inhibition mainly by
targeting MAPK/ERK pathway. The redundancy of parallel
growth factor signals can bypass KRAS blockade, underlying
intrinsic resistance to KRASG12C inhibitors (96). However,
combining this strategy with the inhibition of SHP2, a
phosphatase that mediates signaling of different RTKs to
KRAS, blocked the feedback reactivation and enhanced
efficacy of KRASG12C inhibition in vitro and in vivo, also in
models refractory to KRASG12C inhibition alone (16). This
encouraging preclinical evidence led to move to an early-phase
clinical trial investigating combination therapies aimed to
simultaneously targeting KRASG12C and SHP2 (NCT04330664,
NCT04185883). Another central node stimulated by RTK is
represented by SOS1, a guanine nucleotide exchange factor
activating KRAS (97). The SOS1 inhibitor BAY-293 can synergize
with the KRASG12C inhibitor ARS-853 reducing cell
proliferation (98).

Noteworthy, the scenario of KRAS mutated cancer is
extremely heterogeneous and complex. The dependency on
KRAS signaling varies across different KRAS mutant cancer
types and could reflect the variability in the tumor response,
representing a possible mechanism of intrinsic resistance (75,
99). KRASG12C colorectal cancer cells have been shown to have
higher basal EGFR activity compared to NSCLC cells, leading to
higher phospho-ERK rebound and thus resistance to KRASG12C

blockade (100). This finding is consistent with clinical results, in
which activity of sotorasib seems to be lower in colorectal cancer
patients. Thus, combining KRASG12C inhibition with EGFR
inhibition could represent an effective treatment strategy.
Indeed, in KRAS mutant cancer cells KRASG12C inhibition
with ARS-853 was increased by the combination with EGFR
inhibitors (94).

Other adaptive resistance mechanisms for KRASG12C

inhibition involved reactivation of MAPK pathway and failed
PI3K–AKT pathway inactivation (96). The combination of the
KRASG12C inhibitor ARS1620 with PI3K inhibition has
demonstrated to be effective in vitro and in vivo in different
models resistant to single-agent KRASG12C inhibitor. Also a
strategy of blocking PI3K effectors, such as AKT and mTOR,
together with KRASG12C, proved to be effective in preclinical
studies (94, 101).
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Activation of RTK signaling in KRASG12C mutant cancers
could limit the KRASG12C therapeutic inhibition both by
increasing regulation of GTPase activity and promoting KRAS
independent ERK and mTOR/S6 pathway activation (16). The
combination of the mTOR inhibitor vistusertib with the
KRASG12C inhibitor MRTX849 also improved antitumor
activity in vitro.

mTOR and IGF1R could also play a central role in KRAS
inhibition resistance. The addition of mTOR and IGF1R to the
KRASG12C inhibitor ARS1620 improved efficacy in KRASG12C

mutant lung cancer in in vitro and in vivo mouse models.
Another mechanism proposed for the adaptive resistance to

KRASG12C inhibitors is represented by feedback reactivation of
wild-type RAS (95). In KRASG12C models, an adaptive RAS
pathway reactivation after a rapid KRASG12C inhibition with
ARS-1620 and AMG-510 is driven by activation of wild-type
RAS (NRAS or HRAS) mediated by RTKs and is not inhibited
by KRASG12C inhibitors.

In response to KRASG12C inhibitors, proliferation of cancer
cells can be resumed through the production of new KRASG12C

(102). The distribution of newly synthetized KRASG12C between
the active and inactive state, which is the only conformation
bound by KRASG12C inhibitors, modulated the divergent
response. Cells producing new KRASG12C, which is converted
to the active and drug insensitive state, are able to escape
KRASG12C inhibition.

Another possible mechanism responsible for resistance to
KRASG12C inhibitors is represented by the presence of additional
KRAS genetic alterations that can potentiate nucleotide exchange
or impair inherent GTPase activity (94). Furthermore, the
resistance to KRASG12C inhibitors could be cause by the
presence of a heterogeneous spectrum of KRAS mutations in
the same patient (103).

Moreover, aurora kinase A (AURKA) was shown to promote
drug inhibition escape by interacting with KRASG12C and c-Raf
(102). In KRASG12C mutant cancer models a synergic effect was
demonstrated with the KRASG12C inhibitor ARS-1620 and the
AURKA inhibitor alisertib (102).

In an inducible KRASG12D pancreatic cancer mouse model,
the amplification and overexpression of the transcriptional
coactivator Yap1 has been demonstrated to be a potential
KRAS independent bypass mechanism (55). In this study,
indeed, after KRAS extinction and complete tumor regression
in all mice, about two thirds of them relapsed. At least three
possible resistance mechanisms have been identified. In about
half of the relapsed tumors, a KRAS transgene amplification has
been found, meaning that genomic alteration on target itself
could bypass target blockade. Another possible mechanism
leading to tumor relapse is represented by the compensatory
activation of other key growth pathways. According to this,
previous findings showed that expression of receptor tyrosine
kinases bypasses the KRAS dependency (75). Furthermore, a
novel mechanism of resistance to KRAS inhibition through a
Yap1-mediated transcriptional program has been proposed.
Although Yap1 is not sufficient for driving de novo pancreatic
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cancer development, it can drive tumor recurrence in inducible
KRASG12D pancreatic cancer models (104).

Since increased cell proliferation and antiapoptotic signaling
could represent a possible mechanism of resistance to
KRASG12C inhibitors, their combination with chemotherapy,
that inhibits cell proliferation, could boost responses and deter
resistance. There are also evidences showing a synergistic effect
of cell cycle inhibitors like palbociclib in combination with
KRASG12C inhibitors (14). Indeed, genetic alterations in
CDKN2A, CDK4, or CCND1 can be found in up to 20% of
KRAS mutated NSCLC cancers (105).

Overall, these data support the utility of combination
therapies in overcoming intrinsic and adaptive resistance and
enhancing clinical benefit of KRASG12C inhibitors.
KRAS REPROGRAMMING OF
TUMOR MICROENVIRONMENT AND
POTENTIAL IMPLICATION FOR
IMMUNOTHERAPEUTIC APPROACHES

The development and progression of tumors depend not only on
oncogenic mutations but also on the interaction with the
surrounding microenvironment, which creates a nurturing niche
for cancer cells. KRAS mutant tumors are typically characterized by
an immunosuppressive state (106). KRAS signaling induces in
tumor cells the expression of immunomodulatory factors and
inflammatory cytokines, with subsequent recruitment of
neutrophils and myeloid-derived suppressor cells (MDSCs),
creating an immunosuppressive tumor microenvironment.
KRASG12D was shown to induce ELR CXC chemokines in human
embryonic kidney cells (107). Large production of chemokines was
observed also in KRASmutant pancreatic cell lines (108). In murine
lung cancer models KRASG12D demonstrated to stimulate CXCL1,
2, and 5, leading to neutrophils and macrophages infiltration (109).
A tumor growth promoting role for CXCL2 and CXCL5 was also
found in KRAS mutated pancreatic cancer cell lines (110).

The binding of CXCL3 with CXCR2 and the production of
GM-CSF induce the accumulation of MDSCs. In colorectal
cancer models KRASG12D has shown to downregulate the
expression of interferon regulatory factor 2 (IRF2), which in
turn suppresses CXCL3 expression, resulting in high expression
of CXCL3 and promoting migration of myeloid-derived
suppressor cells to the tumor microenvironment (111).
Responsiveness to anti-PD-1 therapy was increased in
colorectal cancers with higher IRF2 expression. The tumor
microenvironment is populated by other myeloid cells, such as
alternatively activated immune suppressive M2 macrophages,
and lymphoid cells, including CD4+FoxP3+ T regulatory (Treg)
cells, CD19+IL-10+ B regulatory (Breg) cells, and interleukin
(IL)-17-producing T helper (Th)17 cells (112, 113).

IL-6 expression has been correlated with KRAS mutated
signaling and seems to play a central role in shaping the immune
milieu. In pancreatic cancer models IL-6 signaling was accompanied
by an infiltration of myeloid cells and lymphocytes (114).
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Upregulation of IL-10 transcription through MEK/ERK/AP-1
pathway was shown in KRAS mutant colorectal cancer cells and
its secretion was required for the conversion of CD4+ T cell to
CD4+FoxP3+ Treg cells (113). High IL-10 levels were associated
with a worse prognosis in patients with KRASmutated cancers (106).

The capacity of TGF-b in regulating the immune system and
inhibiting inflammation is acknowledged since many years (115).
Either RAS downstream MAPK and PI3K pathways seem to
contribute to TGF-b production (116). In KRAS mutated
colorectal cancer lines TGF-b secretion was required for Treg cell
differentiation as mediated via the MEK/ERK/AP-1 pathway (117).
In a lung cancer mouse model, it has been demonstrated that IL-10
and TGFb secreted by KRAS mutated cancer cells, induce the
conversion of CD4+ CD25- T-cells into FOXP3+/CTLA4+/
CD122+ T regulatory cells (Tregs) (117). In immune-excluded
colorectal cancer models the inhibition of TGF-b promoted anti-
tumorigenic immune infiltration, restoring sensitivity to PD-L1/
PD-1 blockade (118). Considering that pancreatic cancer is a poorly
immunogenic, “cold” tumor, novel approaches targeting the
microenvironment have been explored. Signals of activity using
TGF-b-inhibitor galunisertib in combination with gemcitabine have
been showed in advanced pancreatic cancer patients (119).
Moreover, conventional therapy is able to shape the immune
landscape in KRAS mutant tumors. It has been demonstrated
that mutant KRAS pancreatic cancer cell lines treated with
chemotherapy activate MAPK and NF-kB pathways, inducing the
secretion of inflammatory cytokines able to enhance monocyte
differentiation towards MDSCs and thus counteracting therapy
response (120). Other mechanisms have also been proposed. High
circulating IL-8 levels have been suggested to be a potential
predictive biomarker of resistance to nanoliposomal irinotecan
(nal-IRI) in gemcitabine-refractory patients with pancreatic cancer
(121). Nal-IRI has been developed to exploit tumor-associated
macrophages (TAMs) for accumulation and conversion into its
active metabolite. IL-8 has shown an increased mobilization of
immature CD11b+Gr-1+ myeloid cells, thus, it has been
hypothesized that high IL-8 levels and low TAMs activity could
be correlated with lack of nal-IRI activity (122).

Mutated KRAS has a central role in pancreatic cancer
development and growth through regulation of T cell cytokines in
the microenvironment, therefore shaping the metabolic cancer cell
landscape (123). The presence of T cells in the microenvironment is
of crucial importance considering their therapeutic potential with
immune checkpoints inhibitors. TH1 cells are generally associated
with response to immunotherapy and promote CD8+ T cell
infiltration (124). TH2 cells prevent tumor rejection and promote
tumor growth (125). In addition to promoting macrophage M2
polarization, IL-4, which is abundantly produced by TH2 cells, has
been recently demonstrated to stimulate tumor cell proliferation
through KRAS in pancreatic cancer. Mutant KRAS in cancer cells
stimulates cytokine receptor expression such as such as IL4R, IL2Rg,
and IL13Ra1 that, in turn, facilitate the Jak1-Stat6-cMyc pathway
activation by IL-4 and IL-13. cMyc, which is activated by Stat6, is
required for metabolic reprogramming and drives glycolysis.

GM-CSF can exert both immune suppression and stimulation
and the balance could be dependent on its levels (106).
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KRASG12D is responsible for GM-CSF transcription through
MAPK and PI3K pathways in pancreatic cancer cells (126).
The correlation between reduced overall survival and high
levels of GM-CGF observed in pancreatic cancer patients is
probably due to the ability of GM-CSF to cause MDSC
differentiation and inhibition of T cell proliferation (120).

Although IL-10 andTGF-b can induce a shifting ofmacrophages
towards the alternative activated immunosuppressive M2 state, a
clear correlation between their secretion by KRAS mutated cancer
and macrophage polarization has not been established (106). In
pancreatic cancer both M1 and M2 macrophage phenotypes have
been hypothesized to play an important role in tumor initiation and
progression and growth (127). In advanced pancreatic cancer
macrophages represent the most abundant immune cell
population, playing mainly an immunosuppressive role (128). The
correlation of macrophages with prognosis in lung cancer patients
remains controversial (129). Mechanisms of macrophage
recruitment in KRAS mutant lung cancer are not well defined, but
it has been hypothesized a role for CXCR2 signaling (130).

Also, a crosstalk between cancer-associated fibroblasts (CAFs)
and KRAS mutant cancer cells has been shown. In a
KRASG12D mutant lung cancer and CT26 colon cancer mouse
models, the depletion of fibroblast activation protein (FAP),
expressed by CAFs, was demonstrated to inhibit tumor cell
proliferation through accumulation of collagen and decrease of
myofibroblast content and blood vessel density (131). In pancreatic
cancer cells KRAS activates Hedgehog pathway, which is involved in
the generation and maintenance of the typical dense tumor stroma
(132). In a pancreatic cancer mouse model, mutant KRAS induced
the expression of Sonic hedgehog, which in turn activated the
transcription factor GLI1. GLI1 regulates IL-6 expression in
fibroblasts by binding its promoter and IL-6/STAT3 axis is
involved in pancreatic carcinogenesis (133).

Pancreatic stellate cells are essential in disease progression
and are the most represented cell type of tumor stroma (134).
TGF-b and many other factors secreted by pancreatic cancer
cells contribute to the activation of stellate cells which, in turn,
produce and release several other growth factors and cytokines
(106). Pancreatic stellate cells and mutant KRAS cancer cells
have a synergistic effect on the immune microenvironment.

The composition of the immune population and its crosstalk
with KRAS altered tumor cells have a central role not only in
determining tumor onset and progression but also in sensitivity to
immunotherapeutic drugs (135). A study reported that oncogenic
RAS signaling can upregulate PD-L1 expression on tumor cells
through a mechanism of increased PD-L1 mRNA stability (136).
Indeed, KRAS-induced MEK signaling promotes the inhibition of
tristetetrapolin, a negative regulator of PD-1 expression. In human
lung and colorectal tumors, RAS pathway activation has been
correlated with elevated expression of PD-L1. It has been reported
that PD-1 and PD-L1 expression is more frequent in KRAS
mutated NSCLC (137). Some studies have already shown a
clinical relevance of the combination of MEK inhibitors with
immunotherapy (138, 139). An ongoing phase 1b/2 trial is testing
the activity of the treatment with MEK inhibitor binimetinib in
combination with nivolumab or nivolumab plus ipilimumab in
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pretreated patients with microsatellite stable metastatic colorectal
cancer harboring a RAS mutation (NCT03271047).

Differently from other TKIs, novel KRASG12C inhibitors are
specifically selective for the mutation variant of KRAS and
should not have any effects on the immune cells directly. Thus,
KRAS inhibition in cancer cells can shift the balance from an
immunosuppressive state to a microenvironment favoring
effective antitumor activity and can sensitize tumors to
checkpoint inhibitor therapy.

The predictive role of KRAS status to immune checkpoint
inhibitors in NSCLC is controversial. Although KRAS status has
never been included as stratification factor in clinical trials with
immune checkpoint inhibitors for NSCLC, a subgroup analysis
of the CheckMate 057 trial revealed that patients with tumors
harboring a KRAS mutation had a greater clinical benefit with
nivolumab compared to docetaxel (140). A meta-analysis
conducted on five prospective randomized trials has revealed
that (141) KRAS mutation is associated with a better outcome in
patients treated with PD-1/PD-L1 inhibitors in second-line
setting (142). However, the study failed to prove that KRAS
status is an independent predictive factor for treatment. The
retrospective IMMUNOTARGET registry confirmed a greater
benefit from immune checkpoint inhibitors in patients with
KRAS mutated NSCLC compared to those with EGFR mutant
tumors (143). Another retrospective study found similar activity
of immunotherapeutic agents in KRAS mutated compared to
KRAS wild-type lung cancer patients (141). The mutation
variants KRASG12V, KRASG12D, and KRASG13C have been
associated with higher tumor expression of PD-L1 compared
with other variants in NSCLC.

Interestingly, some evidence supports the hypothesis that STK11/
LKB1 co-mutation in KRAS mutated NSCLC could represent a
negative predictive factor for immunotherapy (144). LKB1 loss is
involved in the suppression of stimulator of interferon genes
(STING), determining a decreased expression of type I interferon
genes and chemokines that facilitate T-cell recruitment (145).
STING activation has been associated with response to
immunotherapy and is stimulated by chemotherapy (146). A
subgroup of STK11 and p53 co-mutated NSCLC is characterized
by high STING- and immune-related gene expression. KRAS
mutated tumors with co-occurring CDKN2A/B mutations have a
scarce immune infiltrate and low PD-L1 expression, resulting in
resistance to anti-PD-1 therapies (147). Another group of KRAS
mutant NSCLC presents p53 co-mutation and they also have high
PD-L1 expression, high T-cell infiltration and, thus, enhanced
response to immunotherapy. For the resistance to anti-PD-1
observed in this latter group, a mechanism involving STAT
signaling has been proposed (148). In KRAS/p53 mutant murine
lung cancer models neurotrophic receptor tyrosine
kinase 1 (NTRK1) has been found to be upregulated after
treatment with PD-1 inhibitors and to regulate JAK/STAT
signaling, promoting PD-L1 expression and CD8+ T cell
exhaustion in the microenvironment.

p21-activated kinase 4 (PAK4) is a serine/threonine kinase acting
downstream of RAS signaling. PAK4 overexpression has been found
in tumor biopsies of anti-PD-1 non-responders and was correlated
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with low T cell and dendritic cell infiltration across different cancer
types, with a strong negative correlation in pancreatic cancer
(https://doi.org/10.1038/s43018-019-0003-0). The genetic
knockout of PAK4 augmented tumor infiltration by T cells and
natural killer cells and pharmacological inhibition of PAK4
synergized with PD-1 blockade immunotherapy in melanoma
mouse models, suggesting the possibility of enhancing the efficacy
of immunotherapy also in KRAS mutant tumors.

Therefore, combining KRAS inhibition with immune
checkpoint blockade has a strong biological rationale and could
open the way to therapeutic options, reversing the innately
immunoresistant phenotype of some RAS mutant cancers.

A recent study has suggested that the novel KRASG12C inhibitor
sotorasib (AMG 510) can potentiate immune rejection when
combined with anti-PD-1 immune checkpoint inhibitor (14). On
one side, sotorasib promotes tumor regression by blocking growth
and proliferation pathways, on the other side, it induces a change in
the expression of immunomodulating factors in cancer cells, such as
increased production of T-cell chemoattractants CXCL10 and
CXCL11. The combination of sotorasib with anti-PD-1 determined
complete regression in nine out of ten CT26 KRAS mutated colon
carcinomamice,which is oneof themost immune-responsivemouse
tumor models, and induced T cell memory. The immunological
memory was demonstrated by the fact that the growth of isogenic
KRAS G12D tumors in treated mice was impaired.

The phase 1b trial CodeBreakTM 101 testing the combination
of sotorasib with anti-PD-1 is ongoing in patients with a
KRASG12C advanced solid tumors (NCT04185883).

Further investigation about the synergistic association of
KRASG12C and immune checkpoint blockade is warranted. It has
to be explored if this combination will be effective only in tumors
that are already moderately sensitive to immunotherapy or even in
those intrinsically resistant to immune checkpoint inhibition.

CONCLUSIONS

Although KRAS is the most mutated oncogene in human cancer,
it has considered to be undruggable because of its structural
biology. Recently, exciting data of activity have been reported
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with KRASG12C inhibitors in early-phase clinical trials, raising a
growing interest for KRAS inhibition, especially in lung cancer.

Different strategies are being explored in order to overcome
resistance mechanisms and enhance the efficacy of KRAS
inhibition, for example targeting synthetic lethal partners of
KRAS. There is a hope that in the next future it will be
achievable to block other mutation variants of KRAS other
than G12C, making possible to exploit this approach also in
other KRAS mutant tumors. Combinations of KRAS inhibitors
and immune checkpoint inhibitors are being tested, since they
showed a synergistic effect in a preclinical setting. Considering
the immunosuppressive microenvironment characterizing KRAS
mutant cancers, results from clinical trials utilizing this
mechanism are anxiously awaited.

Many improvements have been made in targeting
the oncogene KRAS, that was previously thought impossible
to block, paving the way for a novel clinical field of research
that will probably lead to new horizons in the future
clinical practice.
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