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Abstract

The computational fluid dynamic method has been widely used to quantify the hemodynamic 

alterations in a diseased artery and investigate surgery outcomes. The artery model reconstructed 

based on optical coherence tomography (OCT) images generally does not include the side 

branches. However, the side branches may significantly affect the hemodynamic assessment in 

a clinical setting, i.e., the fractional flow reserve (FFR), defined as the ratio of mean distal 

coronary pressure to mean aortic pressure. In this work, the effect of the side branches on 

FFR estimation was inspected with both idealized and optical coherence tomography (OCT)-

reconstructed coronary artery models. The electrical analogy of blood flow was further used to 

understand the impact of the side branches (diameter and location) on FFR estimation. Results 

have shown that the side branches decrease the total resistance of the vessel tree, resulting in a 

higher inlet flowrate. The side branches located at the downstream of the stenosis led to a lower 

FFR value, while the ones at the upstream had a minimal impact on the FFR estimation. Side 

branches with a diameter larger than one third of the main vessel diameter are suggested to be 

considered for a proper FFR estimation. The findings in this study could be extended to other 

coronary artery imaging modalities and facilitate treatment planning.
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1. Introduction

Pressure wire-based fractional flow reserve (FFR) has been widely used to evaluate the 

functional significance of a stenosis in epicardial coronary arteries, which is defined as 

the ratio between the mean distal coronary pressure of the stenosis (Pd) to the mean 

aortic pressure (Pa) during maximal hyperemia [1]. FFR-guided percutaneous coronary 

intervention (PCI) has shown more favorable outcomes compared with angiography-guided 

PCI [2]. However, hyperemic FFR is associated with additional time, cost, and more 

importantly, unpredictable systemic blood pressure changes and vasodilation side effects 

causing chest discomfort [3]. Moreover, invasive FFR shows methodological deficiencies 

in assessing serial lesions and early post-stented acute coronary syndrome culprit lesions. 

Image-derived FFR estimation is more convenient and highly promising [4–8]. Precise 

model reconstruction of vessel geometry is paramount in image-derived methodology, as the 

ambiguity in the lumen diameter has proven to have the largest impact on FFR computation 

[9].

Intravascular optical coherence tomography (OCT) provides much superior resolution 

compared to other imaging modalities [10] and has proven to deliver accurate lumen 

measurements with good reproducibility [11]. Several studies have employed OCT-derived 

vessel geometries to compute FFR by application of computational fluid dynamics (CFD) 

[12] or simplified fluid dynamics equations [5,13] and delivered reasonable accuracies 

(~85–87%) in classifying the vessels conferring to the diagnostic threshold (FFR ≤ 0.8). 

However, the quantitative agreement against the measured FFR was limited (with correlation 

coefficients ~0.7 and SD of Bland–Altman plots ~0.05–0.09), which can lead to difficulties 

in clinical decision making for vessels with intermediate FFR values. As OCT pullback 

apparently does not include the side branches’ geometry, the effect of the side branches is 

essentially ignored [12,13], or to a certain degree [5] in most of these studies. The study 

[5] assumed a varied flowrate along the vessel (derived proportionally to the reference 

lumen area) to indirectly account for the side branch flow and suggested an insignificant 

improvement in FFR prediction. Another study [14] combined CFD modeling of OCT-

reconstructed vessel segments with a lump parameter model (LPM), which includes the 

effect of side branch flow and reported a better correlation coefficient (0.82) with FFR 

measurements. However, in these studies, the comprehensive analysis of the influence of the 

side branches on the FFR estimation is still lacking.

This study aims to inspect the influence of side branches on FFR estimation using 

OCT-reconstructed vessel models. First, the influence of the side branches on FFR was 

systematically studied with three idealized artery models and corresponding circuit models 

(analogous to fluid domain). The mechanistic understandings from the idealized models 

were further validated with two representative patient-specific models against the clinical 
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FFR measurements. The findings of this study can help to enhance the accuracy of FFR 

estimation based on OCT images.

2. Material and Methods

Three idealized coronary artery models were constructed to quantify the effect of a side 

branch on FFR estimation with CFD simulations. The observations were compared with 

simplified electrical circuit models, which were analogous to the fluid domains. Then, FFR 

estimations from two patient-specific artery models reconstructed from OCT images were 

validated against the clinical FFR measurements.

2.1. Idealized Stenosed Coronary Artery Models

Three idealized artery models—without side branch, with one side branch at the upstream of 

the stenosis, and with one side branch at the downstream of the stenosis—were constructed. 

We take the model with one side branch at the upstream as an example to illustrate the 

geometry of the idealized stenosed artery model (Figure 1). The length and diameter of the 

main vessel are 75 mm and 3 mm, respectively. The shape of the stenosis is described in 

Figure 1b. Stenosis is spread over a length (L) of 10 mm, and the minimum lumen area of 

the stenosis is 20% of the healthy lumen area. The side branch has a diameter of 2.5 mm, 

connects to the main vessel at an angle of 75 degrees, located 25 mm away from the center 

of the stenosis, at the upstream considering the flow direction.

2.2. IVOCT Imaging

IVOCT images were acquired with a frequency-domain ILUMIEN OCT system (St. Jude 

Medical Inc., St. Paul, MN, USA), which has a tunable laser light source sweeping from 

1250 to 1360 nm at a frame rate of 180 fps. A 2.7-Fr OCT catheter (Dragonfly, St. Jude 

Medical Inc., St Paul, MN, USA) was advanced over a conventional guidewire until reaching 

the lesion of interest, and the catheter position was confirmed using quantitative coronary 

angiography (QCA). Automated pullback was then performed with contrast injection 

through the guiding catheter. The pullback speed was 36 mm/s with an axial resolution 

of 20 μm.

2.3. Clinical FFR Measurement

Pressure wire-based FFR was measured using 6-Fr guide catheters and a PressureWire X 

Guidewire (Abbott Vascular, Inc., Chicago, IL, USA). After calibration and equalization to 

aortic pressure, the wire was placed to at least 20 mm beyond the target lesion. Hyperemia 

was induced using adenosine administered by either intracoronary administration (200 μg 

for the left coronary artery and 100 μg for the right) or intravenous infusion at a weight-

adjusted rate, equivalent to a standard dose 140 μg/kg per minute, terminated when the two 

minutes of measurement was completed. FFR was recorded as the ratio of distal to aortic 

pressure during maximal hyperemia. After recording FFR, the pressure wire was pulled back 

to position the sensor at the tip of the guide catheter to check the pressure drift. If the ratio 

of the pressure wire and guide catheter pressures differed by greater than ±0.3, FFR was 

re-measured after re-equalization.
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2.4. Vessel Segmentation and Reconstruction

OCT images were used to reconstruct patient-specific artery models with and without the 

side branches. The 3D reconstruction process of OCT-derived artery models is shown in 

Figure 2. Segmentation of OCT images was performed using MATLAB image processing 

toolbox (2020b. The MathWorks, Inc., Natick, MA, USA). First, the lumen of the main 

vessel was segmented, and the extracted lumen contours from each frame were lofted along 

their centers to construct the 3D vessel geometry without side branches. Then, the lumen 

of each side branch vessel (near ostium) was manually segmented, and each side branch 

was separately constructed by lofting the corresponding lumen contours. This process 

could successfully reconstruct the segment of the side branch near its ostium, as shown 

in Figure 2b. The reconstructed geometries of the main vessel and the side branches in STL 

format were imported to ANSYS SpaceClaim (ANSYS Inc., Canonsburg, PA, USA), where 

they were combined to create the model with side branches. Here, the geometry was also 

modified by extending the side branches to improve the numerical convergence of the CFD 

solution.

Figure 3 shows the 3D reconstructed vessel tree models of the two patients with 

corresponding angiography views. The severely stenosed regions are enclosed with dashed 

circles. In patient 1’s vessel tree geometry, the diffused stenosed region was located after 

three side branches and before a side branch with a much smaller diameter (<1 mm). In 

contrast to patient 1’s geometry, patient 2’s geometry had a more focal stenosed region 

located before the side branches and another stenosed region in the distal region of the 

vessel.

2.5. Blood Flow Modeling

The 3D reconstructed vessel models (in STL format) were imported to ANSYS ICEM 

CFD V.19 (ANSYS Inc., Canonsburg, PA, USA), where the fluid domain was meshed 

using tetrahedral elements for the computational fluid dynamic (CFD) simulation. A grid 

independence study was carried out to confirm the ability of the mesh to calculate the 

pressure with a relative error <0.01%, and the final computational mesh contained ~500,000 

elements for the idealized models and ~2,000,000 elements for the patient-specific vessel 

models. In addition, a prism layer mesh of 4 layers with an initial thickness of 0.02 mm and 

a growth rate of 1.3 was employed at the wall boundaries to well resolve the flow dynamics 

in the boundary layer region. During meshing, a mesh smoothing algorithm was initiated 

to maintain a specified minimum mesh quality of 0.3, which allowed the subdivision of the 

elements. The final mesh had an average skewness ~0.4, where the maximum skewness was 

less than 0.85. These mesh quality and skewness ranges are deemed as good-quality mesh in 

ANSYS ICEM CFD.

The blood flow was modeled using CFD solver ANSYS CFX (ANSYS Inc., Canonsburg, 

PA, USA) by solving incompressible Navier–Stokes equations. A steady-state flow 

condition was used for calculating the FFR estimation. FFR is a time-averaged measure 

that is calculated over several cardiac cycles, and steady-state simulations have been used in 

previous work to estimate FFR [15]. Moreover, insignificant relative errors (<1%) between 
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the transient and steady CFD solutions have been reported for FFR estimation [16]. Laminar 

blood flow was assumed, and a density of 1050 kgm−3 was used.

The fluid flow governing equations for the mass continuity and momentum conservation is 

given by Equation (1) and Equation (2), respectively.

∇ ⋅ U = 0 (1)

ρ(U ⋅ ∇)U = − ∇P + ∇ ⋅ τ (2)

Here, U, ρ, P, τ, stand for velocity vector, density, pressure, and stress tensor, respectively. 

Stress tensor τ is related to the strain rate by Equation (3),

τ = μ ∇U + (∇U)T − 2
3δ∇ ⋅ U (3)

where μ, δ denote the dynamic viscosity of the fluid and Kronecker delta function. To 

model the viscosity μ, the Carreau model [17] was used. The Carreau model captures the 

non-Newtonian, shear-thinning behavior of blood using Equation (4),

μ = μ∞ + μ0 − μ∞ 1 + (λṠ)2
n − 1

2 (4)

where μ∞ and μ0 are the viscosity value when the shear rate reaches infinity and zero, 

respectively. Ṡ is the shear rate. λ and n denote the time constant and the power law index, 

respectively. The following values were used in the simulations: (μ∞ = 0.0035 Pa s, μ0 = 

0.25 Pa s, λ = 25 s, and n= 0.25) [18]. These values were selected by fitting the Carreau 

model to the viscometry measurements of Chien et al. [17] obtained for whole blood over 

shear rates ranging from 0.01 to 50 s−1.

Ansys CFX employs second-order discretization in space using a finite volume method 

(FVM)-based approach. The second-order upwind scheme is selected for solving the 

momentum equation. The software solves the coupled continuity and momentum equations 

using a co-located grid approach [19].

2.6. Boundary Conditions

A static pressure and a zero gradient boundary conditions were specified at the inlet, which 

are described by Equations (5) and (6).

P = Pin (5)

dU
dn = 0 (6)
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For the idealized models, Pin was defined as 90 mm Hg. For the patient-specific models, 

the pressure was measured using the guide catheter. In Equation (6), n denotes the normal 

vector at the boundary. The artery wall was considered as stationary, and a zero-wall velocity 

boundary condition was imposed at the artery wall.

Uwall = 0 (7)

At each outlet, a resistance-based boundary condition was imposed to mimic the coronary 

microvascular resistance (CMVR) downstream from each outlet. Such a boundary condition 

computes the outlet pressure (Pout) based on the flowrate (Qout) and the defined resistance 

(Rout).

P = Pout = QoutRout (8)

An estimation of the appropriate resistance (Rout) value at each outlet is required for an 

accurate computation of FFR. However, the direct measurement of the resistance of the 

microvascular bed at each outlet is not available and difficult to measure. Hence, to estimate 

the CMVR at each outlet, the structured tree model approach suggested by Olufsen et 

al. [20] was used. This approach has been previously employed by several studies to 

simulate coronary blood flow dynamics and FFR [21,22] and has shown agreement with 

corresponding perfusion resistance measurements [22]. This model suggests an asymmetric, 

fractal-like vascular tree structure based on morphological laws of vascular branching. The 

root of the vascular tree originates from an outlet and bifurcates into daughter vessels with 

diameters scaled by factors of α and β. Each branch length is derived from a length/diameter 

ratio (γ). The branching is terminated when a vessel diameter is less than a minimum 

diameter (dmin), which represents the arteriolar diameter of the vascular bed [20].

For a branch segment of diameter (di), the corresponding resistance (Ri) is derived as [23],

Ri = 128μγ
πdi

3 (9)

In addition, considering the parallel branching structure, the resistance (R) at any bifurcation 

is calculated as,

1
R = 1

R1
+ 1

R2
(10)

where the resistances of the daughter vessels are denoted by R1 and R2. Subsequently, 

considering Ohm’s law and treating each branch as circuit elements, the total resistance 

of the vascular tree can be calculated. In the current study, the following parameters were 

used: (α = 0.9, β = 0.5, γ = 25 [24], Dmin = 50 μm [20]). To simulate the hyperemic 

conditions, the calculated resistance is multiplied by a factor of 0.24, which corresponds to 

the experimental observation with intravenous administration of adenosine 140 μg/kg/min 

[25].
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For the patient-specific models, the resistances at each side branch were determined using 

the structured tree approach, while the resistance at the distal end of the main vessel was 

determined to match the pressure wire measurement. The same distal resistance value was 

imposed when the model was considered without side branches.

3. Results and Discussion

3.1. FFR and Flow Distribution in Idealized Artery Models

CFD simulations were performed in three idealized artery models, namely, model 1 (without 

side branch), model 2 (with one side branch located at the upstream of the stenosis), and 

model 3 (with one side branch located at the downstream of the stenosis).

The pressure and velocity distributions in the three idealized artery models are shown in 

Figure 4a–c. A significant pressure drop was observed as the flow passed through the 

stenosis. The lowest pressure was seen at the stenosis region due to a high velocity at the 

narrow section. As the flow traveled further downstream, the pressure slightly increased due 

to pressure recovery with velocity reduction. A more axial symmetric velocity distribution 

was observed in model 1 (without side branches) compared with the other two models (with 

a side branch). The blood flow was redistributed to maintain the same inlet aortic pressure, 

as depicted in Figure 4d. Models 2 and 3 showed a higher inlet flowrate than model 1. This 

indicated that the inclusion of the side branch requires more blood flow intake. Models 1 

and 2 had a similar outlet flowrate from the main vessel (outlet1), i.e., <0.01% difference. 

It suggested a minimal alteration in the flowrate through the stenosis when the side branch 

is located before the stenosis region. In contrast, the outlet flowrate of the main vessel in 

model 3 was 15% lower than the other models. It should be noted that the flowrate through 

the stenosis was the same as the inlet in model 3, and as the outlet1 in the other models. This 

means that blood flow through the stenosis in model 3 (inlet) was 27% higher than the other 

models (outlet1).

The alterations in the velocity distributions caused by side branches can lead to changes 

in local hemodynamics parameters, such as wall shear stress (WSS), and further induce 

remodeling of the vessel wall. Previous studies [26,27] have revealed the importance of the 

inclusion of side branches when assessing the risk of atherosclerosis development in relation 

to WSS distribution.

FFR was determined as the ratio between the outlet pressure and the inlet pressure of 

the main vessel, as shown in Figure 4e. The estimated FFR of model 2 was slightly less 

than model 1 (with a difference of 0.002). This insignificant change in FFR is also in 

accordance with the similar flowrate observed through the stenosed region of these models. 

The estimated FFR in model 3 was significantly smaller, which was 15.5% lower compared 

to the other two models, suggesting that the side branch located at the downstream has a 

significant impact on FFR estimation.

The influence of the side branches on the FFR value can be further illustrated with electrical 

circuit models (Figure 5). Here, the variables, in terms of voltage and resistance, are 

analogous to the pressure and flow resistance in the fluid domain, respectively. V and 
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V1 denote the voltage (analogous to the pressure) at the main vessel inlet and outlet, 

respectively. R1 and R2 denote the distal microvascular resistances of the main vessel 

and side branch, respectively. R(q) denotes the flow resistance induced by the stenosis 

region. Flow resistances of the healthy segments of the arteries are assumed to be negligible 

compared to the stenosis region and distal microvascular resistances.

The pressure drop (dP) across the stenosis can be described by a nonlinear function of the 

flowrate (q) as,

dP = C1q + C2q2 (11)

where the first term and the second term of the Equation (11) represent the viscous pressure 

drop and expansion pressure drop across the stenosis, respectively. The parameters C1 and 

C2 are constants that depend on the dimensions of the stenosis, which will significantly 

increase along with stenosis severity, further leading to a large pressure drop. Based on 

Equation (11), the flow resistance through the stenosis can be derived as,

R(q) = dP
q = C1 + C2q (12)

For the side branch located at the upstream of the stenosis, the resistance R2 is connected 

in a parallel configuration to the resistance in the main vessel and does not affect the FFR 

estimation. The FFR in both model 1 and model 2 can be calculated based on R1 and R(q):

FFR = V 1
V = R1

R1 + R(q) (13)

As the flow in the main vessel is governed by the inlet voltage (V) and distal resistance 

(R1), both models have an equal flowrate in the main vessel and an equal R(q). Hence, 

both models lead to the same FFR. Furthermore, in these models, the flow into the side 

branch is determined by the inlet voltage V and R2, which are independent of R(q) and R1. 

These derivations agree well with the CFD-derived results for model 1 and model 2, where 

insignificant deviations in FFR and flowrate in the main vessel (outlet1) are observed.

For model 3, when the side branch is located at the downstream after the stenosis, the 

distal resistances R1 and R2 are connected in parallel, which can be represented as a total 

resistance (Rt) denoted as,

Rt = R1R2
R1 + R2 (14)

Consequently, the FFR can be calculated by Equation (15).

FFR = V 1
V = Rt

R(q) + Rt = R1
R(q) ⋅ R1

R2 + 1 + R1 (15)
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In comparison to Equation (13), the term R1
R2  in Equation (15) contributes to a decrease in 

the FFR value. According to Murray’s law of flow distribution, the distal resistance of an 

artery with a diameter (d) is assumed to be proportional to d−3 [28]. Hence, as the main 

vessel has a larger diameter, the term R1
R2  is usually less than unity. In addition, R1

R2  decreases 

as the diameter of the side branch decreases and becomes negligible (<4%) if the side 

branch diameter is less than one third of the main vessel diameter. Moreover, it should be 

noted that the term R(q) depends on the flowrate, and for model 3, the flowrate across the 

stenosis was higher than the other models, as shown in Figure 4d. Hence, with the increase 

in flowrate across the stenosed region, the increased R(q) contributes to further decrease the 

FFR. The FFR and flow distribution results from the CFD simulations further validate these 

observations. Overall, these results suggested that the impact of side branch flow on FFR 

estimation is more critical when the stenosed region is located before side branches.

3.2. FFR Analysis in OCT-Reconstructed Vessel Models

The effects of the side branches on blood hemodynamics and FFR estimation were further 

investigated in the OCT-based vessel models from two patients (Figure 6).

In patient 1, the side branches at the upstream of the stenosis did not contribute to a 

significant difference in FFR estimation. In line with the observations from idealized model 

2, as most of the side branches are located at the upstream of the stenosed region (denoted 

by region 1 in Figure 6a), the flow into these branches is likely to cause a minimum effect on 

the FFR estimation. The flow into the side branch located at the downstream of the stenosed 

region is likely to have more influence on the FFR. However, due to the smaller diameter 

(<1 mm) of this branch compared to the diameter (~3 mm) of the main vessel, the effect on 

FFR is not significant.

For patient 2, the FFR value decreased by 13% when the side branch flow was considered. 

This difference was more significant than the one for patient 1, which was 2%. There was 

a higher pressure drop for the stenosis region with side branches located at its downstream 

(region 2 in Figure 6b) compared with the one without side branches. As the side branches 

of patient 2 are located at the downstream of the stenosis (denoted by region 2 in Figure 

6b), the pressure distribution in patient 2 is more likely to follow the trends of idealized 

model 3. As depicted using the idealized circuit model 3 (in Section 3.2 using Equation 

(15)), stenosis located before side branches is subjected to a higher flowrate, leading to 

an increased flow resistance R(q) (and pressure drop) across the stenosis. Moreover, the 

existence of multiple side branches after the stenosis will result in increasing the distal 

resistance ratio (R1/R2) between the main vessel and side branches in Equation (15), further 

contributing to a decrement in FFR compared to a model without side branches.

Overall, the FFR (or pressure drop) differences between the models with and without side 

branches relates to the flowrate differences in the main vessel. When side branches are 

considered, due to the decreased total resistance, the vessel tree intakes a much higher 

flowrate, and the flow along the main vessel varies as the flow leaks to the side branches. 

In contrast, the model without side branches intakes a lower flowrate that remains constant 

along the vessel. The variations of FFR and flowrate along the main vessel for patients 1 
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and 2 are illustrated in Figure 7. The simulated FFR variation was compared against the 

measurements derived from FFR pressure wire pullbacks. For patient 1, the simulated FFR 

variation in the main vessel with or without the side branches showed a good agreement with 

the measurements. Here, a significant drop in FFR was seen across the severely stenosed 

section (denoted by region 1 in Figure 6a). The flowrate across this section (Q34 in Figure 

7c) was similar in both models with and without the side branches.

For patient 2, the FFR variation in the model with side branches showed a better agreement 

with FFR measurements than the one without side branches. The model neglecting the side 

branches at the downstream of the stenosis considerably underestimated the drop in FFR 

(stenosis region between Qin and Q12 in Figure 6b). Moreover, the flowrate across this 

region (Qin in Figure 7d) was significantly lower in comparison to the model with side 

branches.

The simulated flowrate variation in the main vessel was also compared with flowrate 

variation derived using Murray’s flow distribution law. Murray’s law assumes the flow is 

proportional to the third power of the vessel diameter (Q~d3), which is derived on the 

basis of adaptive mechanisms whereby blood vessels remodel to maintain homeostasis 

according to the shear stress levels on the endothelial surface [29]. This remodeling process 

is empirically validated [30] and found to be completed within a few weeks [31], and 

has even been observed in atherosclerotic vessels [32]. The flow distribution derived using 

Murray’s law showed good agreement with the simulated results, where the simulated 

flowrates were slightly lower (on average by ~7%). This result indicates the applicability of 

morphometric flow rules to modify the flowrate in the main vessel accounting for the side 

branch flow for a more accurate FFR estimation.

One study has analyzed the impact of side branches on FFR estimation using a 

computational model derived from angiography images [33]. A linearly distributed, 

simplified flow leakage from the main vessel was adopted in that study. A significant 

decrease in the inlet flowrate was reported when the side branch flow was ignored, which 

agrees with our findings. The same study reported relatively lower FFR values when the 

side branches were ignored but concluded an insignificant effect on FFR due to side branch 

flow. This is different from our findings; this is mainly due to the different generic distal 

resistance values used for the models with and without flow leakage, tuned separately to 

match the measured FFR values. In contrast, the current study imposed the same distal 

resistance at the main vessel exit in models with and without side branches for comparison 

purposes. Moreover, analytical findings in our study suggested that the effect of side branch 

flow is case-specific depending on the location of the stenosis in the main vessel.

Another study [27] has investigated the impact of side branches on hemodynamic indices 

using vessel tree models reconstructed by the fusion of OCT and angiography images and 

reported a significantly higher distal coronary pressure to aortic pressure ratio (Pd/Pa) in 

vessel tree models compared to a single lumen model (without branches). However, that 

study imposed the same inlet mass flowrates in the vessel tree and single lumen model. 

Hence, the flowrate in the single lumen model is implicitly forced to be higher, which leads 

to higher pressure drops than the vessel tree model. In contrast, the more realistic distal 
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resistance and inlet pressure boundary conditions were used in the current study to permit 

the flow to adjust to the model geometry based on distal resistances. This highlights the 

significance of choosing the appropriate boundary conditions for FFR prediction when the 

side branch flow is considered.

3.3. Implications on FFR Computation Using OCT Imaging

The FFR estimation with OCT-based computational models have usually ignored the 

presence of the side branches [12,13], which may cause a deviation compared with the FFR 

measurement. Some studies have shown an improvement in FFR prediction by implicitly 

accounting for the side branch flow [5,14]. This work suggests that the side branch at the 

downstream to the stenosis is necessary to consider for a precise FFR estimation with CFD 

simulation. In contrast to other imaging modalities, such as computed tomography (CT) 

angiography and 3D rotational angiography, OCT images cannot directly capture the side 

branches, as the images are acquired through a catheter guided along the main vessel. Yet, 

these images contain the information of side branch ostia, which can be used to approximate 

the geometry of the vessel tree structure. The accurate segmentation of the side branch 

ostia from OCT imaging is critical for estimating the side branch flow. While manual 

segmentation can be time-consuming and labor-intensive, automatic side branch ostium 

segmentation algorithms for OCT imaging are also available [34]. Moreover, more accurate 

3D vessel geometry can be reconstructed by combining OCT images with angiographic 

views [27].

Varied hyperemic boundary conditions in different patients brings more uncertainty in 

FFR predictions [35]. Previous studies have suggested different methods of non-invasively 

estimating the patient-specific hyperemic boundary conditions. One popular method of 

estimating the patient-specific boundary conditions is based on determining the myocardial 

mass and vessel diameters [36]. This method employs allomeric laws to determine coronary 

flow from myocardial mass and subsequently estimates the distal resistances based on vessel 

diameters as governed by Murray’s law. However, CT imaging is required for calculating the 

myocardial mass and is thus not appropriate for the OCT-based method. One previous study 

[14] suggested a similar method of estimating the distal resistances based on the length of 

coronary arteries extracted from angiographic views and used to predict FFR in vessel tree 

models reconstructed using OCT imaging. Another study [37] estimated the patient-specific 

hyperemic flow intake through allometric relations and implemented a non-linear boundary 

condition to estimate the distal resistances by allowing the modification of Murray’s law 

flow distribution in the diseased artery tree. The same study [37] estimated the FFR in 

vessel tree models reconstructed from intravascular ultrasound (IVUS) imaging with the 

side branches manually segmented, which can also be implemented with OCT imaging. 

Moreover, more simple approaches have been used to specify the flow fraction boundary 

conditions at the outlets according to morphometric flow rules, assuming the deviations in 

flow distribution (from the healthy state) are insignificant in the diseased arteries [15,38], 

which is also seen in our study. The use of morphometric flow rules to correct the flow 

in the main vessel can serve as a reasonable approximation, which can be combined 

with previously suggested equation-based FFR estimation methods [5,13] to improve their 

performance.
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4. Limitations

The curvature of the arteries is not considered in the current geometry reconstruction 

process, which may deviate the FFR computations. However, previous studies reported 

minor effects on FFR caused by the curvature of the coronary arteries [39,40]. For 

more accurate computations, 3D curved vessel geometry can be reconstructed by placing 

the OCT-segmented lumen cross sections in the 3D curvature of the artery derived 

from different angiographic views [41,42]. The side vessels are manually segmented and 

connected to the main vessel, where very small branches (<0.5 mm) were ignored. The 

errors in segmented side branch diameters, angles, and locations may deviate the flow 

distribution into side branches. However, these errors are likely to cause a minimum 

effect on FFR computation and have less impact on the FFR comparisons in the study. 

More accurate segmentation of the side branches can be achieved by the fusion of OCT 

images and angiography views [27] or through automated segmentation methods [34]. 

The microvascular resistances of the side branch outlets were calculated by assuming a 

structured tree model [20] connected to the outlets. While these resistance values are 

likely to vary from the realistic patient-specific microvascular resistances, they provide a 

reasonable approximation for the aim of the study, exploring the effect of side branch 

flow on FFR. The study only incorporated two patient-specific vessel models to evaluate 

the conclusions derived from the idealized models. However, the qualitative findings are 

expected to remain the same. Analysis of FFR in more patient-specific vessels will further 

strengthen the findings of the study.

5. Conclusions

This study investigated the influence of side branches on FFR estimation. First, the influence 

of side branches on FFR estimation was investigated with three idealized models and 

further interpreted with circuit models. The understandings from the idealized models were 

further validated with two patient-specific models. The inclusion of side branches caused 

a significant increase in the inlet flowrate. The side branches at the downstream of the 

stenosis will significantly reduce the FFR value, while the side branches at the upstream 

of the stenosis have a minimal effect on the FFR estimation. The side branches with a 

smaller diameter have less influence on the FFR estimation. The findings of this study 

could enhance the understanding of the relationship between pressure, the anatomy of 

narrowing vessels, and the anatomy of a vessel tree, which are not limited to OCT-derived 

vessel geometries. Accounting for the blood flow into side branches will enhance FFR 

estimation accuracy and likely produce a better quantitative agreement with patient-specific 

FFR measurements compared to the models that ignore the side branch flow.
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Figure 1. 
Geometric representation of the idealized stenosed artery model: (a) Model without side 

branch. (b) Profile of the stenosis. (c) Model with side branch.
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Figure 2. 
The 3D reconstruction of OCT-derived vessel tree geometry: (a) Segmentation of the main 

lumen and side branch lumen cross sections; (b) reconstructed geometry of the main vessel 

and side branches separately; (c) final vessel tree model generated by combining main vessel 

and side branches.
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Figure 3. 
Reconstructed vessel tree models with corresponding angiography views of (a) patient 1 and 

(b) patient 2. Regions with significant stenosis are enclosed with dashed circles.
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Figure 4. 
CFD-derived pressure and velocity distributions in an idealized artery model: (a) model 1: 

without side branch; (b) model 2: with side branch located at the upstream; (c) model 3: 

with a side branch located at the downstream. Comparison of (d) flowrate into side branches 

and (e) CFD-derived FFR between the three models.
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Figure 5. 
Simplified electrical circuit representation of the idealized models: (a) model 1: without side 

branch; (b) model 2: with side branch before the stenosis; (c) model 3: with side branch after 

the stenosis.
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Figure 6. 
CFD-derived pressure distribution of OCT-derived vessel tree models with (top) and without 

(bottom) side branches for (a) patient 1 and (b) patient 2. Severely stenosed regions are 

enclosed with dashed lines.
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Figure 7. 
FFR variation in the main vessel compared with guidewire measurements for (a) patient 1 

and (b) patient 2. Flow across the different sections (denoted in (c,d)) of the main vessel of 

(e) patient 1 and (f) patient 2 compared with the flow distribution derived from Murray’s 

law. The flowrates in the models without side branches are indicated with dashed horizontal 

lines in (e,f).
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