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ABSTRACT

Endogenous short RNAs (esRNAs) play diverse roles
in eukaryotes and usually are produced from
double-stranded RNA (dsRNA) by Dicer. esRNAs
are grouped into different classes based on biogen-
esis and function but not all classes are present in
all three eukaryotic kingdoms. The esRNA register
of fungi is poorly described compared to other eu-
karyotes and it is not clear what esRNA classes are
present in this kingdom and whether they regulate
the expression of protein coding genes. However,
evidence that some dicer mutant fungi display
altered phenotypes suggests that esRNAs play an
important role in fungi. Here, we show that the
basal fungus Mucor circinelloides produces new
classes of esRNAs that map to exons and regulate
the expression of many protein coding genes. The
largest class of these exonic-siRNAs (ex-siRNAs)
are generated by RNA-dependent RNA Polymerase
1 (RdRP1) and dicer-like 2 (DCL2) and target the
mRNAs of protein coding genes from which they
were produced. Our results expand the range of
esRNAs in eukaryotes and reveal a new role for
esRNAs in fungi.

INTRODUCTION

The gene silencing pathways using endogenous short
RNAs (esRNAs) 20–24 nt in length are very diverse in
eukaryotes (1). Most classes of esRNAs are produced

from double-stranded RNA usually by a member of the
Dicer family and are incorporated into an effector
complex containing a member of the Argonaute family
(1). esRNAs that are produced from and target trans-
posons seem to be the most ancient because these were
found in fungi (2), plants (3) and animals (4,5). These
esRNAs act in cis and may lead to DNA methylation
and/or histone modifications (2,3). Another class of
esRNAs, microRNAs (miRNAs), are produced from
hairpin structure non-coding transcripts and target
mRNAs in trans (6). miRNAs have been found in plants
and animals and play a role in diverse processes including
development and adaptation to environmental changes
(6). Although miRNAs have not been found in fungi,
dicer mutants of several fungi have been reported to be
affected in vegetative and developmental processes (7,8)
suggesting the existence of esRNAs with regulatory func-
tions in this kingdom. However, information on esRNAs
in fungi is very scarce.
Mucor circinelloides, a basal fungus of the clade

zygomycete, has been revealed as a model organism in
the fungal kingdom for the study of RNA silencing and
other processes due to the availability of molecular tools
and its evolutionary distance from other fungal model or-
ganisms. The existence of a transgene-induced RNA
silencing mechanism in M. circinelloides has been previ-
ously demonstrated (9) and the pathway has been dis-
sected by identifying genes and proteins involved in
silencing. As a result, two dicer genes, dcl1 and dcl2,
have been identified (8,10). The DCL2 protein plays a
major role in gene silencing induced by sense or hairpin
transgenes, being responsible for the production of two
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different classes of antisense esRNAs, 21 and 25 nt long
(9). Null dcl2 mutants (dcl2�) show a significant reduction
in the production of asexual spores, which suggests a role
for dcl2 in the control of vegetative development (8).
Similarly, mutants affected in the dcl1 gene (dcl1�) show
defects in vegetative growth and hyphal morphology, even
though this gene is not required for efficient gene silencing
triggered by transgenes (10). In addition, two genes coding
for RNA-dependent RNA polymerases (RdRPs) are
involved in the silencing mechanism in M. circinelloides.
rdrp1 is required for sense transgene-induced silencing to
generate dsRNA molecules but the role of rdrp2 is not
understood (S.C., S.T-M., R.M.R-V., our unpublished
results).
Relatively little is known about the physiological roles

of the fungal RNA-silencing pathways (7). Availability of
M. circinelloides mutants affected in the silencing mechan-
ism and the recent completion of its genome sequencing
have provided the genetic and molecular tools required to
investigate how esRNAs regulate gene expression in this
basal fungus. We analyse here the esRNA content of
M. circinelloides by deep sequencing of short RNAs
(18–25 nt) in the wild type and several mutant strains
and identify a new class of esRNAs that target mRNAs
of protein-coding genes from which they were produced.

MATERIALS AND METHODS

Strains and growth conditions

The leucine auxotroph R7B, derived from
M. circinelloides f. sp. lusitanicus CBS 277.49 (syn.
Mucor racemosus ATCC 1216b), was used as the
wild-type strain. Strain MU406 is a dcl1 null mutant
derived from MU402, a uracil auxotroph derivative of
R7B (8). Strain MU410 is a dcl2 null mutant derived
from MU402 (10). Strain MU411 is a double dcl1/dcl2
null mutant derived from MU410 (10). Strains MU419
and MU420 correspond to rdrp1 and rdrp2 null mutants
derived from MU402, respectively (S.C., S.T-M.,
R.M.R-V., our unpublished results). Cultures were
grown at 26�C in complete YPG medium as described
previously (10). The pH was adjusted to 4.5 for mycelial
growth.

RNA analysis

Short RNA samples were extracted from mycelia grown
for 48 h on YPG plates using the miRVana kit (Ambion),
following the instructions of the supplier. cDNA libraries

of short RNAs were generated and sequenced as described
previously (11). Low and high molecular weight RNA was
extracted from frozen mycelia and analysed by northern
blot as described previously (9).

Sequence analysis

Raw sRNA reads were processed by removing adaptor
sequences with exact matches to the first eight bases of
the 3’-adaptor. Annotated exon regions were extracted
from the M. circinelloides genome (v 1.0) along with
annotated transposons and repeat regions. All remaining
segments of the M. circinelloides genome were used as the
intergenic set for this analysis.

sRNAs were mapped to exons, transposons/repeats and
intergenic regions using PatMaN (12) and distinct sRNA
producing loci were predicted in intergenic regions using a
previously published method (13). Any locus containing
fewer than five reads was discarded for the initial locus
analysis. miRNA prediction was carried out both on
intergenic regions and the full genome using a modified
version of the miRCat pipeline described previously (14).
In order to correct for variation in sRNA sample sizes and
allow us to perform cross-sample expression analysis,
sRNA counts for each of the intergenic, exonic and trans-
poson loci were converted into reads per million genome
matching reads. sRNA loci were said to be down-
regulated in a given sample if the normalized locus abun-
dance showed at least a 4-fold decrease in comparison to
the wild-type sample. To increase the stringency of the
analysis and avoid lowly expressed regions, any loci with
a normalized abundance count of less than 50 in the wild
type were excluded from the analysis.

RESULTS AND DISCUSSION

Short RNAs are primarily generated by DCL2 in Mucor

Two dicer-like genes (dcl1 and dcl2) have been identified in
Mucor and a possible function has been hypothesized for
dcl2 gene (8). In order to identify bona fide esRNAs we
generated cDNA libraries of short RNAs from wild-type
(dcl1/dcl2), single mutant (dcl1�/dcl2 or dcl1/dcl2�) and
double mutant (dcl1�/dcl2�) strains (8 and 10) and
sequenced them on the Solexa platform (Table 1; GEO
accession number is GSE18958). Non-redundant reads
were mapped to the genome, whose sequence was avail-
able from the JGI (http://genome.jgi-psf.org/Mucci1/
Mucci1.home.html). In fact, this is the first global
analysis reported from the Mucor sequencing project.

Table 1. Sequencing of short RNAs in different Mucor strains

WT dcl1� dcl2� dcl1�/2� rdrp� rdrp�

Total reads 6 421 725 5 326 957 6 155 439 10 899 332 11 088 786 10 846 130
After adaptor removal (total) 5 701 786 4 604 676 5 049 070 9 303 440 10 178 115 9 877 133
After adaptor removal (unique) 1 362 728 1 357 556 1 354 177 3 027 587 1 929 224 2 654 222
Mapping to genome (total) 4 317 874 3 619 529 3 912 401 7 094 985 8 347 666 7 880 896
Mapping to genome (unique) 777 409 808 650 890 709 2 121 808 1 272 679 1 512 498

The table shows the read numbers of different categories for each strain we have analysed.
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Reads that mapped to the genome in close proximity
(�200 bp) to each other were grouped together into loci
(as previously described in ref. 13). A total of 24 111 loci
were identified all over the Mucor genome by this criter-
ion. All esRNA producing loci were analysed by
comparing accumulation of esRNAs in the wild-type
and dcl mutants. Many loci produced esRNAs only in
sense orientation at a similar rate in wild-type and all
mutant strains, and accumulation of esRNAs from some
of these loci was analysed by northern blot. These esRNAs
were either not detectable or the probes detected a smear
between 15 and 2000 nt but not bands with distinct sizes
between 20 and 25 nt (data not shown). Therefore, we
concluded that reads from these loci are most likely to
be degradation products of ribosomal, transfer and mes-
senger RNAs and were not further analysed.

To identify DCL-dependent esRNA loci, we selected
those that showed at least a 4-fold decrease in normalized
esRNA reads in dcl1� or dcl2� mutants compared to wild
type. Eight hundred and forty differentially expressed loci
were identified, which were grouped based on the annota-
tion of the locus: intergenic, transposon or exon (Table 2).
Seven differentially expressed loci showed a decrease only
in dcl1�, 828 were down-regulated in only dcl2� and five
were suppressed in both. Next, we compared esRNA ac-
cumulation in wild-type and dcl1�/dcl2� double mutant.
Most of the 840 loci producing fewer esRNAs in either
dcl1� or dcl2� or in both also produced fewer esRNAs in
the double mutant. In fact, the read numbers were usually
lower in the double mutant than in any of the single
mutants, demonstrating some redundancy for the two
dcl genes (Supplementary Figure S1). In addition a
further 140 loci showed differential expression only in
the double mutant making the total number of dcl (dcl1
and/or dcl2) dependent esRNA producing loci 980.
Despite the redundancy between dcl1 and dcl2, the
sequencing data suggested that DCL2 is the primary
protein that generates the majority of esRNAs in Mucor,
although from a very small number of loci mainly DCL1
produces esRNAs and there are loci from which both

Dicers can make esRNAs. The DCL proteins have
similar hierarchy in transgene-induced silencing, where
DCL2 also plays a more prominent role in the generation
of siRNAs than DCL1 (8).

Short RNAs are produced from transposons but there is
no evidence for miRNA genes

In order to investigate the distribution of DCL-dependent
esRNAs across the different types of loci, we calculated
the normalized abundance of esRNAs per 1 kb of exonic,
intergenic and transposon regions in the wild-type and dcl
mutant strains. Supplementary Figure S2 shows that
esRNAs are not formed at random across the genome
but they are enriched in exonic regions compared with
intergenic regions and transposons. In fact, only 209 out
of the 980 esRNA producing loci, down-regulated in at
least one of the dcl� strains, were annotated transposons
or repeats (Table 2). This is in contrast with other organ-
isms, such as Schizosaccharomyces pombe (15),
Saccharomyces castellii and Candida albicans (16), where
most esRNAs are produced from repeats and transposons.
Intergenic and intronic loci are the prime candidates for

producing miRNAs. Therefore, we asked whether any of
these loci can be folded into a stem–loop structure char-
acteristic of miRNA loci. None of the 447 dicer-dependent
intergenic and intronic loci fulfilled the criteria of miRNA
loci, although several esRNAs from intergenic regions
were confirmed by northern blot (Figure 1A). We also
tested all 24 111 esRNA producing loci identified in the
initial analysis (including those that are not
down-regulated in dcl mutants) but none of them had
the features of miRNA genes. It is likely that miRNAs
are not present in Mucor, although we cannot exclude
the possibility that they are expressed in different growth
condition or developmental stages. The apparent lack of
miRNAs in fungi and the presence of transposon derived
esRNAs in basal fungi, plants and animals suggest that
life evolved esRNAs to silence transposons and than each
branch of life has utilised this machinery to silence other
targets.

Short RNAs are generated from exons and regulate
mRNA accumulation

Next, we focussed on the main class of esRNAs that
mapped to exons (Table 2 and Supplementary Figure
S2) and we call these exonic-siRNAs (ex-siRNAs) based
on their unusual location. In total, 324 exonic loci were
identified, which correspond to 276 genes, since some
genes contain more than one exon. To validate the
sequencing data, accumulation of selected ex-siRNAs
was analysed by northern blot (Figure 1B), and in all
cases the presence of distinct bands around 20–25 nt was
confirmed. Some loci produced almost exclusively anti-
sense ex-siRNAs, whereas others produced ex-siRNAs in
both orientations. Results also confirmed the reduced ex-
pression of ex-siRNAs in mutant strains compared to wild
type, as well as that DCL2 is the primary dicer in Mucor.
The northern blots corroborated the redundancy between
the two dcl genes because the ex-siRNA signals were often
weaker in the double mutant than in the single mutants.

Table 2. Number of loci down-regulated at sRNA level in dcl1� and

dcl2� mutants

Type of loci Down-regulated in

dcl1� dcl2� dcl1�/dcl2� All dcl�

Transposons 0 (0) 207 (207) 205 (2) 209
Intergenic regions 7 (2) 401 (396) 441 (44) 447
Exons 5 (5) 225 (225) 319 (94) 324
Total 12 (7) 833 (828) 965 (140) 980

Number of loci (with normalized abundance of more than 50 reads per
million) showing a fourfold or higher reduction in the different mutant
strains compared to the wild type. Numbers in parentheses in the dcl1�

and dcl2� columns show the number of loci that require only that
Dicer. The numbers in parentheses for double mutant shows the
number of loci that are down-regulated only in the double mutant
(the number of loci that can be processed by either Dicer). Please
note that the four transposon loci that are not down-regulated in
dcl1�/dcl2� but reduced in dcl2�, are just below the 4-fold threshold
in the double mutant.
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Sometimes different sized ex-siRNAs were detected from
the same locus, which seems to be a characteristic of the
M. circinelloides DCL enzymes. In fact, transgene-induced
gene silencing is also associated with two different size

classes of siRNAs, 21 and 25 nt long, both in the
wild-type and the dcl1� mutant (9,10).

Accumulation of ex-siRNAs does not necessarily mean
that they are functional, as for example some
non-conserved plant miRNAs do not have target
mRNAs (17). To test whether the exon mapping Mucor
ex-siRNAs affect gene expression, accumulation of the
mRNAs was analysed by northern blot analysis. All the
four tested mRNAs that showed reduced ex-siRNA ex-
pression in dcl2� accumulated at an increased level
in the dcl mutant strains compared to the wild type
(Figure 2, loci 4–9) confirming that the Mucor
ex-siRNAs are functional. The effect of ex-siRNAs on
mRNA accumulation is most likely post-transcriptional,
since no significant methylation is associated with gene
silencing in Mucor, and siRNAs generated in

Figure 1. Accumulation of esRNAs in wild type and dcl mutant Mucor
strains. Northern blots of esRNAs from intergenic regions (A) and
exons of protein coding genes (B). Low-molecular weight RNA was
extracted from wild-type, dcl1�, dcl2� and dcl1�/dcl2� double mutant
strains, separated on 15% denaturing polyacrylamide gels, transferred
to membranes and probed with riboprobes or end-labelled DNA oligo-
nucleotides specific to each locus. For exact probe sequences, see
Supplementary Table S1. Ethidium bromide stained images of gels
below the radiograms show equal loading of lanes. (B) The accumula-
tion of antisense and sense esRNAs separately. The exon loci corres-
pond to the following proteins: locus 4: ID 80452, serine/threonine
kinase; locus 5: ID 82197, no domains found; locus 6: ID 77050, no
domains found; locus 7: ID 78553, low similarity to transposase 21
protein; locus 8: ID 85423, Zn-finger CCHC containing protein; locus
9: ID 95230, no domains found. Ten picomoles per lane of 23-mer to
27-mer DNA oligonucleotides in antisense and sense orientation were
used as size markers and to control the hybridization specificity. In all
cases, the RNA probes hybridized to these controls.

Figure 2. Accumulation of mRNAs in wild type and dcl mutant Mucor
strains. Northern blots of high molecular weight RNAs corresponding
to an intergenic region (locus 3) or protein coding exons (loci 4, 5, 8
and 9). Total RNA (50mg) extracted from wild-type and mutant strains
were separated in 1.2% denaturing agarose gel, transferred to mem-
branes and hybridized with gene specific or rRNA probes
(Supplementary Table S1). The locus numbers correspond to the loci
on Figure 1.
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transgene-induced silencing have been demonstrated to
act post-transcriptionally (9). In addition to the four
mRNAs, we also tested the accumulation of a potential
RNA transcript corresponding to an intergenic region,
which produced less esRNA in dcl� strains than in wild
type. A transcript was detected from this intergenic locus
and it also showed a higher accumulation in the dcl2�

single and dcl1�/dcl2� double mutants relative to the
wild type (Figure 2, locus 3), supporting that the different
esRNAs of Mucor are functional.

Biogenesis of exonic endogenous siRNAs

Next, we wanted to understand the mechanism that
produced ex-siRNAs. Since most exons, which generated
less ex-siRNAs in dcl2� than in wild type, produced some
antisense ex-siRNAs we hypothesised that an RdRP is
involved in ex-siRNAs biogenesis. Two different RdRP
proteins have been implicated in M. circinelloides
transgene-induced gene silencing (S.C., S.T-M.,
R.M.R-V, our unpublished results), and we tested the in-
volvement of these proteins, RdRP1 and RdRP2, in the
biogenesis of ex-siRNAs by deep sequencing of esRNAs
from rdrp1� and rdrp2� strains. The normalized reads of
ex-siRNAs from the 324 exons that accumulated less
ex-siRNA in, at least, one dcl mutant compared to the
wild-type strain are shown in Supplementary Table S2,
which also shows the strand bias (sense/antisense) of the
ex-siRNAs produced by the wild-type and all mutant
strains. The accumulation of ex-siRNAs from each exon
in the different mutant strains was compared to the wild
type and the fold difference is shown in Supplementary
Table S3, in which exons are ordered according to the
log2 fold change of ex-siRNAs in the dcl2� strain

compared to wild type. Four different groups can be
easily identified and we call these almost perfectly
separated groups class 1–4. Table 3 shows a summary of
the properties of the different ex-siRNA classes.
Classes 1 and 2 include all ex-siRNAs that are dcl2-de-

pendent. The first nucleotide of these ex-siRNAs exhibits a
strong preference for uracil (92%; Table 3; Supplementary
Figure S3). This preference was also shown for
Argonaute-bound guide RNAs of animal, plants and
other fungi (16). The majority of the DCL2-dependent
ex-siRNAs also showed reduced levels in the rdrp1�

mutant but not in the rdrp2� strain and define class 2.
This is the largest group of ex-siRNAs, with 222 exons
that represent 68.5% of the 324 ex-siRNA producing
exons. Most likely, these ex-siRNAs act in cis, since
mRNAs transcribed from these exons are up-regulated
in the absence of the ex-siRNAs (Figure 2). There is not
a strong strand bias among these ex-siRNAs, most exons
producing a mixed sense and antisense ex-siRNAs, which
is expected considering that a large number of ex-siRNAs
are produced from each exon (Supplementary Figure S1).
The requirement for RdRP1 and DCL2 for the biogenesis
of this ex-siRNA class suggests that mRNAs from those
loci are turned into dsRNA by RdRP1 and then processed
by DCL2. The involvement of these two proteins in the
biogenesis of the majority of ex-siRNAs can be extended
to esRNAs derived from transposons and intergenic
regions because most of the dcl2-dependent esRNAs
generated from those loci also require rdrp1 (Figure 3).
A very small group of the dcl2-dependent ex-siRNAs,

made up by ex-siRNAs from only nine exons belonging to
five genes, does not require RdRP1 but most of them
depend on RdRP2. These ex-siRNAs (class 1) are the

Table 3. Characteristics of the four classes of ex-siRNA

sRNA class Strand bias Average log2 fold change from WT No. of exons ex-siRNA (%) 50 Ua (%) 30 penult. Ub (%)

dcl1� dcl2� Dcl1�/2� rdrp1� rdrp2�

Class 1 �0.78 0.34 �12.84 �8.86 3.74 �1.33 9 13.42 92.18 6.11
Class 2 �0.34 0.55 �3.79 �8.72 �5.02 1.36 222 58.74 92.12 16.63
Class 3 0.90 �0.47 0.12 �3.21 �4.52 �3.50 88 27.36 8.39 49.57
Class 4 0.83 �2.45 �0.26 �1.02 �2.61 �2.42 5 0.48 28.28 66.61

Different characteristics of ex-siRNAs from each classes are shown in the table. Strand bias indicates orientation to mRNAs, where 1 corresponds to
all sRNAs in the same orientation as the mRNA, 0 to equal mixture of sRNAs on both strands and �1 to all sRNAs antisense to mRNAs. Numbers
in bold indicate a higher than 4-fold down-regulation in the corresponding mutants relative to wild type.
aThe percentage of redundant reads that contain a uracil in the 50 most position.
bThe last column shows the percentage of redundant reads that contain a uracil in the 30 penultimate position.

Figure 3. rdrp1 and rdrp2 dependence of DCL2 generated esRNAs. The pie charts show the percentage of DCL2-dependent loci that also show
reduced level of esRNAs in rdrp1� and rdrp2� strains.
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most down-regulated in the dcl2� strain (Supplementary
Table S3). Accumulation of these ex-siRNAs is strongly
up-regulated in the rdrp1�mutant, which may suggest that
both RdRPs can compete for binding the mRNA tem-
plates but only RdRP2 can turn them into dsRNA.
Consequently, lack of RdRP1 may allow RdRP2 to
make more dsRNA that would result in a higher
ex-siRNA level.
We have investigated the biological functions of the

genes that produce less ex-siRNAs in the dcl2 mutant
(classes 1 and 2), trying to link those functions with the
phenotype of the dcl2mutant strain (8). However, the high
number of genes affected in the dcl2 mutant makes it dif-
ficult to understand their roles and to reveal their biologic-
al significance. Nonetheless, it can be emphasized that
many of those genes are annotated as encoding for
proteins involved in signal transduction and information
storage and processing (Supplementary Table S3), which
may indicate the involvement of these ex-siRNAs in the
regulation of different cellular processes.
A significant group of ex-siRNAs producing exons

(88 out of 324) are in class 3 and correspond to
ex-siRNAs that are down-regulated only in the double
dicer mutant but not in dcl1� or dcl2� single mutants
(Supplementary Table S3). This indicates that dsRNA
produced from these exons can be processed by either
DCL1 or DCL2. However, both RdRP enzymes are
involved in the biogenesis of these ex-siRNAs, because
they are down-regulated in the absence of either of the
two rdrp genes. A peculiar feature of the class 3
ex-siRNAs is that they show a very strong strand bias,
almost all of them are exclusively sense to the mRNAs.
Besides that, the class 3 ex-siRNA molecules show a
random spread of size distribution that is not observed
in the dcl2� dependent classes 1 and 2, which produce
predominantly 23–24 nt sRNAs (Supplementary Figure
S4). This suggests that class 3 ex-siRNAs are not
produced by a canonical RNA silencing mechanism.
Instead, we can speculate that sequential or combined
activity of RdRP1 and RdRP2 generates dsRNA stretches
but not dsRNA through the entire length of the mRNA.
These discrete dsRNA regions are processed by either
DCL1 or DCL2 and after the initial cleavage, the single
stranded portions of mRNAs are degraded by non-specific
RNases, probably because they lose their cap and/or
polyA tail. Alternatively, DCL1 or DCL2 may process
these mRNAs beyond the discrete dsRNA regions, since
the ability of human Dicer to cleave ssRNA in a partial
dsRNA molecule has been described recently (18). We
also analysed the nucleotide distribution in each position
of class 3 ex-siRNAs and found a very strong bias for
uracil in the penultimate position for almost all sizes of
short RNAs (20–25 nt; Supplementary Figure S5). This is
very surprising considering that uracil is strongly
under-represented in all esRNAs (including class 3
ex-siRNAs; Supplementary Table S4). The strong bias
for uracil in the penultimate position suggests that the
generation of class 3 ex-siRNAs is not random. Another
characteristic of this class is that most of these genes are
highly expressed, as denoted by the sequencing of high
numbers of ESTs. Further experiments are needed to

identify what other features, besides high expression, are
required for the mRNAs to enter this pathway and exactly
how class 3 ex-siRNAs are generated.

Finally, class 4 is a tiny group of ex-siRNAs that derive
from only five exons. These are the only ex-siRNAs that
are down-regulated in dcl1� but not in dcl2�. Only one of
these exons shows a reduced accumulation in the double
dcl mutant, although two others are just below the 4-fold
threshold in the dcl1�/dcl2� strain (Supplementary
Table S3). We cannot rule out the possibility that some
of the ex-siRNAs of this class is only an artefact of the
sequencing, since it is difficult to explain why the double
dcl mutant is different from dcl1�. However, we can point
out that one of the exons included in this class (ID: 27711)
encodes a conserved protein that in other fungi, such as
yeast, co-localize with other proteins in sites of polarized
growth (tip of the hypha) (19,20). This, together with the
fact that other exons code for proteins involved in
mitochondria metabolism and ribosome function may
help to understand the phenotype of the dcl1 mutant,
that is, abnormal hyphal morphology and a decrease in
the growth rate.

The biogenesis and function of the class 2 ex-siRNAs,
the largest group of ex-siRNAs we have identified in
M. circinelloides, somewhat resemble that of endogenous
siRNAs in animals and plants. However, there are clear
differences between these ex-siRNAs and previously
described esRNAs. The most similar group is the en-
dogenous siRNAs in C. elegans, which regulate the expres-
sion of protein coding genes. However, these are mainly
generated directly by the RdRP activity without the par-
ticipation of a Dicer enzyme (21–23). The 24-mer hetero-
chromatin siRNAs in plants are produced by Dicer from
an RdRP generated dsRNA, but these siRNAs predom-
inantly target transposons and repeat elements (24). They
are therefore similar to the Mucor esRNAs mapping to
transposons. Endo-siRNAs found in Drosophila and
mouse oocytes are similar to class 2 ex-siRNAs because
some of these target protein coding genes, but this class of
esRNAs is produced from complementary transcripts
without RdRP activity (4). The class 2 ex-siRNA
pathway involves elements from all these different
pathways. Thus, dsRNA is generated by Mucor RdRP,
similarly to plants (heterochromatin-siRNA), the
dsRNA is cleaved by Dicer, as occurs in plants
(heterochromatin-siRNAs) and higher animals
(endo-siRNA) and the generated ex-siRNAs target
protein coding genes in cis, which is similar to animals
(endo-siRNA and secondary siRNAs). Therefore, the
ex-siRNA pathway in Mucor uses all these known
elements but in a new and unique combination.

A new class of esRNA, qiRNAs, was recently reported
to be involved in DNA-damage response in another fila-
mentous fungus, Neurospora crassa (25). Here, we
identified another class of esRNAs that potentially
regulate up to 276 mRNAs, suggesting that this layer of
regulation is extensive in Mucor and potentially in other
fungi. Indeed, the dcl mutants are affected in hyphal
morphology and colony growth (dcl1�) (10) and in the
production of asexual spores (dcl2�) (8). We identified
ex-siRNAs in fungi grown in optimal conditions but
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qiRNAs are induced by DNA damage (25) and it is also
well documented that plant short RNAs are involved in
stress responses (26). Therefore, it is possible that expres-
sion of other genes is also regulated by ex-siRNAs when
the fungus grows in sub-optimal conditions or responds to
different signals to execute complex developmental
processes, such as asexual sporulation or sexual inter-
action. Finally, although we cannot rule out that
miRNAs will be identified in other classes of fungi, the
apparent lack of miRNAs in fungi raises the question
whether miRNAs were present in a common eukaryotic
ancestor and lost in fungi or appeared independently in
plants and animals. The first option is supported by the
presence of miRNAs in green alga (13) and the latter is
supported by the differences in miRNA biogenesis, degree
of complementarity to the target mRNAs and lack of
sequence homology between animal and plant miRNAs.
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