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Abstract: This study experimentally investigated the effects of nanomaterials and interface fiber
angle on the mode I fracture toughness of woven carbon fiber-reinforced polymer (CFRP) composites.
Three different types of nanomaterials were used: COOH-functionalized short multi-walled
carbon nanotubes (S-MWCNT-COOH), multi-walled carbon nanotubes (MWCNTs), and graphene
nanoplatelets (GnPs). Double cantilever beam specimens were composed of 12 woven carbon fiber
fabrics with/without 1 wt% nanomaterials, and were manufactured using the hand lay-up method.
Furthermore, two different stacking sequence series were used; the first series comprised only on-axis
carbon-fiber fabrics (0◦ or 90◦), and the second series comprised both on- and off-axis carbon-fiber
fabrics (0◦ or 90◦ and ±45◦). The test results showed that adding S-MWCNT-COOH, MWCNTs,
and GnPs significantly increased the mode I fracture toughness of the CFRP composites for both
the stacking sequence series. Moreover, the specimens that used only on-axis carbon fiber fabrics
exhibited higher fracture toughness values than those of the specimens that used on- and off-axis
carbon fiber fabrics together. In addition, an empirical model was established to predict the fracture
toughness of the CFRP composites with nanomaterials by using on- and off-axis carbon fiber fabrics
together, and the prediction results showed a good agreement with the experimental results.

Keywords: fracture toughness; fiber reinforced polymers (FRPs); nanomaterials; interface fiber angle;
prediction model

1. Introduction

Recently, the use of fiber reinforced polymer (FRP) composites has been widely increased in the
field of civil and architectural engineering because of their high strength and stiffness. In addition,
FRP composites have lower weights than those of other conventional construction materials. Due to
the various advantages of FRP materials, they are globally used in various engineering fields [1–4].
However, from a mechanical viewpoint, FRP composites show complex failure modes such as matrix
cracking, fiber rupture, and interlaminar delamination; therefore, their performance is limited [5–10].
Particularly, interlaminar delamination, which is usually attributed to shear or tensile cracking at
the interfaces of FRP layers, is one of the most critical damage mechanisms. Additionally, adhesive
materials exhibit brittle or quasi-brittle behaviors, and thus might result in the growth of delamination in
composite materials [11]. Consequently, using tougher matrices might delay the onset of delamination.
From previous studies [12–19], it was observed that using additive materials such as thermoplastic
resins, rubber, and nanoparticles (or nanomaterials) into matrix could considerably enhance the
toughness of the matrix, thereby improving the fracture toughness of FRP because of the increased
interlaminar strength.
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Numerous studies have been performed to investigate the delamination resistance (e.g., fracture
toughness) of FRP composites using modified matrices. Ozdemir et al. [20] investigated the effects of
rubber nanoparticles (carboxylic acrylonitrile butadiene rubber and acrylonitrile butadiene rubber) on
the fracture toughness of carbon fiber-reinforced polymer (CFRP) composites with dicyandiamide-cured
epoxy matrices. The test results obtained indicated that for the specimens using 16.7 wt% rubber
nanoparticles, the mode I fracture toughness increased by approximately 250%. In the study by Carolan
et al. [21], the fracture characteristics of CFRPs were investigated at two temperature levels of 20 ◦C
and −80 ◦C; these characteristics were based on the matrices of an anhydride-cured epoxy resin and
incorporated silica nanoparticles or polysiloxane core–shell rubber (CSR) as additives. Generally,
at both the temperature levels, the use of epoxy resins by incorporating silica and CSR nanoparticles was
observed to significantly improve the mode I fracture toughness of the CFRP composites. In addition,
the CFRP composites using silica nanoparticles showed a higher toughness energy at −80 ◦C than
that at 20 ◦C. However, using such rubber nanoparticles may cause the dispersion problem of the
nanophased matrix during the fabrication process while coating the dry fiber fabrics surfaces [22].

In other research works [23–25], nanomaterials such as carbon nanotubes (CNTs) and carbon
nanofibers were introduced to enhance the fracture toughness of polymer matrices. This is because the
nanomaterials that have high stiffness and strength play a role as reinforcement materials, which leads
to an enhancement in the mechanical performance of composites. Hamer et al. [26] investigated the
interlaminar fracture toughness values (GIc and GIIc) of CFRP laminates that comprised a hybrid resin
with 5 wt% of multiwalled carbon nantotubes (MWCNTs). The test results indicated that the addition
of MWCNTs to the epoxy resin could enhance not only mode I fracture toughness (GIc) but also mode
II fracture toughness (GIIc) of CFRP composites. Consequently, both GIc and GIIc were improved
by 25% and 20%, respectively in comparison with non-interleaved CFRPs. This improvement was
mainly attributed to the effectiveness of MWCNTs in arresting crack propagation in the interlayer.
In addition, Wicks et al. [27] showed that using long aligned CNTs could significantly improve the
fracture toughness in steady state, which was in contrast to the results obtained with using short CNTs.
This is because long CNTs result in rough fracture surface of epoxy resin and, therefore, dissipate
more energy during the pull-out process. Moreover, various studies [28–35] indicated that the mode I
fracture toughness of CFRP composites was also affected by the type, amount, length, and density
of CNTs, interface fiber angle, and stacking sequences of carbon fiber fabrics. However, excessive
amounts of CNTs could not continuously improve the fracture toughness of CFRP composites because
of poor dispersion or the agglomeration of CNTs [36].

In this study, the mode I fracture toughness of woven CFRP composites incorporating
nanomaterials was investigated using double cantilever beam (DCB) specimens. Three different
nanomaterial types were used, namely: 1 wt% MWCNTs, 1 wt% graphene nanoplatelets (GnPs),
and 1 wt% COOH-functionalized short MWCNTs (S-MWCNT-COOH). The test specimens comprised
12 carbon fiber fabrics. Two different stacking sequences series were used: the first series comprised
only on-axis carbon fiber fabrics (0◦ or 90◦), while the second series comprised both on- and off-axis
carbon fiber fabrics (0◦ or 90◦ and ±45◦) with an alternating arrangement. An empirical model was
proposed for predicting the mode I fracture toughness of CFRP composites incorporating nanomaterials
with both on- and off-axis carbon fiber fabrics.

2. Experimental Program

2.1. Material Properties

In this study, 0.21-mm thick woven carbon fiber fabrics that consisted of 3k filaments were used
as reinforcement. The average density of the carbon fiber fabrics was 1.76 g/cm3. The tensile strength,
elastic modulus, and ultimate tensile strain of the carbon-fiber fabrics were 3530 MPa, 230,000 MPa,
and 1.5%, respectively, as provided by the manufacturer. Figure 1 depicts the carbon fiber fabrics used
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in this study. In the figure, the carbon fiber filaments of both on- and off-axis carbon fiber fabrics have
an orientation of 0◦ (or 90◦) and ±45◦ with respect to the longitudinal direction, respectively.Polymers 2020, 12, x FOR PEER REVIEW 3 of 22 
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Figure 1. Carbon fiber fabrics used in this study: (a) On-axis carbon fiber fabric and (b) Off-axis carbon
fiber fabric.

Three types of nanomaterials, namely, MWCNTs, GnPs, and S-MWCNT-COOH, were used
as nanofillers. The geometries and properties of these nanomaterials are presented in Table 1.
Generally, these nanomaterials were manufactured with a purity of more than 95 wt%. In addition,
each nanomaterial type was different in term of length, diameter, and surface area. The epoxy resin
and the corresponding polyamidoamine hardener were used as matrix. Both the epoxy resin and
hardener had low viscosities ranging from 800 to 1600 cps and from 500 to 1000 cps, respectively,
at 25 ◦C. The stoichiometric ratio between the epoxy resin and hardener was 100:55 by weight. More
details of the epoxy resin and hardener were presented in the study by Truong et al. [37].

Table 1. Geometries and properties of the nanomaterials.

Nanomaterials Carbon Purity
(wt%) Sizes

Multi-walled carbon nanotubes
(MWCNTs) >95

Outside diameter: (30–50) nm
Inside diameter: (5–12) nm

Length: (10–20) µm
Specific surface area > 60 m2/g

Density: 2.1 g/cm3

Graphene nanoplatelets (GnPs) >95

Average number of layers: 6
Max. number of layer: 32

Diameter: (4–12) µm
Thickness: 2–18 nm

Specific surface area: 500–1200 m2/g
Density: 2.1 g/cm3
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Table 1. Cont.

Nanomaterials Carbon Purity
(wt%) Sizes

COOH-functionalized short
multi-walled carbon nanotubes

(S-MWCNT-COOH)
>95

Outside diameter: (5–15) nm
Inside diameter: (3–5) nm

Length: (0.5–2) µm
Specific surface area > 233 m2/g

Density: 2.1 g/cm3

2.2. Manufacture of the Test Specimen

As mentioned above, in this study, three different types of nanomaterials, namely, MWCNTs,
GnPs, and S-MWCNT-COOH, were used. While mixing the nanomaterials into epoxy, many accidents
might occur such as agglomeration, out of alignment, poor dispersion, and damage of nanomaterials,
thereby reducing the mechanical properties of CFRP composites. For ensuring uniform dispersion
of the nanomaterials in the epoxy resin, using nanomaterials in appropriate amount is one of the
key issues. As reported in previous studies [28,36], using a small amount of nanomaterials can
avoid agglomeration and maintain uniform dispersion of nanomaterials in epoxy resin. In this study,
considering the surface area and aspect ratios, 1 wt% (by weight) of epoxy resin/hardener mixture of
each of the nanomaterials of MWCNTs, GnPs, and S-MWCNT-COOH were used. Prior to fabricating
the CFRP composites, the epoxy resin was filled with nanomaterials by dispersing nanomaterials on
the epoxy resin by using a sonicator. The mixing procedure of these epoxy–nanocomposite mixtures
was presented in the study by Truong et al. [37].

Various methods can be applied to fabricate FRP composites [38,39]. In this study, for easy
application, the hand lay-up method was used to fabricate CFRP composite plates. Twelve carbon
fiber fabrics with 300 mm length and 150 mm width were used to fabricate each CFRP composite
plate. The carbon fiber fabrics were coated using the epoxy–nanocomposite mixture on two surfaces
by using a brush and then placed on acrylic plates, which were used as mold, according to the design
configurations. Notably, before placing the carbon fiber fabrics, the surfaces of the acrylic plates were
coated using a releasing agent for ensuring easy release of the composite specimens. In addition, at one
edge of the composites, a 25-µm-thick Teflon film was inserted into the mid-section located between
6th and 7th carbon fiber layers as depicted in Figure 2. The CFRP composites were then cured in the
room temperature (approximately 20 ◦C) for 7 days under an appropriate pressure of 20 kPa. Using
the fabricated CFRP composite plates, DCB specimens were prepared by cutting the composite plates
for performing fracture tests (Bosch, Stuttgart, Germany). Five duplicates of the test specimens were
made for each parameter. However, one or two duplicates of GnPs-CFRP0-0 or MWCNT-CFRP0-45
were broken after manufacture. Therefore, in total, 37 test specimens were tested.

Two different series of DCB specimens were manufactured and tested. The first series had only
on-axis carbon fiber fabrics, whose stacking sequence (or layups) was denoted by [06//06]. In the second
series, six on-axis and six off-axis carbon fiber layers were alternately arranged in the order of 0◦ (or
90◦) and ±45◦, and the stacking sequence was denoted by [(0/45)3//(0/45)3]. The numbers “0” and “45”
denote the orientations of adjacent carbon fiber layers; the subscripts “6” and “3” represent the repeat
times of the same order. The symbol “//” provides the position of the initial crack of the test specimens.
Figure 2 depicts the stacking sequences of the test specimens in this study. According to such stacking
sequences, at the mid-plane of the test specimens (cracking surface), in the first series, both 0◦ (or 90◦)
carbon fiber fabrics were used and denoted by 0//0 interface fiber angle, while in the second series,
0◦ (or 90◦) and ±45◦ carbon fiber fabrics were used and denoted by 0//45 interface fiber angle.

To distinguish these DCB test specimens from one another, they were named CFRP0-0,
S-MWCNT-COOH-CFRP0-0, MWCNT-CFRP0-0, and GnPs-CFRP0-0 for the stacking sequence of
[06//06], and CFRP0-45, S-MWCNT-COOH-CFRP0-45, MWCNT-CFRP0-45, and GnPs-CFRP0-45 for the
stacking sequence of [(0/45)3//(0/45)3]. Among them, CFRP0-0 and CFRP0-45 were the control specimens
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without nanomaterials. The numbers, namely, 0-0 and 0-45, after the term “CFRP” indicate the interface
fiber angles corresponding to the stacking sequences used to fabricate the DCB test specimens.
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Figure 2. Stacking sequences of the test specimens used in this study: (a) Stacking sequence of the test
specimens in the first series with [06//06] and (b) stacking sequence of the test specimens in the second
series with [(0/45)3//(0/45)3].

Figure 3 depicts the details of the DCB specimens used in this study; the configurations of
the specimens were based on ASTM D5528-13 [40]. In the figure, a DCB specimen was designed
to have length of 200 mm, width of 25.5 mm, and pre-delamination length of 50 mm. While
evaluating the fracture toughness of the DCB specimens, the width and thickness directly measured
from the test were used. In the case of the first series with the stacking sequence of [06//06],
the average thicknesses for the specimens CFRP0-0, S-MWCNT-COOH-CFRP0-0, MWCNT-CFRP0-0,
and GnPs-CFRP0-0 were 3.32, 3.42, 3.52, and 3.38 mm, respectively. In addition, in the case of the
second series with the stacking sequence of [(0/45)3//(0/45)3], the average thicknesses of the specimens
CFRP0-45, S-MWCNT-COOH-CFRP0-45, MWCNT-CFRP0-45, and GnPs-CFRP0-45 were 3.32, 4.42,
3.50, and 3.46 mm, respectively. It can be seen that upon the addition of nanomaterials, the thickness
of the DCB composites slightly increased compared with those of the control specimens. Notably,
the maximum increase in the thickness was only 5.90% for the MWCNT-CFRP0-0 specimen; such
a slight variation in thickness did not considerably affect the fracture toughness of the composites
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because the crack grew only along the mid-plane of the specimens. In addition, in the pre-delamination
zone, two steel hinge end tabs were attached to the surfaces of the DCB specimens, for applying load.
The sides of the specimens were also painted white and marked using a millimeter scale to aid in the
visual detection of the crack (or delamination) growth.Polymers 2020, 12, x FOR PEER REVIEW 6 of 22 

 

 

Figure 3. Details of the DCB test specimens. 

2.3. Carbon-Fiber Volume Fraction 

To accurately examine the characteristics of the DCB test specimens, the carbon fiber volume 

fractions were evaluated as follows [41]: 

w
f

f

An
v

h 
=  (1) 

where n is the number of plies, wA (= 198 g/m2) is the fiber areal weight, 
f (= 1.76 g/cm3) is the fiber 

density, and h is the specimen thickness. In the case of the first series, the carbon fiber volume 

fractions of CFRP0-0, S-MWCNT-COOH-CFRP0-0, MWCNT-CFRP0-0, and GnPs-CFRP0-0 were 

40.61%, 39.31%, 38.35%, and 39.94%, respectively. In the case of the second series, the carbon fiber 

volume fractions of CFRP0-45, S-MWCNT-COOH-CFRP0-45, MWCNT-CFRP0-45, and GnPs-CFRP0-

45 were 40.63%, 39.50%, 38.54%, and 39.07%, respectively. Generally, the carbon fiber volume 

fractions of the DCB test specimens slightly varied by approximately 2.5%. The slight variation in the 

carbon fiber volume fractions was attributed to the different thicknesses of the test specimens, as 

mentioned above. 

2.4. Test Setup for Mode I Fracture Toughness 

The mode I fracture test of the DCB specimens was performed using a universal testing machine 

(UTM, Kyoungsung Testing Machine Co., Ansan, Korea) in the displacement control condition at the 

constant cross-head speed of 1 mm/min. Figure 4 depicts the test setup for the DCB testing. To 

measure the applied load during the testing, a load cell with the capacity of 5 kN was used. In 

addition, the load line displacements of the test specimens were measured using two different 

methods based on linear variable differential transformer (LVDT, Tokyo Measuring Instruments 

Laboratory Co., Tokyo, Japan) and the cross-head movement, respectively. Notably, in most previous 

studies, the load line displacement was directly obtained from the cross-head movement [30,42,43]. 

It was observed that the displacement values obtained from each LVDT and cross-head movement 

were almost the same. Therefore, hereafter, in the investigation of the fracture toughness, the LVDT 

data have been used. In this study, the LVDT was not directly mounted on the DCB specimens but 

on the UTM, to record the displacement. 

To calculate the fracture toughness, the delamination length (a), applied load (P), and 

displacement () of loading point should be recorded. A high-resolution digital camera (iX Cameras 

Ltd, Essex, UK) was used to take the photograph of the side of the DCB specimens, to record the crack 

propagation. The crack mouth opening displacement (CMOD), δ, was also determined using two 

laser displacement sensors (Keyence, Itasca, IL, USA), which were, respectively, mounted above and 

CFRP composite 

with 12 carbon 

fiber layers

Piano hinge

3
.4

 m
m

(
0

.0
7

)

Teflon 

film

(25 m)

Major tick mark

(Unit: 5mm)

Minor tick mark 

(Unit: 1mm)

Upper part

Lower part

Note: Not scaled drawing

Figure 3. Details of the DCB test specimens.

2.3. Carbon-Fiber Volume Fraction

To accurately examine the characteristics of the DCB test specimens, the carbon fiber volume
fractions were evaluated as follows [41]:

v f =
n
h

Aw

ρ f
(1)

where n is the number of plies, Aw (= 198 g/m2) is the fiber areal weight, ρ f (= 1.76 g/cm3) is the fiber
density, and h is the specimen thickness. In the case of the first series, the carbon fiber volume fractions
of CFRP0-0, S-MWCNT-COOH-CFRP0-0, MWCNT-CFRP0-0, and GnPs-CFRP0-0 were 40.61%, 39.31%,
38.35%, and 39.94%, respectively. In the case of the second series, the carbon fiber volume fractions
of CFRP0-45, S-MWCNT-COOH-CFRP0-45, MWCNT-CFRP0-45, and GnPs-CFRP0-45 were 40.63%,
39.50%, 38.54%, and 39.07%, respectively. Generally, the carbon fiber volume fractions of the DCB test
specimens slightly varied by approximately 2.5%. The slight variation in the carbon fiber volume
fractions was attributed to the different thicknesses of the test specimens, as mentioned above.

2.4. Test Setup for Mode I Fracture Toughness

The mode I fracture test of the DCB specimens was performed using a universal testing machine
(UTM, Kyoungsung Testing Machine Co., Ansan, Korea) in the displacement control condition at the
constant cross-head speed of 1 mm/min. Figure 4 depicts the test setup for the DCB testing. To measure
the applied load during the testing, a load cell with the capacity of 5 kN was used. In addition,
the load line displacements of the test specimens were measured using two different methods based on
linear variable differential transformer (LVDT, Tokyo Measuring Instruments Laboratory Co., Tokyo,
Japan) and the cross-head movement, respectively. Notably, in most previous studies, the load line
displacement was directly obtained from the cross-head movement [30,42,43]. It was observed that
the displacement values obtained from each LVDT and cross-head movement were almost the same.
Therefore, hereafter, in the investigation of the fracture toughness, the LVDT data have been used.
In this study, the LVDT was not directly mounted on the DCB specimens but on the UTM, to record
the displacement.

To calculate the fracture toughness, the delamination length (a), applied load (P), and displacement
(∆) of loading point should be recorded. A high-resolution digital camera (iX Cameras Ltd, Essex, UK)
was used to take the photograph of the side of the DCB specimens, to record the crack propagation.
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The crack mouth opening displacement (CMOD), δ, was also determined using two laser displacement
sensors (Keyence, Itasca, IL, USA), which were, respectively, mounted above and below the steel
frames so that the laser ray could coincide with the end point of the pre-crack length (a0 = 50 mm).
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Figure 4. DCB test setup for investigating the mode I fracture toughness: (a) Photo of test setup and
(b) Schematic of a DCB specimen.

The modified compliance calibration (MCC) method was used to characterize the interlaminar
fracture toughness, GIc (in kJ/m2), of the DCB specimens as follows:

GIc =
3P2C2/3

2A1bh
(2)

where C (= ∆/P) is the compliance, b is the specimen width, and A1 is a data reduction factor obtained
from the experimental results. In the MCC method, A1 is determined as a coefficient that explains the
linear relationship between the normalized delamination length (a/h) by using the specimen thickness
and the cube root of compliance (C1/3).

3. Test Results and Discussions

3.1. Load–Displacement Curve

Figures 5 and 6 depict the applied load–displacement responses of the test specimens in the first
and second series with the stacking sequences of [06//06] and [(0/45)3//(0/45)3], respectively. In addition,
the average applied load–displacement curves of these test specimens are depicted. In the case of the
first series (see Figure 5), the test specimens exhibited almost linear behavior in the early ascending
branch up to the inflection point wherein delamination begins to develop at the mid-plane of the DCB
specimens. Following the linear part, the slope of the load–displacement curve begins to decrease
because of crack propagation; however, the load-carrying capacity of the test specimens continues to
increase up to a peak load because of fiber bridging. Immediately upon reaching the peak load, in the
early descending branch, a visible crack propagation occurred, and the applied load showed a sudden
partial decrease. Subsequently, in all the DCB specimens, the applied load gradually decreased with a
slight fluctuation. In the case of the second series (see Figure 6), similar behaviors as in the case of the
first series were observed.
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Figure 5. Load–displacement relationship for the test specimens in the test series with the
stacking sequence of [06//06]: (a) CFRP0-0, (b) S-MWCNT-COOH-CFRP0-0, (c) MWCNT-CFRP0-0,
and (d) GnPs-CFRP0-0.
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Figure 6. Load–displacement relationship for the test specimens in the test series with the stacking
sequence of [(0/45)3//(0/45)3]: (a) CFRP0-45, (b) S-MWCNT-COOH-CFRP0-45, (c) MWCNT-CFRP0-45,
and (d) GnPs-CFRP0-45.

In Figure 7, we compare the average applied load–displacement relationships of the DCB test
specimens: control specimens, namely, CFRP0-0 and CFRP0-45, and other specimens incorporating
1 wt% of each S-MWCNT-COOH, MWCNTs, and GnPs. The slope of the linear part is strongly
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related to the flexural rigidity of each arm of the specimens. The flexural rigidity values of the
test specimens were evaluated at the point wherein the applied load was approximately 20% of the
peak load in the ascending branch of the curves. In the first series with the stacking sequence of
[06//06] (see Figure 7a and Table 2), the nanomaterials at the mid-plane of the DCB specimens did
not considerably increase the flexural rigidity of the test specimens before crack propagation; the
flexural rigidities of specimens CFRP0-0, MWCNT-CFRP0-0, and GnPs-CFRP0-0 were almost the same
at approximately 5.06–5.39 N/mm, while that of S-MWCNT-COOH-CFRP0-0 was relatively low at
3.79 N/mm. Considering the peak load, GnPs-CFRP0-0 displayed approximately 29.5% higher value
(60.58 N) than those displayed by the other specimens including CFRP0-0. Regarding the residual load,
at a displacement value of 40 mm, GnPs-CFRP0-0 displayed 35.9% higher value than those displayed
by other specimens, which had almost the same residual load (see Table 2).

In the second series with the stacking sequence of [(0/45)3//(0/45)3] (see Figure 7b and Table 2),
each nanomaterial had a different effect on not only the flexural rigidity but also the peak and residual
loads of the DCB specimens. The flexural rigidities of S-MWCNT-CFRP0-45 and MWCNT-CFRP0-45
were 5.53 and 4.10 N/mm, respectively, which were significantly higher than those of CFRP0-45 and
GnPs-CFRP0-45. In addition, using nanomaterials increased the peak and residual loads of the test
specimens, as evident from Table 2. Among the test specimens, MWCNT-CFRP0-45 displayed the
maximum increase by 31.9% for the peak load and 33.4% for the residual load, compared with those
of CFRP0-45.
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Figure 7. Average load–displacement relationship of the DCB test specimens incorporating
nanomaterials: (a) Stacking sequence of [06//06] and (b) stacking sequence of [(0/45)3//(0/45)3].

Table 2. Mechanical characteristics of the test specimens.

Specimens Stacking
Sequence

Flexural
Rigidity,

K (N/mm)
SD (1)

Peak
Load,

Pu (N)
SD (1)

Residual
Load (2),
PR (N)

SD (1)

CFRP0-0

[06//06]

5.15 1.21 46.78 2.48 31.95 2.59

S-MWCNT-COOH-CFRP0-0 3.79 1.01 48.74 4.75 35.19 4.17

MWCNT-CFRP0-0 5.39 1.76 45.91 5.82 29.82 5.11

GnPs-CFRP0-0 5.06 1.67 60.58 2.32 43.41 8.49

CFRP0-45

[(0/45)3//
(0/45)3]

2.95 1.00 29.72 2.64 20.06 1.48

S-MWCNT-COOH-CFRP0-45 4.67 1.21 38.54 1.14 23.35 2.39

MWCNT-CFRP0-45 4.10 0.49 39.21 3.47 26.76 3.34

GnPs-CFRP0-45 2.59 0.65 35.98 3.74 25.06 1.43

(1) Standard deviation. (2) The residual load was determined at the displacement of 40 mm.
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The effect of the interface fiber angles on the applied load–displacement relationships of the
test specimens was investigated, and the comparisons are depicted in Figure 8. As depicted in the
figure, generally, the flexural rigidity of each specimen in the first series with the stacking sequence
of [06//06] was considerably higher than that of the corresponding specimen in the second series
with the stacking sequence of [(0/45)3//(0/45)3], except for S-MWCNT-COOH-CFRP (see Figure 8b).
In addition, the peak load of each specimen in the first series was approximately 16.13–68.58% higher
than that of the corresponding specimen in the second series (see Table 2). Considering the residual
load, each specimen in the first series produced higher value than that produced by the corresponding
specimen in the second series, while MWCNT-CFRP0-45 exhibited almost the same value as that
of MWCNT-CFRP0-0.
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Figure 8. Average load–displacement relationship of the DCB test specimens displaying the effect of
stacking sequence: (a) CFRP, (b) S-MWCNT-COOH-CFRP, (c) MWCNT-CFRP, and (d) GnPs-CFRP.

A typical CMOD, δ, measured using laser displacement sensors versus the load line displacement
of CFRP0-0 specimen is depicted in Figure 9a. In the figure, the CMOD versus load line displacement
curve is slightly nonlinearity. Based on the experimental data, an empirical curve of CMOD (δ) versus
the load line displacement was proposed as follows:

δ = k1∆2 + k2∆ + k3 (3)

where k1, k2, and k3 are factors for the best fit between test results and prediction, and their values are
presented in Table 3. In Figure 9 and Table 3, the empirical curves and the load line displacement (∆0)
of the test specimens are presented. Notably, the crack begins to propagate at the displacement of ∆0.

Figure 9b depicts the load line displacement versus CMOD curves of the test specimens in the
first series. The figure indicates that the specimens using nanomaterials displayed higher ∆0 than that
(11.48 mm) of the control specimen CFRP0-0. Particularly, GnPs-CFRP0-0 with 1 wt% GnPs exhibited
the highest ∆0 (16.95 mm) at the peak load (60.58 N), which were considerably higher than those of
CFRP0-0, thereby implying that nanomaterials at the mid-plane of the specimens could delay the
crack development.
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Figure 9. Crack mouth opening displacement (CMOD) versus load line displacement: (a) Empirical
curve determined from the test results and (b) The test series with stacking sequence of [06//06].

Table 3. Factors to express the relationship between crack mouth opening displacement and load line
displacement of the DCB specimens.

Specimens
Factors ∆0

(1)

(mm)k1 k2 k3

CFRP0-0 −0.0054 0.89 −9.50 11.48
S-MWCNT-COOH-CFRP0-0 −0.0053 0.90 −12.86 15.97

MWCNT-CFRP0-0 −0.0055 0.87 −10.60 13.30
GnPs-CFRP0-0 −0.0030 0.80 −12.70 16.95

CFRP0-45 −0.0044 0.82 −10.00 13.12
S-MWCNT-COOH-CFRP0-45 −0.0044 0.75 −8.10 11.59

MWCNT-CFRP0-45 −0.0047 0.84 −12.86 16.91
GnPs-CFRP0-45 −0.0037 0.78 −11.00 15.21

(1) Load line displacement when crack propagation begins.

3.2. Data Reduction Factor (A1)

To evaluate the fracture toughness of the DCB specimens according to the MCC method (see
Equation (2)), the data reduction factor (A1) must be determined. Figure 10 depicts the curves showing
the relationship between the delamination length (a/h) normalized by specimen thickness and the
cubic root (C1/3) of the compliance for the DCB test specimens. As depicted in the figure, the data
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reduction factor varies for different nanomaterials and stacking sequences. In Figure 10a, the slope
(A1 = 37.1 (mm/N)−1/3) of the linear plot of the curve for GnPs-CFRP0-0 is higher than those of the
other specimens; CFRP0-0 and S-MWCNT-COOH-CFRP0-0 show almost similar slopes of 31.2 and
30.2 (mm/N)−1/3, respectively, and MWCNT-CFRP0-0 shows the lowest value of 23.2 (mm/N)−1/3.
Meanwhile, in the second series with a stacking sequence of [(0/45)3//(0/45)3], as depicted in Figure 10b,
the slopes did not show considerable difference; CFRP0-45 and MWCNT-CFRP0-45 showed a constant
slope value of 25.0 (mm/N)−1/3, and S-MWCNT-COOH-CFRP0-45 and GnPs-CFRP0-45 showed a
constant slope value of 20.0 (mm/N)−1/3. The average values of A1 obtained from the test results are
summarized in Table 4. Based on the limited test data obtained in this study, the data reduction factor
A1 was proposed and presented in Table 4.
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Figure 10. Delamination length normalized by thickness versus cube root of the compliance of DCB
specimens: (a) The test series with stacking sequence of [06//06] and (b) the test series with stacking
sequence of [(0/45)3//(0/45)3].

Table 4. Compliance parameter experimentally determined using the MCC method.

Specimens A1,exp
(1)

((mm/N)−1/3)
SD (2) A1,pro

(3)

((mm/N)−1/3)

CFRP0-0 31.2 1.47 30.0
S-MWCNT-COOH-CFRP0-0 30.2 3.75 30.0

MWCNT-CFRP0-0 23.2 3.86 23.0
GnPs-CFRP0-0 37.1 7.43 37.0

CFRP0-45 25.11 4.19 25.0
S-MWCNT-COOH-CFRP0-45 20.8 3.87 20.0

MWCNT-CFRP0-45 25.1 4.43 25.0
GnPs-CFRP0-45 20.0 2.93 20.0

(1) Data reduction factor obtained from the test data in this study. (2) Standard deviation. (3) Proposed data
reduction factor.
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3.3. Effect of Nanomaterials on Mode I Fracture Toughness

Figure 11 and Table 5 present the average mode I fracture toughness (GIc) of the test specimens
with respect to the delamination length (or crack growth). Notably, GIc is evaluated using Equation (2)
with the help of the data reduction factor A1 obtained from the test results. As depicted in the figure,
the fracture toughnesses of all the specimens slightly increased with increase in the delamination
length (a); this trend was also observed in the studies by Srivastava et al. [28] and Rehan et al. [43].
From Figure 11, it can be seen that adding nanomaterials to epoxy significantly increased the fracture
toughness of the CFRP composites compared with that of pure CFRP.
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(a) The test series with stacking sequence of [06//06]

(b) The test series with stacking sequence of 
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Figure 11. Fracture toughness versus crack delamination length of the DCB test specimens: (a) The test
series with stacking sequence of [06//06] and (b) the test series with stacking sequence of [(0/45)3//(0/45)3].

In Figure 12, we compare the mode I fracture toughness of the CFRP composites incorporating
nanomaterials with that of pure CFRP composites in the first series. Considering the initiation fracture
toughness (GIc,in) at a = a0 (= 50 mm), as depicted in Figure 12a, using GnPs as nanofiller most
effectively improved the initiation fracture toughness of the CFRP composites. The initiation fracture
toughness of GnPs-CFRP0-0 was 43.2% higher than that of the control specimen CFRP0-0; meanwhile,
S-MWCNT-COOH-CFRP0-0 and MWCNT-CFRP0-0 displayed approximately 24% higher values
than that of CFRP0-0. Considering the propagation fracture toughness (GIc,prop) at a = 85 mm (see
Figure 12b), generally, the trend is similar to that of initiation fracture toughness (GIc,in). As depicted
in Figure 12b, GnPs-CFRP0-0 exhibited 53.6% higher propagation fracture toughness than that of
CFRP0-0; meanwhile, S-MWCNT-COOH-CFRP0-0 and MWCNT-CFRP0-0 displayed approximately
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27% higher values than that of CFRP0-0. In addition, the test results showed that the fracture toughness
of S-MWCNT-COOH-CFRP0-0 and MWCNT-CFRP0-0 did not show significant difference. This is
because the magnitude of fracture toughness of CFRP composites incorporating CNTs is dependent on
the failure mechanism, which depends on not only the CNT length, but also the critical length of CNTs
embedded in the epoxy matrix [44]. Additionally, since the values of the other parameters (such as CNT
length, CNT diameter, interfacial shear strength between CNTs and epoxy resin, and chemical reaction
between functionalized CNTs and epoxy resin [45]) are wide in range, in some cases, the fracture
toughness might not be clearly different. Statistical analysis using two independent sample t-test
with a statistical significant level (α) of 10% was used to analyze the different between two groups of
experimental data regarding to GIc,in and GIc,prop [46,47]. The statistical analysis results indicated that
the group of GnPs-CFRP0-0 showed significant difference in GIc,in at the 90% confidence level compared
to the control group of CFRP0-0. Meanwhile, S-MWCNT-COOH-CFRP0-0 and MWCNT-CFRP0-0 show
a slight difference in GIc,in compared to CFRP0-0. Similarly, for the propagation fracture toughness,
all groups showed a slight difference in GIc,prop at 90% confident level compared to CFRP0-0.
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(b) Propagation fracture toughness at a = 85 mm
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(b) Propagation fracture toughness at a = 85 mm
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(b) Propagation fracture toughness at a = 85 mm
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(b) Propagation fracture toughness at a = 85 mm
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(b) Propagation fracture toughness at a = 85 mm
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Figure 12. Effect of nanomaterials on (a) initiation fracture toughness at a = 50 mm and (b) propagation
fracture toughness at a = 85 mm of the DCB specimens for the stacking sequence of [06//06].

In the second series (see Figure 13), the specimens that used GnPs as nanofiller showed the
higher initiation and propagation fracture toughness than those of the control specimen CFRP0-45.
However, the difference of the fracture toughness between GnPs-CFRP0-45 and the other test specimens
with other nanofillers was not significant. In addition, similar to the test specimens with stacking
sequence of [06//06], the fracture toughness of S-MWCNT-COOH-CFRP0-45 and MWCNT-CFRP0-45
did not show considerable difference. Based on the statistical analysis, it was found that the group
of S-MWCNT-COOH-CFRP0-45 showed significant difference in GIc,in at the 90% confidence level
compared to the control group of CFRP0-45. Meanwhile, MWCNT-CFRP0-45 and GnPs-CFRP0-45
show a slight difference in GIc,in compared to CFRP0-45. For the propagation fracture toughness,
MWCNT- CFRP0-45 showed significant difference in GIc,prop at the 90% confidence level compared to
CFRP0-45. In contrast, S-MWCNT-CFRP0-45 and GnPs-CFRP0-45 showed a slight difference in GIc,prop
compared to CFRP0-45.

Figure 14 depicts the fiber around the mid-plane of the test specimens. It is evident that upon
adding S-MWCNT-COOH, more fibers were placed, and multiple crack planes formed around the
mid-plane of the test specimens, which might have contributed to bridging and the pull-out mechanism.
According to Borowski et al. [48], this phenomenon could have resulted in more driving force and
energy dissipation, thereby facilitating further crack propagation. Moreover, Davis and Whelan [49]
and Li et al. [50] also indicated that CFRP composites containing nanomaterials might display rougher
fracture surfaces at the mid-plane because of the toughening effect in the matrix compared with those
of CFRP composites without nanomaterials; generally, a similar trend was observed in other DCB
specimens incorporating nanomaterials.
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(b) Propagation fracture toughness at a = 85 mm
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(b) Propagation fracture toughness at a = 85 mm
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(b) Propagation fracture toughness at a = 85 mm
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(b) Propagation fracture toughness at a = 85 mm
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Figure 13. Effect of nanomaterials on (a) initiation fracture toughness at a = 50 mm and (b) propagation
fracture toughness at a = 85 mm of the DCB specimens for the stacking sequence of [(0/45)3//(0/45)3].Polymers 2020, 12, x FOR PEER REVIEW 16 of 22 
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Figure 14. Fibers around the delamination zone of the CFRP composites: (a) CFRP0-0,
(b) CFRP0-45, (c) S-MWCNT-COOH-CFRP0-0, (d) S-MWCNT-COOH-CFRP0-45, (e) MWCNT-CFRP0-0,
(f) MWCNT-CFRP0-45, (g) GnPs-CFRP0-0, and (h) GnPs-CFRP0-45.
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Table 5. Mode I fracture toughness of the DCB specimens.

Specimens Stacking
Sequence

Interface
Fiber
Angle

Amount of
Nanomaterials

(by Weight, wt%)

Fracture Toughness, GIc (kJ/m2)

Initiation,
GIc,in

SD (1) Propagation,
GIc,prop

SD (1)

CFRP0-0

[06//06] 0//0

0 0.522 0.058 0.587 0.061
S-MWCNT-COOH-CFRP0-0

1
0.650 0.142 0.744 0.192

MWCNT-CFRP0-0 0.647 0.167 0.751 0.158
GnPs-CFRP0-0 0.748 0.156 0.901 0.315

CFRP0-45
[(0/45)3//
(0/45)3]

0//45

0 0.417 0.100 0.500 0.117
S-MWCNT-COOH-CFRP0-45

1
0.571 0.044 0.704 0.112

MWCNT-CFRP0-45 0.596 0.206 0.687 0.023
GnPs-CFRP0-45 0.639 0.143 0.725 0.160

(1) Standard deviation.

3.4. Effect of Interface Fiber Angle

In Figure 15, we draw comparisons among the fracture toughnesses of the DCB specimens with the
interface fiber angles of 0//0 and 0//45 in the first and second series, respectively. In the figure, generally,
in term of average, both initiation and propagation fracture toughnesses of the composites with the
interface fiber angle of 0//0 were higher than those of the composites with the interface fiber angle of 0//45;
this trend is the same as those observed in the studies by Rehan et al. [43] and Kharratzadeh et al. [51]
using the pre-impregnated carbon epoxy and woven glass fibers. In Figure 15a, the difference of
initiation fracture toughness between two different stacking sequences was approximately 7.9–20.0%.
Gong et al. [52] and Rehan et al. [43] observed that carbon fiber layers with the fiber angle of 0//45
near the crack plane might cause more potential damage at the crack tip because of the increase
in the microcracks in the epoxy resin within carbon fiber layers, thereby decreasing the initiation
fracture toughness of the composites. The propagation fracture toughness of the DCB specimens
displayed almost the same trend as that displayed by the initiation fracture toughness (see Figure 15b).
The specimens using the first stacking sequence exhibited higher propagation fracture toughness of
5.7–24.3% than that of the corresponding specimens using the second stacking sequence. However,
according to the t-test statistical analysis, at a confident level of 90%, the group of the test specimens
with interface fiber angle of 0//0 was not clearly different in GIc,in and GIc,prop compared to the group of
the test specimens with interface fiber angle of 0//45. Thus, further investigation needs to be performed
in order to understand the effect of interface fiber angle on the fracture toughness of CFRP composites.Polymers 2020, 12, x FOR PEER REVIEW 17 of 22 
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(b) Propagation fracture toughness at a = 85 mm
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Figure 15. Effect of interface fiber angle on (a) initiation fracture toughness at a = 50 mm and
(b) propagation fracture toughness at a = 85 mm of the DCB specimens.

3.5. Prediction Model for Evaluating the Fracture Toughness of CFRP Composites with 0//45 Interface Fiber
Angle and Nanomaterials

From the obtained test results, we observed that the change in the interface fiber angle from 0//0
to 0//45 reduced the fracture toughness of the CFRP composites. In addition, using nanomaterials
significantly improved the fracture toughness of the CFRP composites, which are necessary to
be modeled.
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Based on the studies by Zhao et al. [30] and Sou et al. [53], the following simple empirical method
was proposed to predict the fracture toughness (GIc,0//45) of the CFRP composites with the interface
fiber angle of 0//45 incorporating nanomaterials:

GIc,0//45 = GIc,0//0

[
fm + λV f

]
(4)

where GIc,0//0 is the fracture toughness of pure CFRP composites with the interface fiber angle of
0//0, fm is the failure index that expresses the effect of the interface fiber angle, λ is the calibrated
factor related to the type of nanomaterials, and V f is the fiber volume fraction of nanomaterials
with respect to epoxy resin/hardener mixture. In this study, the fiber volume fractions of MWCNTs,
S-MWCNT-COOH, and GnPs were calculated according to Yue et al. [54] and they showed the same
value of 1.02 vol.%.

In this study, the fracture toughness (GIc,0//0) of CFRP0-0 with the interface fiber angle of 0//0 is
necessary for evaluating GIc,0//45, and it could be evaluated using Equation (2). Notably, GIc,0//0 has
the following three parameters: data reduction factor (A1), compliance parameter (C), and applied load
(P). The data reduction factor (A1) of CFRP0-0 was proposed to be 30.0 (mm/N)−1/3, as presented in
Table 4. Subsequently, the compliance parameter (C) could be defined using the relationship between
delamination length (a/h) normalized via thickness and the cube root of compliance (C1/3) as shown in
Equation (5), which was determined using the test results depicted in Figure 10. One has the following:

a
h
= A1C1/3

− 5.4 (5)

Based on the experimental results depicted in Figure 16, the applied load (P) according to the
delamination length (a) of the CFRP0-0 specimen could be defined as follows:

P = 0.0061a2
− 1.22a + 92.74 (6)
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Figure 16. Applied load versus delamination length of the CFRP0-0 specimen.

In this study, the failure index (fm) of the test specimens with the interface fiber angle of 0//45 was
proposed to be 0.70 for all the types of nanomaterials. Notably, this value of 0.70 is lower than 1.32,
which was suggested by Zhao et al. [30], as the materials and stacking sequences used to fabricate DCB
specimens could affect the failure index. Finally, for achieving the best curve fitting, the calibrated
factor (λ) was empirically determined to be 41, 46, and 52 for S-MWCNT-COOH, MWCNTs, and
GnPs, respectively.

Figure 17 depicts the fracture toughness obtained from the prediction model and experimental
results. From the figure, it can be seen that the prediction results were in a good agreement with the
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experimental results. Both the mean and coefficient of variation (COV) of the ratio of prediction and
experimental results were approximately 1.0 and 3.3–4.7%, respectively. Generally, for the limited test
data employed in this study, the proposed model could be used to predict the fracture toughness of the
DCB specimens with the interface fiber angle of 0//45 incorporating nanomaterials.
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Figure 17. Fracture toughness predicted using the proposed model and evaluated on the basis
of experimental results: (a) CFRP0-45, (b) S-MWCNT-COOH-CFRP0-45, (c) MWCNT-CFRP0-45,
and (d) GnPs-CFRP0-45.

4. Conclusions

The present study investigated the effects of nanomaterials and interface fiber angle on the
fracture behaviors of woven CFRP composites by performing DCB tests. The nanomaterials used
were S-MWCNT-COOH, MWCNTs, and GnPs, and the amount of each of them was 1% by weight
(1 wt%). Two different series of DCB specimens with different stacking sequences of [06//06] and
[(0/45)3//(0/45)3], respectively, were fabricated and tested. In the first series, only 0◦ (or 90◦) carbon
fiber fabrics were used at the delamination surface, while in the second series, 0◦ (or 90◦) and ±45◦

carbon fiber fabrics were used together. The mode I fracture tests were performed according to ASTM
D5528-13, and the fracture toughness was characterized using the MCC method. The primary findings
can be summarized as follows:

(1) Using nanomaterials effectively enhanced the flexural rigidities, peak loads, and residual loads
of the CFRP composites. For example, in the second series, MWCNT-CFRP0-45 displayed 29.5% higher
peak load and 35.9% higher residual load than those of the control specimen CFRP0-0.

(2) The flexural rigidity, peak load, and residual load of each specimen in the test series with the
stacking sequence of [06//06] were considerably higher than those of the corresponding specimen in the
test series with the stacking sequence of [(0/45)3//(0/45)3].

(3) The mode I fracture toughness of the test specimens with nanomaterials was higher than that
of pure CFRP. Particularly, using GnPs was more effective in enhancing the fracture toughness than
using other nanomaterials.

(4) The change in the interface fiber angle from 0//0 to 0//45 could reduce the initiation and
propagation fracture toughnesses of the test specimens.
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(5) An empirical model was proposed to predict the fracture toughness of the CFRP composites
with nanomaterials using on- and off-axis carbon fiber layers together. The prediction results showed a
good agreement with the experimental results.
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