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ABSTRACT
Spike (S) glycoproteins mediate the coronavirus entry into the host cell. The S1 subunit of S-proteins
contains the receptor-binding domain (RBD) that is able to recognize different host receptors, high-
lighting its remarkable capacity to adapt to their hosts along the viral evolution. While RBD in spike
proteins is determinant for the virus–receptor interaction, the active residues lie at the receptor-bind-
ing motif (RBM), a region located in RBD that plays a fundamental role binding the outer surface of
their receptors. Here, we address the hypothesis that SARS-CoV and SARS-CoV-2 strains able to use
angiotensin-converting enzyme 2 (ACE2) proteins have adapted their RBM along the viral evolution to
explore specific conformational topology driven by the residues YGF to infect host cells. We also
speculate that this YGF-based mechanism can act as a protein signature located at the RBM to distin-
guish coronaviruses able to use ACE2 as a cell entry receptor.
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1. Introduction

Viruses are the most numerous type of biological entity on
Earth and the identification of novel viruses continues to
enlarge the known viral biosphere (Pan et al., 2017; Shi et al.,
2018). This collection of all viruses presents enormous mor-
phological and genomic diversity as a result of continuous
exchange of genetic material with the host cells (Koonin et
al., 2020; Nasir et al., 2014). Moreover, this well succeeded
long-term virus–host interaction indicates that viruses are
more than simple genomic parasites in all cellular life forms
(Claverie, 2006). A number of evidences has led to the pro-
posal that viruses play an astonishing role as agents of evo-
lution because of their capacity in propagating between
biomes (Sano et al., 2004) and in gene transfer between spe-
cies (Enard et al., 2016; Fil�ee et al., 2003; Koonin & Dolja,
2013; Van Blerkom, 2003). For this purpose, viruses have
developed large number of genome replication and protein
expression strategies to benefit from the host translational
machinery over time (Baranowski et al., 2003).

Despite all of such enormous diversity in gene sequence,
it is not possible to achieve huge number of highly distinct
protein structures mainly because of stereochemical con-
straints on the possible protein folds (Ng et al., 2020). In fact,
it has been observed common secondary structures through-
out different virus families while the sequences are not fully
conserved (Ahola & Karlin, 2015; Ng et al., 2020). This may
result in evolutionary efficiency once viruses can exploit
already well-designed motifs from similar cellular functions
(Baranowski et al., 2003).

Currently, the world population is confronting a new cor-
onavirus disease (COVID-19), a highly infectious disease to
humans. This disease is caused by severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2) and is affecting human
health worldwide. Coronaviruses (CoVs) belong to the large
and diverse family Coronaviridae, within the order Nidovirales
and suborder Cornidovirineae (Gorbalenya et al., 2020). Their
subfamily Orthocoronavirinae contains four genera based on
phylogeny and termed as a, b, c, and d-coronavirus.

SARS-CoV-2 belongs to the b-coronavirus genus as well as
SARS-CoV, middle east respiratory syndrome coronavirus
(MERS-CoV), and hCoV-HKU1, to cite a few (Jaimes et al.,
2020). Other important representative human viruses as
hCoV-NL63 and hCoV-229E belong to a-coronavirus.
Phylogenetic relationships among the known members of
this subfamily indicate that a and b-coronavirus infect mam-
mals, while c and d-coronavirus infect both mammalians
and avians.

Members of Coronaviridae family are enveloped, positive
single-stranded RNA (þssRNA) viruses and render the largest
genomes among all known RNA viruses (Cheng et al., 2007;
Li, 2016; Masters, 2006; Su et al., 2016). Theþ ssRNA
genomes undergo rapid mutational changes (Sanju�an &
Domingo-Calap, 2016), leading to faster adaptation to new
hosts, though they also contain conserved sequence motifs
as observed, for example, in multiple alignments do CoV
strains (Ahola & Karlin, 2015; Lau et al., 2007; Woo et
al., 2012).

Coronaviruses attach to host cell surface receptors via
their spike (S) glycoproteins, located on the viral envelope,
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to mediate the entry into the host cell. Each monomer of tri-
meric S-protein comprises two subunits S1 and S2, respon-
sible for the viral attachment and for the membrane fusion,
respectively (Beniac et al., 2006; Li, 2012; Song et al., 2018).
The S1 coronavirus subunit contains the receptor-binding
domain (RBD) that is able to recognize different host recep-
tors, highlighting its remarkable capacity to adapt to their
hosts along the viral evolution. Thus, it is not unexpected to
observe in this domain high sequence divergence even for
the same coronavirus identified in different host species. In
contrast, the S2 subunit presents the most conserved region
in the S-protein.

The binding of RBD spike proteins to the receptor on the
host cell is the first step in virus infection. This initial step is
followed by an entry mechanism of enveloped viruses into
target cells. Usually, most viruses enter cells through endo-
cytotic pathways with the fusion occurring in the endo-
somes, although a direct entry into cells can occur by fusion
of their envelopes with the cell membrane (Belouzard et
al., 2012).

A number of CoVs utilizes angiotensin-converting enzyme
2 (ACE2) as the entry receptor into cells, exemplified by
b-genus human respiratory SARS-CoV, SARS-CoV-2, and
a-genus hCoV-NL63 (Hoffmann et al., 2020; Jaimes et al.,
2020; Letko et al., 2020; Walls et al., 2020). In particular,
SARS-CoV, as well as SARS-CoV-2, enter the cell via endocyto-
sis induced by RBD complexed with human ACE2 (hACE2)
receptor (Milewska et al., 2018; Ou et al., 2020; Wang et al.,
2008, 2008; Yuan et al., 2017). In contrast, the b-genus MERS-
CoV and its genetically related bat CoV-HKU4 utilize dipep-
tidyl peptidase 4 (DPP4) as the viral receptor (Yang et al.,
2014). Other viral receptor is aminopeptidase N (APN), recog-
nized for example by the a-genus hCoV-229E (Li, 2015).

The human coronaviruses hCoV-HKU1, hCoV-229E, hCoV-
NL63, and hCoV-OC43, cause mild to moderate upper
respiratory tract infections (Weiss & Navas-Martin, 2005),
while SARS-CoV and SARS-CoV-2 cause severe respiratory dis-
eases, with SARS-CoV-2 being far more lethal than SARS-CoV.
SARS-CoV strains vary enormously in infectivity, which can
be connected to their binding affinities to hACE2 (Cui et al.,
2019). This binding affinity, in turn, can be correlated with
disease severity in humans (Li, Zhang, et al., 2005).

While RBD in spike proteins is determinant for the virus–-
receptor interaction, the active residues lie at the receptor-
binding motif (RBM), which is part of RBD and plays a funda-
mental role binding the outer surface of their receptors (Cui
et al., 2019; Hoffmann et al., 2020; Letko et al., 2020; Li,
Farzan, et al., 2005; Wan et al., 2020). The importance of the
RBM is further explored here in relation to its structural top-
ology. Thus, instead of only analyzing specific residues that
make contacts with ACE2 after binding, we go a step further
and track the molecular origin that drives the viral attach-
ment to this cell receptor. This investigation has revealed a
highly conserved amino acid residue sequence Tyr-Gly-Phe
(YGF) in coronavirus variants that employ this receptor.
Consequently, we hypothesize that the short sequence YGF
is vital for RBD–ACE2 interaction because of the formation of
a hydrophobic pocket proper to the receptor specificity (He

et al., 2020; Lan et al., 2020; Wan et al., 2020; Wu et al.,
2012). Moreover, we recognize that a similar binding mech-
anism is characteristic of the interaction between ubiquitin-
associated (UBA) domain proteins and ubiquitin. In this vein,
we conclude that is plausible that SARS-CoV and SARS-CoV-2
strains able to use ACE2 proteins have adapted their RBM
along the viral evolution to explore such a mechanism to
infect host cells.

1.1 The conserved XGF loop in UBA–ubiquitin
interaction

Amino acid sequences of type XGF, where the residue X is
frequently the residue Met, form a highly conserved loop
characteristic of ubiquitin-associated (UBA) domain that
occurs in a variety of proteins. The UBA domain is a con-
served motif through eukaryotic evolution and is found in
many proteins related to the ubiquitin metabolism and in
particular, associated with ubiquitin-mediated proteolysis
(Finley, 2009; Pickart & Cohen, 2004). The MGF loop in the
UBA domain is typical of a hydrophobic pocket that is critical
for recognition and binding affinity to ubiquitin through a
hydrophobic surface patch located in the vicinity of this loop
(Bertolaet et al., 2001; Cabe et al., 2018; Dieckmann et al.,
1998; Long et al., 2008; Madura, 2002; Raasi et al., 2005; Tse
et al., 2011; Wilkinson et al., 2001). UBA domains are ubiqui-
tin receptors whose binding is a fundamental step for
diverse regulatory functions.

NMR analysis of UBA–ubiquitin interactions identify hydro-
phobic surface patches formed by the conserved MGF
sequence as the main determinants for the protein–protein
interaction. A number of alignments of UBA domains has
revealed mutations in the MGF sequence, mainly M ! L, M
! Q, and F ! Y, but these mutations still maintain the over-
all hydrophobic characteristic for the main set of residues
located at the protein-interacting surface in these UBA
domains (Geetha & Wooten, 2002; Mueller & Feigon, 2002).

An illustrative example of this protein–protein interaction
mechanism is presented in Figure S1, supplemental material.
This figure displays the UBA domain of Dsk2p protein com-
plexed with ubiquitin (PDB ID: 1WR1) where the residues
M342, G343, and F344 form the core of the hydrophobic sur-
face patch for interacting with ubiquitin. The importance of
this hydrophobic surface patch has been strengthened by
mutagenesis experiments (Ohno et al., 2005) of single substi-
tutions G343A, F344A, and L369A in Dsk2p–UBA domain,
producing a large decrease of its binding affinity
for ubiquitin.

2. Results and discussion

2.1. Spike receptor-binding motifs in human CoVs

Here, we investigate the occurrence and importance of the
specific amino acid residue sequence YGF for SARS-CoV and
SARS-CoV-2 strains able to use ACE2 proteins as receptors. It
is displayed in Figure 1a the interface of SARS-CoV RBD
spike-protein (magenta and green color) complexed with
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hACE2 (blue color) to gain insight about the importance of
this type of conformational mechanism in creating a shape
complementarity between receptor and ligand. The RBM is in
magenta color, with the yellow color displaying the YGFY
sequence in that pocket, which establishes the proper rela-
tive position for favorable binding to surface-exposed hACE2
residues. The YGFY sequence seems strongly conserved in
SARS-CoV spike RBD, more precisely located at residues
481–484 in the receptor binding motif. Noteworthy, this
sequence seems to be unique because even the shorter YGF
sequence does not occur in this region, neither in the RBD.
As a consequence of this hydrophobic pocket, amino acid
residues responsible for binding interaction are located close
to this conformational structure as, for example, the residues
N479 and T487 (Figure 2a). These residues have been identi-
fied to be essential for SARS-CoV spike RBD/ACE2 binding (Li
et al., 2005, 2005; Qu et al., 2005). The residue N479 in SARS-
CoV is located near K31 of hACE2 which in turn makes a salt
bridge with E35, a residue buried in that hydrophobic envir-
onment. The residue T487 is located close to K353 on
hACE2, and in turn makes a salt bridge with D38, also buried
in that pocket. Other important residues for this attachment
are Y442, L472, and D480 (Wan et al., 2020).

Figure 3a displays the residues of SARS-CoV RBM in direct
contact with hACE2 as determined by the hydrophobic–hy-
drophilic properties of the interface residues as predicted by
the CSU program (Sobolev et al., 1999). This bipartite net-
work of contacts highlights the importance of residues that
are located near the YGF sequence and contributes to the
stabilization of SARS-CoV complexed with hACE2. For
example, Y475 makes hydrogen bond (H–B) contacts with
Q24, F28, and Y83; N479 with K31, and H34; Y486 with Y41,
N330, and R357; and T487 with Y41.

Figure 1b displays the interface of SARS-CoV-2 RBD spike
protein complexed with hACE2 (blue color). Now, the
sequence YGFY observed in SARS-CoV is replaced by YGFQ
as a result of sequence alignments shown in Figure 4. The
single-point mutation Y484 ! Q498 replaces a hydrophobic
residue in SARS-CoV by a hydrophilic one in SARS-CoV-2.

Figure 4 compares residue sequences of human SARS-CoV
and SARS-CoV-2 strains aligned with RBM of SARS-CoV Tor2,
an epidemic strain isolated from humans during the SARS
epidemic in 2002–2003. The human Tor2 strain has high
affinity for hACE2 (Cui et al., 2019). We highlight in this fig-
ure in medium purple color the hydrophobic sequence YGFY
typical of SARS-CoV, occurring at positions 481–484 in the
spike protein. The corresponding mutated sequence occurs
now at positions 495–498 in SARS-CoV-2 spike protein.

The important residues for the interface interaction found
in SARS-CoV are mutated in SARS-CoV-2. The sequence align-
ments show the mapping, Y442 ! L455, L472 ! F486, N479
! Q493, D480 ! S494, and T487 ! N501. These mutations
do not present a drastic change in their hydrophobic character
(Wimley & White, 1996), thus preserving the overall receptor-
binding topological structure for these viruses. In particular,
residues L455 and Q493 in SARS-CoV-2 preserve the noted
favorable interactions with the residues E35 and K31 in hACE2
(Yi et al., 2020) (Figure 2b). Interestingly, a new GF sequence
appears in the RBM of SARS-CoV-2 strains as a consequence of
the mutation L472 ! F486, producing a small hydrophobic
surface, but does not seem to disrupt the proposed topo-
logical formation mechanism for ACE2 binding. No other GF
sequence appears in their RBD.

Figure 3b displays the SARS-CoV-2 RBM residues in direct
contact with hACE2 as predicted by the CSU program, show-
ing again the importance of residues close to the hydropho-
bic pocket. Details of protein–protein binding interfaces can
be quite different among strains, likely related to their infect-
ivity degree. It has been noted that mutations in RBM resi-
due T487 in SARS-CoV have an important role in the human-
to-human and animal-to-human transmission of SARS-CoV
(Cui et al., 2019; Li, 2015; Qu et al., 2005).

Now, we investigate the relevance of the hydrophobic
pocket driven by the YGFY sequence in promoting the stabil-
ity of SARS-CoV spike receptor binding domain complexed
with hACE2. To this end, we conducted a series of mutations
to estimate the change in binding affinity DDG using the
MutaBind2 method (Zhang et al., 2020).

Figure 1. Detailed surface view of SARS-CoV and SARS-CoV-2 RBD. (a) Residues YGFY at the interface of SARS-CoV complexed with hACE2 (PDB ID: 2AJF). These
residues are in yellow color and form a hydrophobic pocket located in the RBM (magenta color). (b) Residues YGF and EGF (yellow color) at the interface of SARS-
CoV-2 complexed with hACE2 (PDB ID: 6LZG). The first sequence is located in a hydrophobic pocket, while the second sequence EGF is on the RBM surface
(magenta color). Ribbon representation of ACE2 is in blue color.
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Initially, we investigate the influence of N479 mutation by
the residues E, K, Q, R, and S on the complexation. The
mutations N479E, N479K, N479Q, N479R, and N479S have
been observed, respectively in pangolin strains (see
Figure 5), bat and palm civet strains (see Figures 5 and 6),

human SARS-CoV-2 (see Figure 4), bat and palm civet strains
(see Figures 5 and 6), and bat strains (see Figure 6). The cal-
culation of DDG for these mutations does not indicate any
appreciable effect on SARS-CoV spike RBD/hACE2 binding
affinity due to its small variation, as displayed in Table 1.

Figure 2. SARS-CoV and SARS-CoV-2/hACE2 RBD interfaces. Ribbon diagrams of SARS-CoV RBD (a) and SARS-CoV-2 RBD (b) complexed with hACE2 (blue color),
where the RBM is highlighted in magenta color. The main residues responsible for the structural binding are displayed in the stick representation.

Figure 3. Contact networks between (a) SARS-CoV residues, and (b) SARS-CoV-2 residues located in the RBM regions with ACE2. SARS-CoV and SARS-CoV-2 resi-
dues are in magenta color while human ACE2 residues are in blue color.

Figure 4. Sequence alignments of human CoVs restricted to RBM residues. The medium purple color highlights the YGFY pattern followed by the mutation Y498Q
in the RBM of SARS-CoV-2 strains.
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Therefore, we may conclude that N479 does not enhance
the binding affinity of spike RBD to hACE2, and could as well
be replaced by any of the above residues, preserving the
hydrophilic character (Wimley & White, 1996) and conform-
ational stability.

Specific mutations were also performed to investigate the
importance of the residues forming the hydrophobic surface
patch for the complexation stability. Residues Y481 and F483
are conserved through all SARS-CoV strains we have ana-
lyzed in this work, while G482 and Y484 are mutated in
some strains (bats and pangolins). Therefore, we mutated
G482 and Y484 by plausible residues, i.e. the ones that occur
in other strains to evaluated the changes in the binding
affinity. To perform this double mutation, we fixed G482D, a
mutation observed in bat strains, followed by Y484F, Y484N,
and Y484T, observed in bats; Y484H, observed in pangolins;
and Y484Q, observed in human SARS-CoV-2. The free-energy
changes for these double mutations strongly indicate the

desestabilization of human SARS-CoV complexed with hACE2
(Table 1). It is interesting to note that G482D together with
Y484Q decreases the binding affinity in human SARS-CoV
because they decrease the hydrophobicity of the initial YGFY
pocket. This conclusion is supported by the mutant G482D-
Y484Q structure obtained by the bioinformatic tool
Mutabind2, after a 100 step energy minimization, which does
not display steric hindrances between these residues and the
ones at the interface with ACE2. Table 1 also displays the
changes in binding affinity for single mutations of Y484, a
highly connected residue with hACE2 (see Figure 3).

We have also applied the predicting tool Mutabind2 to
the single mutations G482A, and G482V to evaluate under
which conditions we may obtain disruptive S1–protein–virion
interaction. This tool yielded 1.07, and 1.78 kcal/mol, respect-
ively for G482A, and G482V. V842 produces a single steric
hindrance at Y436:CZ from spike protein, highlighting the
importance of hydrophobicity against steric effects.

Figure 5. Sequence alignment of bat CoVs restricted to RBM residues of SARS-CoV Tor2. The residues of YGFY pattern are in medium purple color. Last three align-
ments are placed together for direct amino acid sequence comparison.

Figure 6. Sequence alignment of palm civet CoVs and pangolin PCoVs restricted to RBM residues of SARS-CoV Tor2. The residues of YGFY pattern are in medium
purple color. Last line includes the SARS-CoV-2 sequence for comparison.
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Next, we mutated N479 followed by mutations at sites 482
and 484 to analyze the consequences on the binding affinity
of this triple mutation by disrupting the hydrophobic surface
patch. Again, we fixed, for example, the mutations N479E and
G482D. The impacts of this set of mutations can be seen in
Table 1. What was considered to be a neutral mutation, N479E
shows high destabilizing effect in the new conformational
environment. Similar destabilizing effects on the human SARS-
CoV spike RBD complexed with hACE2 are obtained for the
important residue T487 when one mutates the residues form-
ing the hydrophobic pocket (data not shown).

Now, we repeat the above procedure to investigate the
role of residues YGFQ for human SARS-CoV-2 RBD/hACE2
binding affinity. The mutation Q498Y does not alter the bind-
ing affinity for the complexation because the predicted DDG
is about 0.16 kcal/mol. We also analyzed the impact of dou-
ble mutations in the YGFQ sequence on the stability of the
complexation, see Table 1. To this end, we fixed, for example
G496D and replaced Q498 by the residues F, H, N, and T
that appear in strains of other species. The predicted
changes in binding affinity by mutations indicate destabiliza-
tion of new complexations.

2.2 Spike receptor-binding motifs in bats

It is known that not all SARS-CoV strains isolated from bat
hosts have exploited ACE2 as a cellular attachment.
Therefore, the set of amino acid sequences displayed in
Figure 5 may exemplify the successful relation between virus
evolution and the binding mechanism. This set highlights in
medium purple color the preserved amino acid residues in
the sequence YGFY, characteristics of human SARS-CoV. For
comparison, we also display CoV strains with mutations in
that SARS-CoV pattern to explore the relation between the
hypothesized mechanism and the cell receptor recognition.

It has been demonstrated that LYRa11 (Letko et al., 2020),
Rs3367 (Ge et al., 2013), Rs4874 (Hu et al., 2017), WIV1, and
WIV16 (Letko et al., 2020; Yang et al., 2015), have the cap-
acity to use ACE2 for cell entry as well RaTG13, in line with
our hypothesis. Also, the near single-point mutation Y ! F
in the next six strains Rs7327, Rs9401, YN2018B, RsSHC014,
Rs4084, and Rs4231, does not interfere, as expected, in the
attachment mechanism. This conclusion is supported by cell
entry studies for Rs7327 (Hu et al., 2017; Letko et al., 2020),
Rs9401, RsSHC014, Rs4084, and Rs4231 (Hu et al., 2017),
because they are in a group that is likely to use the ACE2
receptor. This mutation replaces a hydrophobic residue by
another one with higher hydrophobicity, reinforcing the con-
formational topology for binding with the receptor. This sin-
gle-point mutation Y!F in human SARS-CoV produced a
neutral effect in the binding hACE2 (Table 1).

We identified in the next group constituted by BtKY72,
BB9904/BGR/2008, and BM48-31/BGR/2008, respectively the
mutations Y487T, Y488T, and Y485T, decreasing the initial
hydrophobicity of the expected pocket in these strains. It
seems unlikely that this mutation and amino acid residue
deletions associated to Tor2 RBM sequence affect the YGF-
based attachment mechanism for BtKY72 and BB9904/BGR/
2008. Unfortunately, there is no available experimental data
concerning their receptors. It is important to remark that the
residue F492 in BM48-31/BGR/2008 produces another hydro-
phobic sequence IGF at residues 490–492 (Figure 5). We
speculate that this double occurrence may disrupt the afore-
mentioned mechanism because of indications that BM48-31/
BGR/2008 does not interact, at least with human ACE2 (Letko
et al., 2020). No other GF sequence occurs in the RBD of
these strains.

Next CoV strains in Figure 5 do not contain such specific
YGF sequences of residues in the RBM neither in their RBD.
We find the two-letter sequence GF in Rf1/2004, but it is
located in RBD and with GF surrounded by hydrophilic resi-
dues. Although we have considered only part of the sequen-
ces that better align with RBM of Tor2, it has been
demonstrated that the spikes of HuB2013, HKU3, CoVZC45,
CoVZXC21, Rf1, Rf4092, and Shaanxi2011 do not use hACE2,
a result that is not just a consequence of deletions at the
RBD (Letko et al., 2020). Further support has been presented
against HKU3 in using hACE2 (Gralinski & Menachery, 2020).
It seems unlikely that Rm1/2004 infects hACE2 because its
unfavorable binding free energy (Armijos-Jaramillo et al.,
2020). Another result concludes that Rp3 is unable of infect
hACE2 or even bat ACE2 (Hoffmann et al., 2013).

Table 1. Changes in binding affinity of human SARS-CoV and human SARS-
CoV-2 spike RBD complexed with hACE2 upon mutation as predicted by
MutaBind2 method. Prediction effects are classified as low-confidence predic-
tion: (1), or high-confidence prediction: (2). Here we adopt the classification
presented in MutaBind method (Minghui et al., 2016) because of the high
similarity between the ROC (receiver operating characteristic) curves in
both methods.

DDG Effect on the

SARS-CoV (kcal/mol) complexation
N479E 0.76 neutral ð2Þ
N479K 0.66 neutral ð2Þ
N479Q 0.40 neutral ð2Þ
N479R 0.08 neutral ð2Þ
N479S 0.63 neutral ð2Þ
G482A 1.07 neutral ð2Þ
G482D 1.85 highly destabilizing ð1Þ
G482V 1.78 highly destabilizing ð1Þ
G482D, Y484F 2.40 highly destabilizing ð2Þ
G482D, Y484H 2.68 highly destabilizing ð2Þ
G482D, Y484N 3.24 highly destabilizing ð2Þ
G482D, Y484Q 2.47 highly destabilizing ð2Þ
G482D, Y484T 3.26 highly destabilizing ð2Þ
Y484F 0.64 neutral ð��Þ
Y484H 1.57 highly destabilizing ð1Þ
Y484N 2.19 highly destabilizing ð1Þ
Y484Q 1.44 neutral ð�Þ
Y484T 1.92 highly destabilizing ð1Þ
N479E, G482D, Y484F 4.58 highly destabilizing ð2Þ
N479E, G482D, Y484H 4.90 highly destabilizing ð2Þ
N479E, G482D, Y484N 4.69 highly destabilizing ð2Þ
N479E, G482D, Y484Q 4.58 highly destabilizing ð2Þ
N479E, G482D, Y484T 4.67 highly destabilizing ð2Þ
SARS-CoV-2
G496D 0.96 neutral ð2Þ
G496A 1.10 neutral ð2Þ
G496V 1.69 highly destabilizing ð1Þ
Q498Y 0.16 neutral ð2Þ
G496D, Q498F 2.75 highly destabilizing ð2Þ
G496D, Q498H 2.52 highly destabilizing ð2Þ
G496D, Q498N 1.72 highly destabilizing ð1Þ
G496D, Q498T 1.68 highly destabilizing ð1Þ
Q493S 0.89 neutral ð�Þ
Q493S, G496D, Q498F 3.63 highly destabilizing ð2Þ
Q493S, G496D, Q498H 4.33 highly destabilizing ð2Þ
Q493S, G496D, Q498N 2.96 highly destabilizing ð2Þ
Q493S, G496D, Q498T 2.85 highly destabilizing ð2Þ
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We have placed together the alignments involving Tor2,
RaTG13, and SARS-CoV-2 at the end of Figure 5 for further
comparison. The whole genome of RaTG13 shares 96%
amino acid sequence identity with SARS-CoV-2, and it is con-
sidered the most closely related genome to this CoV (Zhang
et al., 2020). Considering its spike protein, and RBM, RaTG13
shares respectively 97% and 76% amino acid identity with
SARS-CoV-2. For comparison, RaTG13 shares 79%, 77%, and
53% identity, respectively, for the whole genome, spike pro-
tein, and RBM with SARS-CoV Tor2. Therefore, SARS-CoV-2 is
mostly similar to RaTG13 than SARS-CoV strains in
all regions.

2.3 Spike receptor-binding motifs in palm civets
and pangolins

To explore further the role of YGF-based attachment mech-
anism, we exhibit comparative residue sequences for civet
and pangolins, again aligned with RBM of SARS-CoV Tor2
(Figure 6). This figure shows that the pattern YGFY character-
istic of human SARS-CoV is maintained for the collected
data, but with a single-point mutation Y ! H for pangolin
hosts PCoV. It is worth to observe that even the shorter two-
letter GF sequence is not found in the RBD of these strains,
which could promote another hydrophobic pocket.

We have included SARS-CoV-2 on the last line of Figure 6
for a direct comparison. PCoV GX-P2V shares 79%, 77%, and
50% amino acid identity with Tor2, respectively for whole
genome, spike protein, and RBM aligned with Tor2. In rela-
tion to SARS-CoV-2, PCoV GX-P2V shares 85%, 92%, and 75%
amino acid identity, respectively for whole genome, spike
protein, and RBM. It is believed that human SARS-CoV passed
from palm civets to humans in the 2002–2003 epidemic
because their genome sequences are highly similar (Cui et
al., 2019; Li, 2008; Qu et al., 2005). The amino acid align-
ments show an almost identical RBM between human SARS-
CoV, represented by Tor2 strain, and collected data from
palm civet strains. This identification also includes the YGF-
based mechanism able to use ACE2 proteins. Nevertheless,
these alignments display high similarity between pangolins
and SARS-CoV-2, which also support previous conclusions on
pangolins being the probable origin of SARS-CoV-2 (Lam et
al., 2020; Zhang et al., 2020). However, based on our data
related to host receptor binding and their RBM and S-protein
alignments, we cannot discard bat RaTG13-like strain as also
the possible origin of SARS-CoV-2.

2.4 SARS-CoV and hCoV-NL63: only functionally related

Although there are no many available experimental data
identifying the viral receptor-binding protein for CoVs, it is
well established that human SARS-CoV and hCoV-NL63 both
employ ACE2 as the cell receptor to infect host cells
(Hofmann et al., 2005, 2006). Interestingly, SARS-CoV and
hCoV-NL63 domains do not present high sequence similarity.
For example, their spike-S1 subunities share only 10% in
similarity. Other features separate SARS-CoV and hCoV-NL63
(Milewska et al., 2014). SARS-CoVs are classified as b-

coronavirus with subgenus sarbecovirus, while hCoV-NL63 is
in genus a-coronavirus and subgenus setracovirus. Although
hCoV-NL63 also enters the cell via endocytosis, its functional
receptor requires heparan sulfate proteoglycans for the initial
attachment, representing an important extra factor for ACE2
to act as a functional receptor (Milewska et al., 2014, 2018).
Moreover, the spike-S1 glycoprotein of SARS-CoV binds more
efficiently ACE2 than the corresponding spike-S1 of NL63
(NL63-S) (Glowacka et al., 2010). This may be linked to the
fact that SARS-CoV and NL63-S contact ACE2 differently, a
conclusion based upon the experimental results that NL63-S
does not bind to ACE2 through a single and large domain
(Hofmann et al., 2006; Wu et al., 2009). Actually, different
RBD regions have been identified within NL63-S. One of
these regions was positioned at residues 476–616 and com-
prising three discontinuous RBM regions, RBM1 (residues
497–501), RBM2 (residues 530–540), and RBM3 (residues
575–594) (Li et al., 2007; Lin et al., 2008, 2011). A slightly dif-
ferent RBD has been identified for this CoV (Wu et al., 2009).
It would be located at residues 482–602, also with three dis-
continuous RBM regions, which surround a shallow cavity at
hCoV–NL63–ACE2 binding interface. Curiously, its spike pro-
tein alignment with Tor2 does not show the expected resi-
due pattern in the corresponding RBM of Tor2 nor in the
aforementioned RBD regions of NL63-S. This may help to
explain the unusual pathway of binding to ACE2 for
this CoV.

3. Methods

The analysis of inter-molecular contacts in the experimentally
determined high resolution crystal structures complexed
with hACE2 (PDB ID: 2AJF (Li, Farzan, et al., 2005) and PDB
ID: 6LZG (Wang et al., 2020)) was performed with the bio-
informatic tool Contacts of Structural Units (CSU) (Sobolev et
al., 1999).

Single and multiple residue mutations were introduced at
positions located on the hydrophobic surface patch to evalu-
ate the importance of these residues in establishing specific
interactions with hACE2. Mutations may affect the spike
receptor-binding complexed with hACE2 either leading to
higher, lower or even neutral binding affinity. We apply the
fast and accurate MutaBind2 method (Zhang et al., 2020) to
estimate the binding free-energy change DDG ¼
DGmut�DGwt upon mutation to predict its functional effects.
This method compares free-energy changes between
mutated and wild-type three-dimensional conformations. The
binding free-energy change upon single mutation was also
evaluated with the predictor BeAtMuSiC (Dehouck et al.,
2013) based on a set of statistical potentials extracted from
experimental mutational data. This computational method
predicted very similar effects on the complexation (data not
shown) as described in Table 1.

3.1 Sequence alignment

We have also used the bioinformatic tools BLAST and
ClustalW for sequence alignment and analysis of CoV strains,
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and Jalview to examine and edit various sequence align-
ments. Figures showing the conformational complexations
were prepared using PyMol. The list of GenBank accession
codes for the spike proteins analyzed in this work is available
in Supplementary Table S1.

4. Conclusion

We have analyzed a number of CoV strains to support the
hypothesis that SARS-CoV and SARS-CoV-2 strains share a
common evolutionary mechanism for the initial attachment
to ACE2. Moreover, we speculate that the YGF-based mech-
anism can act as a protein signature to distinguish CoVs able
to use ACE2 as a cell entry receptor whenever this residue
sequence is located at the CoV RBM region. For example,
bat-SL-CoV ZC45 and ZXC21 are closely related sequences to
SARS-CoV-2 with overall genome identity of �89% and can
be promptly put under suspicious in their ACE2 binding
affinity because the lack of such signature. Of course, as
exemplified by hCoV-NL63, we cannot discard that another
mechanism can act helping such ACE2 binding. It must be
accentuated that the occurrence of other XGF sequences,
mainly with X being a hydrophobic residue, in the RBM, or
even in the RBD region, can disrupt the proposed topological
mechanism for ACE2 binding. This because it might intro-
duce hydrophobic loops promoting a new ligand–substrate
recognition.
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