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Human immunoglobulin G hinge regulates
agonistic anti-CD40 immunostimulatory and
antitumour activities through biophysical flexibility
Xiaobo Liu 1,2,7, Yingjie Zhao1,2,7, Huan Shi1,2,7, Yan Zhang1,2, Xueying Yin 3, Mingdong Liu, Huihui Zhang,

Yongning He4, Boxun Lu 5, Tengchuan Jin 3 & Fubin Li 1,2,6

Human immunoglobulin G (IgG) agonistic antibodies targeting costimulatory immunor-

eceptors represent promising cancer immunotherapies yet to be developed. Whether, and

how, human IgG hinge and Fc impact on their agonistic functions have been disputed. Here,

we show that different natural human IgGs confer divergent agonistic anti-CD40 immu-

nostimulatory and antitumour activities in FcγR-humanized mice, including inactive IgG3 and

superior IgG2. This divergence is primarily due to their CH1-hinges despite all human IgGs

requiring Fc-FcγR binding for optimal agonistic activities. Unexpectedly, biophysical flexibility

of these CH1-hinges inversely correlates with, and can modulate, their agonistic potency.

Furthermore, IgG Fcs optimized for selective FcγR binding synergize with and still require IgG

hinge, selected for rigidity, to confer improved anti-CD40 immunostimulatory and antitumour

activities. These findings highlight the importance of both hinge rigidity and selective FcγR
binding in antibody agonistic function, and the need for newer strategies to modulate anti-

body agonism for improved clinical application.
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In order to target and mobilize immune cells to eradicate
tumours, two classes of antibodies have been pursued1,2: (1)
blocking antibodies against immunoinhibitory receptors or

ligands and (2) agonistic antibodies for immunostimulatory
receptors. Clinically approved antibodies targeting CTLA-4 and
PD-1/PD-L1 all belong to the first category3. While these anti-
bodies prove the concept of cancer immunotherapy and represent
major breakthroughs, their limitations, including rather low
overall response rates, highlight an urgent need to develop
additional therapies with distinct mechanisms of action3,4. Ago-
nistic antibodies targeting immune stimulatory molecules have
been suggested as a class of promising therapeutic candidates in
both animal and clinical studies5. It is, therefore, critical to
understand how antibody agonistic function is regulated.

CD40 is a tumour necrosis factor receptor (TNFR) superfamily
member expressed broadly on antigen-presenting cells (APCs),
and controls a key immunostimulatory pathway required for
humoral and cellular immunity6,7. Ligation of CD40 by agonistic
anti-CD40 antibodies, surrogates of CD40L expressed by CD4
T cells, can effectively promote APC maturation and in turn
antigen-specific CD8+ cytotoxic T-cell activation and expansion,
and strengthen antitumour responses6–8. Agonistic anti-CD40
antibodies have also been reported to stimulate tumour-
infiltrating macrophages that contribute to tumour eradication
by depleting tumour stroma9. Using murine agonistic antibodies
targeting CD40, we and others have previously demonstrated that
IgG constant domains (CDs) can dictate their immunostimula-
tory and antitumour activities by binding to different Fcγ
receptors (FcγRs)10,11. Both mice and humans express several
activating (FcγRI, FcγRIII, and FcγRIV in mice and FcγRI,
FcγRIIa, and FcγRIIIa in humans) and one inhibitory (FcγRIIB)
type-I FcγRs, classified based on their associated intracellular
signalling motifs12. Murine agonistic anti-mouse CD40 anti-
bodies were found to specifically depend on Fc–FcγRIIB inter-
actions, in contrast with effector antibodies that require activating
FcγRs10,11. Furthermore, murine agonistic IgG antibodies tar-
geting several other TNFR superfamily members, including DR5,
FAS, and CD27, have also been shown to be regulated by their
CDs in a similar way13,14, suggesting that murine IgG agonism
might be generally regulated by their CDs through differential
FcγR binding. Mechanistically, we and others have suggested that
murine IgG Fc’s can contribute to agonism by promoting FcγR-
dependent in vivo cross-linking and therefore clustering of the
targeted receptors such as CD40, mediated by FcγR-expressing
cells that work in trans11,15.

The regulation of the agonistic function of human IgG (hIgG)
antibodies by their CDs appears to be more complicated and
disputed. HIgG has four subclasses, namely IgG1–4, with similar
structure but distinct effector function and implication in
immune responses and diseases16. In addition to different FcγR-
binding properties, hIgGs also have different hinge regions with
different biophysical flexibility, which has been reported to
positively correlate with antibody effector functions17–19. Pre-
viously we showed that both human IgG1 and 2 anti-CD40
antibodies depend on their FcγR-binding ability for agonistic
activities, and that Fc variants with selectively enhanced binding
to FcγRIIB have significantly improved agonistic potency10,20. In
contrast, White et al. have reported that, under the mouse FcγR
background, human IgG2 agonism does not depend on Fc–FcγR
interactions, but rather on its unique hinge conformation21.
However, it appears that the reported impact of IgG2 hinge
conformation does not apply to all anti-CD40 antibodies22, nor
does it apply in FcγR-humanized mice20. Therefore, the impact of
hIgG hinge and Fc on its agonistic function, under physiological
conditions with human FcγRs expression, remains to be
elucidated.

In order to address this issue, we evaluated, in an FcγR-
humanized mouse model, the agonistic function of multiple anti-
CD40 and -DR5 antibody sets with different natural and engi-
neered hIgG Fc’s and CH1-hinges. We also characterized the
biophysical flexibility of IgG hinges to investigate their mode of
action in modulating antibody agonistic function. Here, we show
that different natural hIgGs confer divergent agonistic potency in
multiple anti-CD40 antibodies, and that IgG hinge and Fc
domains can regulate antibody agonism through distinct
mechanisms, based on which agonistic anti-CD40 antibodies with
improved immunostimulatory and antitumour activities are
developed.

Results
Natural hIgG CDs confer divergent agonism. To investigate the
impact of hIgG CDs on antibody agonistic function, we generated
anti-mouse CD40 antibodies with different natural hIgG CDs.
These antibodies exhibited similar specificity and affinity for
mouse CD40 (mCD40), as shown by their competition kinetics
against the parental rat anti-mCD40 antibody 1C10 (Supple-
mentary Fig. 1a, Supplementary Table 1) and similar binding
kinetics to mCD40 (Supplementary Fig. 1b). Agonistic activities
of these antibodies were evaluated in a physiologically relevant
mouse model that recapitulates the expression profile of human
FcγRs23, referred to as “FcγR-humanized mice.” Agonism of anti-
CD40 antibodies was evaluated by their immunostimulatory
activity in an OVA-specific CD8+ T-cell response model10,15,
where OVA antigen is delivered to dendritic cells (DCs) in the
form of OVA/anti-DEC205 fusion protein (DEC-OVA), and
agonistic anti-CD40 antibodies can promote maturation of DCs,
activation and expansion of transferred OVA-specific OT-I CD8+

T cells in recipient mice (Fig. 1a, b).
When anti-CD40 antibodies with different natural hIgG CDs

were evaluated in this mouse model, mice treated with human
IgG1, 2, and 4 anti-mCD40 antibodies displayed increased
percentage of OT-I cells among CD8+ T cells (Fig. 1b, c) and
percentage of IFN-γ+ CD8+ T cells (Supplementary Fig. 2a), as
compared to mice treated with control antibodies. However,
human IgG3 antibodies failed to show any significant activities at
the same dosage of 30 µg per mouse. To further investigate the
relative potency of these antibodies, we titrated antibody dosage
down to 10 µg per mouse. At this dosage, human IgG2 antibodies
displayed robust activity, whereas human IgG1, 3, and 4
antibodies all failed to induce significant OVA-specific CD8+

T-cell response (Fig. 1d). Strikingly, ten times more human IgG3
anti-mCD40 antibodies (100 µg per mouse), did not show any
significant agonistic activity neither (Supplementary Fig. 2b).
These data demonstrated that four natural hIgG CDs confer very
different levels of anti-mCD40 antibody agonism, with IgG3
being agonistically inactive and IgG2 being agonistically superior.

Optimal hIgG in vivo agonism requires Fc–FcγR engagement.
To test whether the different FcγR-binding property of natural
hIgG Fc’s24 is responsible for their varying ability in driving anti-
mCD40 antibody agonism, we examined whether FcγR expres-
sion is required for the agonism of hIgG anti-mCD40 antibodies
using FcγR-deficient mice23. As shown in Fig. 1b, c, and Sup-
plementary Fig. 2a, none of human IgG1–4 anti-mCD40 anti-
bodies showed significant immunostimulatory activities in FcγR-
deficient mice. Consistently, we also observed that the human
IgG2 anti-mCD40 antibody variant carrying the N297A muta-
tion, which abrogates Fc–FcγR binding10, has no agonistic
activity (Fig. 1e). Therefore, Fc–FcγR engagement is required for
optimal in vivo agonistic potency of all hIgG isotypes.
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Fig. 1 Divergent hIgG agonism and specific FcγR-binding requirement. a Diagram showing the OVA-specific CD8+ T-cell response model. In brief, FcγR-
humanized (hFCGRTg) or -deficient (FcγRα−/−) mice were adoptively transferred with OT-I cells on day-1, immunized intraperitoneally (i.p.) with 2 μg of
DEC-OVA in the presence of control or anti-CD40 antibodies on day 0. Splenocytes were harvested to quantify OVA-specific CD8+ T cells on day 6.
b, c Representative FACS profile (b) and quantification (c) showing the percentage of OT-I cells (CD45.1+TCRVα2+) among CD8+ T cells in mice treated
and analyzed as in (a) together with 30 μg of indicated control or anti-mCD40 antibodies. Numbers of mice: b, c three hFCGRTg mice for Ctrl IgG, five
hFCGRTg, and three FcγRα−/− mice for other groups. d–f Quantification of OT-I cells as the percentage of OT-I cells among CD8+ T cells (d, e) or cell
count (f) in FcγR-humanized mice treated and analyzed as in (a) together with 10 μg (d, e) or 30 μg (f) of indicated control or anti-mCD40 antibodies (the
N297A mutation abrogates Fc–FcγR binding) and with/without FcγRIIB-blocking antibody 2B6 (150 μg per mouse) (f). Numbers of mice: d four mice per
group; e five mice per group; f two mice for Ctrl IgG, five mice for αmCD40:G2, six mice for αmCD40:G2+ 2B6. g Quantification of OT-I cells as the
percentage of OT-I cells among CD8+ T cells in mice of indicated genotypes (FcγR-deficient (FcgRα−/−, five mice per group), FcγRIIB-deficient (Fcgr2b
−/−, five mice per group) or humanized (Fcgr2b−/−hFCGR2BTg, four mice per group)) treated and analyzed as in (a) together with 10 μg of indicated
control or IgG2 anti-mCD40 antibodies. Each symbol represents an individual mouse. Bars represent the mean ± SEM. *p≤ 0.05, **p≤ 0.01, ***p≤ 0.001,
****p≤ 0.0001; unpaired two-tailed t test (c, g), one-way ANOVA with Holm–Sidak’s post hoc (d–f). Source data (c–g) are provided as a Source Data file. A
representative of two independent experiments is shown
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Since previous studies have shown that FcγRIIB-engagement is
specifically required by murine agonistic anti-mCD40 antibodies
for their activities10,11, we investigated whether human FcγRIIB is
important for the activities of human IgG2 anti-mCD40
antibodies. As shown in Fig. 1f, human FcγRIIB-blocking
antibody 2B6 can significantly inhibit the activity of human
IgG2 anti-mCD40 antibodies, suggesting that human FcγRIIB-
engagement is necessary for their optimal activities. We further
tested whether human FcγRIIB is sufficient in driving the
immunostimulatory activities of human IgG2 anti-mCD40
antibodies, using FcγRIIB-humanized mice. While these anti-
bodies displayed no significant activity in control Fcgr2b−/− mice,
robust immunostimulatory activities were observed in FcγRIIB-
humanized mice (Fig. 1g). In fact, much stronger agonistic
activities were observed for human IgG2 anti-mCD40 antibodies
in FcγRIIB-humanized mice (and FcγR-humanized mice) as
compared to WT mice, suggesting that optimal human IgG2
agonism requires the FcγRIIB-humanized background (Fig. 1d
and Supplementary Fig. 2c). The binding between human IgG2
antibodies and FcγR2B, although undetectable in ELISA (Sup-
plementary Fig. 3a) likely due to its low affinity24, was confirmed
by surface plasmon resonance (Supplementary Fig. 3b).

Together, our study provided unequivocal evidence that
Fc–FcγR interactions are required for the optimal agonistic
activities of anti-mCD40 antibodies with natural hIgG CDs, and
that among different Fc–FcγR interactions, human FcγRIIB
engagement is not only necessary but also sufficient to drive the
optimal agonism of human IgG2 anti-mCD40 antibodies.

CH1-hinge is the basis of hIgG’s divergent agonism. We further
investigated the structural basis of natural hIgG CDs’ intrinsic
difference in driving anti-mCD40 antibody agonism. Although
human IgG2 has been reported to confer FcγR-independent
agonistic function under the mouse FcγR background due to its
unique CH1-hinge21,22, the structural basis of the agonistically
inactive IgG3 is not clear, nor is that of the much stronger FcγR-
dependent agonism of IgG2 in FcγR-humanized mice.

HIgG Fc’s were first tested given their unique FcγR-binding
profiles (ref. 24 and Supplementary Fig. 3a) and the Fc–FcγR
engagement requirement for hIgG agonism. A series of anti-
mCD40 antibodies with CH1-hinge/Fc chimeric IgG CDs were
generated (Supplementary Table 2). These antibodies were
confirmed to have comparable FcγR-binding properties as their
parental IgG antibodies with matched Fc domains (Supplemen-
tary Fig. 3a), as well as comparable binding to mCD40
(Supplementary Fig. 1b). When combined with IgG2 CH1-
hinge (H2), all natural hIgG Fc’s supported clear anti-mCD40
agonistic activities at a very low dosage of 3.16 µg per mouse
(Fig. 2a). Interestingly, IgG2 Fc displayed the least agonistic
potency as compared to other IgG Fc’s (Fig. 2a). These data
suggest that Fc is neither the structural basis of the agonistically
inactive IgG3 nor that of agonistically superior IgG2. These data
also suggest that the superior agonism of IgG2 in FcγR-
humanized mice is based on and can be transferred along with
its CH1-hinge.

We further tested whether CH1-hinge is the basis of the
agonistically inactive IgG3. G2(H3) with the IgG2-Fc and IgG3
CH1-hinge (H3) was analyzed. As shown in Fig. 2b, G2(H3) anti-
mCD40 antibodies failed to show any significant agonistic
activities, suggesting that CH1-hinge is also responsible for the
agonistically inactive property of IgG3. We further tested the
combination of H3 and “V11” Fc, one of the most agonistically
potent IgG1 Fc variants with optimized FcγRIIB binding20,25.
V11 Fc was confirmed to have enhanced binding to human
FcγRIIB (Supplementary Fig. 3c) and confer greatly improved

agonistic potency when combined with IgG1 CH1-hinge (H1) in
our anti-mCD40 antibodies (Supplementary Fig. 4a, b). Strik-
ingly, when the V11 Fc was combined with IgG3 CH1-hinge in
V11(H3), it failed to show any significant agonistic activity in
anti-mCD40 antibodies (Fig. 2c), despite V11(H3) antibodies
having comparable mCD40 and human FcγR-binding profiles as
V11(H1) antibodies (Supplementary Figs. 1b and 3c). These
results demonstrate that human IgG3 CH1-hinge deprives V11 Fc
of its strong agonistic potency. Together, our data suggest that
CH1-hinge region is the structural basis of both agonistically
inactive IgG3 and superior IgG2 CDs, and that their divergent
agonistic potencies can be transferred along with their different
CH1-hinges.

To test whether the divergent agonistic potency of human IgG2
and IgG3 CDs based on their CH1-hinge regions also apply to
anti-human CD40 (hCD40) antibodies, we constructed two sets
of anti-hCD40 antibodies based on the published clones 21.4.1
and 3.1.126, with these hIgG CDs. These two clones were
confirmed to bind to hCD40 and have different binding epitopes
as they do not block each other for binding to hCD40 and have
different ability to block human CD40–CD40L interaction
(Supplementary Fig. 3d, Supplementary Table 1, and refs. 26,27).
When these antibodies were evaluated in the human CD40/FcγR-
transgenic mice20, 21.4.1 antibodies displayed stronger immu-
nostimulatory activities as compared to matched 3.1.1 antibodies
(Fig. 2d–f), likely due to their special binding epitope22. However,
we consistently observed that human IgG3 CD supports
significantly less or no immunostimulatory activities as compared
to human IgG2 CD in both 21.4.1 (Fig. 2d, e) and 3.1.1 (Fig. 2d, f)
antibodies. Importantly, we observed that the ability of both
human IgG2 and three CDs in driving anti-hCD40 agonistic
activities, can also be transferred along with their CH1-hinges
(Fig. 2d–f). These data, together with our anti-mCD40 antibody
data, demonstrate that while natural hIgG CDs require Fc–FcγR
interactions to drive optimal anti-CD40 antibody agonism, the
intrinsically different agonistic potency of these natural IgG CDs,
including the inactive IgG3 and the superior IgG2 CDs, is
generally due to their different CH1-hinge, not Fc or association
with specific binding epitopes.

CH1-hinge and Fc impact on anti-CD40 antitumour activities.
The impact of hIgG CH1-hinge and Fc domains on anti-CD40
antibody agonism was further studied in antitumour responses.
As shown in Fig. 3a, b, human IgG2 anti-mCD40 antibodies
significantly inhibited MC38 colon cancer cell growth in FcγR-
humanized mice whereas IgG1 and IgG3 did not, consistent with
our OVA-specific CD8+ T-cell response studies (Fig. 1b–d). Also
consistently, the IgG2(N297A) variants failed to show significant
antitumour activities in FcγR-humanized mice (Fig. 3a, b), nor
did IgG2 in FcγR-deficient mice (Supplementary Fig. 5a), con-
firming that Fc–FcγR interaction is critical for the antitumour
activities of IgG2 anti-mCD40 antibodies. Importantly, although
the Fc-optimized V11(H1) anti-mCD40 antibodies significantly
inhibited MC38 tumour growth in FcγR-humanized mice, V11
(H3) displayed no antitumour activity (Fig. 3a, b), demonstrating
that IgG3 CH1-hinge can deprive the V11 antibodies of their
antitumour activities.

Antitumour activities of these anti-mCD40 antibodies were
also studied in the MO4 melanoma model, and similar results
were obtained. Human IgG1 antibodies displayed marginal
antitumour activities, IgG2 and V11(H1) antibodies displayed
stronger antitumour activities (Fig. 3c). However, none of the
antibodies with reduced FcγR binding or IgG3 CH1-hinge,
including IgG2(N297A), IgG3 and V11(H3), displayed any
significant antitumour activity. These studies suggest that the
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impact of hIgG CH1-hinge and Fc domains on anti-CD40
antibody immunostimulatory activities can be translated into that
on anti-CD40 antibody antitumour activities.

The human IgG3 CH1-hinge confers the most flexibility.
Agonistic activities of anti-CD40 antibodies depend on their
ability to hold CD40 molecules and promote their multi-
merization, which triggers CD40 downstream signalling28. Pre-
viously we and others have suggested that murine IgG Fc’s can
contribute to agonism by promoting FcγR-dependent in vivo
cross-linking of anti-CD40 antibodies11,15. We hypothesized that
different hIgG CH1-hinge regions have different biophysical

properties that could influence the ability of anti-CD40 antibodies
to hold CD40 stably and to promote CD40 multimerization.
Previous studies of hIgG using immunoelectron microscopy and
fluorescence anisotropy have indicated that different hIgG hinges
have different levels of flexibility17,18. Since these studies of
antibodies require either non-physiological conditions or specific
antigen-binding, we analyzed the flexibility of our anti-CD40
antibodies by small-angle X-ray scattering (SAXS) studies in their
native forms29.

Serially diluted monomeric anti-CD40 antibodies, purified
and verified by gel-filtration (Supplementary Fig. 6a), were
subjected to SAXS studies (Supplementary Table 3). The
pattern of SAXS scattering intensity plots (Supplementary
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(30 μg per mouse). Numbers of mice: d–f five to six mice per group. Each symbol represents an individual mouse. Bars represent the mean ± SEM. *p≤
0.05, **p≤ 0.01, ***p≤ 0.001, ****p≤ 0.0001; one-way ANOVA with Holm–Sidak’s post hoc. Source data (a–c, e, f) are provided as a Source Data file. A
representative of two independent experiments is shown
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Fig. 6b) and Guinier plots (Supplementary Fig. 6c) confirmed
that the quality of the samples and data are suitable for further
analysis. The flexibility of anti-mCD40 antibodies with different
CDs was assessed by dimensionless Kratky plots29,30. As shown
in Fig. 4a, both IgG1 and 2 dimensionless Kratky plots have
maximum values close to 1.103 for qRg=

ffiffiffi

3
p

, a feature of fully

folded globular proteins. In contrast, IgG3 has a distinct
dimensionless Kratky plot profile with a clearly right-shifted
peak and an increased maximum value, features of proteins
consisting of several domains tethered by flexible linkers29.
These results suggest that IgG1 and 2 are relatively more rigid,
whereas IgG3 is much more flexible.
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Fig. 3 Impact of both IgG CH1-hinge and Fc on anti-CD40 antibody antitumour activities. MC38 (a, b) and MO4 (c) tumour volumes in FcγR-humanized mice
following treatment with control or anti-mCD40 antibodies of indicated constant domains. After tumour cells were subcutaneously inoculated and established
in FcγR-humanized mice, mice were treated i.p. twice on day 0 (the day when mice with palpable tumours receive their first treatment) and day 3 with 31.6 μg/
mouse of control or anti-CD40 antibodies of indicated constant domains (the N297A mutation abrogates Fc–FcγR binding), and monitored for tumour growth.
For mice inoculated with MO4 tumour cells in (c), each treatment also included 2 μg/mouse of DEC-OVA. Shown are tumour growth curves of individual mice
(a) or mouse groups (b, c). Numbers of mice: a, b seven to eight mice per group; c seven mice per group except six mice for αmCD40:G2(N297A). Bars
represent the mean ± SEM. *p≤0.05, **p≤0.01, ***p≤0.001, ****p≤0.0001, chi-square test (a), and two-way ANOVA with Holm–Sidak’s post hoc (b, c) were
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Flexible molecules often adopt more extended conformations,
which can be evaluated by the normalized distribution of
interatomic distances (R) within analyzed macromolecules, i.e.,
P(R)/I(0)29,30. Computed distance distribution functions (P(R))
were confirmed to fit SAXS data (Supplementary Fig. 6d). As
shown in Fig. 4b, IgG1 and 2 have similar interatomic distance
distribution, whereas IgG3 has larger interatomic distances. IgG3
antibodies also have much larger Rg and Dmax values (related to
average and maximum interatomic distances, respectively) than
IgG1 and 2 antibodies (Table 1). These data further support that

human IgG3 antibodies are more extended as compared to IgG1
and IgG2 antibodies.

Further analysis of a set of anti-CD40 antibodies with identical
variable and Fc domains but different CH1-hinges of human
IgG1–3 (V11(H1), V11(H2), and V11(H3)) showed comparable
SAXS profiles and values as their corresponding natural hIgGs,
including dimensionless Kratky plots (Fig. 4a, c), interatomic
distance distributions (Fig. 4d, b), Rg and Dmax values (Table 1).
Furthermore, analysis of G2(H3) and G3(H2) chimeric antibodies
showed that the different SAXS profiles and values of IgG2 and 3
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antibodies could be switched along with their CH1-hinges to a
large extent (Fig. 4e, f and Table 1).

The ensemble optimization method (EOM) for SAXS data
has been developed to evaluate flexibility quantitatively31,32.
The application of this method to our SAXS data yields high-
quality fits between the optimized ensemble and the experi-
mental data of low-concentration samples (Supplementary
Fig. 6e). It appears that the selected models of human IgG2
have the narrowest distribution profiles of Rg (Fig. 4g) and Dmax

(Fig. 4h and Supplementary Fig. 6f) among those of human
IgG1–3, consistent with previous SAXS study of human IgG1
and 2 antibodies32. At the same time, the selected models of
human IgG3 show the broadest profiles. These results suggest
that human IgG2 and 3 are the least and most flexible among
human IgG1–3, respectively. This notion is further supported
by the ranking of Rflex and Rσ values, quantitative measures of
flexibility: IgG3 > IgG1 > IgG2 (Table 1). Importantly, V11
variants with human IgG1–3 CH1-hinges have similar dis-
tribution profiles of Rg and Dmax as human IgG1–3 antibodies,
respectively (Fig. 4i–j, Supplementary Fig. 6f), as well as Rflex

and Rσ rankings (Table 1). Furthermore, analysis of G2(H3)
and G3(H2) showed that the distribution profiles of Rg and
Dmax (Fig. 4k, l, Supplementary Fig. 6f), Rflex and Rσ rankings
(Table 1) of human IgG2 and IgG3 antibodies could be
switched along with their CH1-hinges. Models generated by
EOM analysis suggest that the long IgG3 hinge is highly flexible
and can support various conformations of IgG3, V11(H3) and
G2(H3) antibodies (Supplementary Fig. 6g). Further EOM
analysis using high-concentration samples returned essentially
the same results (Supplementary Figs. 6h–k, Supplementary
Table 4). Overall, our SAXS study suggests that the flexibility of
human IgG1–3 antibodies is primarily determined by their
CH1-hinges and that among them human IgG2 and 3 has the
least and most flexible CH1-hinges, respectively.

The human IgG2 CH1-hinge confers the most rigidity. To
further investigate whether anti-CD40 antibodies with different
hIgG CH1-hinges have varying abilities to stably hold CD40
molecules together, time-resolved fluorescence energy transfer
(TR-FRET) was used to examine the relative distance between
two CD40 molecules bound to these antibodies, which reflects
their mobility. When anti-CD40 antibodies are mixed with CD40
labeled with Tb donor and D2 acceptor fluorochromes, referred
to as “CD40-Tb” and “CD40-D2”, respectively, TR-FRET signal is
expected upon Tb stimulation from individual antibody mole-
cules that simultaneously bind one CD40-Tb and one CD40-D2
on their two Ag-binding sites (Fig. 5a). According to the principle
of TR-FRET, its signal is determined by the distribution of dis-
tance between CD40-Tb and CD40-D2 (referred to as “RAg”), and
the largest distance that can trigger TR-FRET signal between Tb
and D2 is two times of their Förster’s radius (2R0), i.e., 11.6 nm
(ref. 33,34 and Cisbio.com). Because the distance between two Ag-
binding sites of crystalized intact IgG1 and 4 antibodies is in the
range of 12–17 nm (ref. 35,36 and Supplementary Fig. 7), no
detectable TR-FRET signal is expected from anti-CD40 anti-
bodies in these crystalized conformations (Fig. 5b). However, due
to CH1-hinge flexibility of IgG antibodies in solution, the waving
of Fab arms may bring bound CD40-Tb and CD40-D2 on Ag-
binding sites close enough to trigger detectable TR-FRET signal
(Fig. 5b). Since TR-FRET signal strength increases exponentially
by the power of 6 as RAg decreases from the threshold distance34,
we reasoned that antibodies with increased flexibility would have
more molecules with smaller RAg values and therefore increased
TR-FRET signal, whereas rigid CH1-hinge would lead to reduced
TR-FRET signal (Fig. 5b).T
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As shown in Fig. 5c, IgG3 has the strongest TR-FRET signal
among human IgG1–3 anti-mCD40 antibodies, suggesting that
IgG3 is the most flexible, which is consistent with our SAXS
studies. Strikingly, IgG2 antibody exhibits no significant TR-
FRET signal (Fig. 5c), suggesting that IgG2 is rigid enough to
limit its two Fab arms from bringing bound CD40-Tb and CD40-
D2 in close proximity to trigger detectable TR-FRET signal. In
contrast, IgG1 antibodies have intermediate TR-FRET signals,
suggesting intermediate flexibility. Further analysis of the V11
antibody set showed that V11(H1), V11(H2), and V11(H3) have
similar TR-FRET signatures as IgG1–3, respectively (Fig. 5d, c),
suggesting that CH1-hinge region is responsible for the different
TR-FRET signalling pattern. In fact, analysis of chimeric
antibodies G2(H3) and G3(H2) showed that, to a large extent,
the distinct TR-FRET signature of IgG2 and 3 antibodies could be
switched along with their CH1-hinges (Fig. 5e). These TR-FRET
results are not only consistent with our SAXS studies, but also
allow better distinction between IgG2 and other IgG subclasses.

Taken together, our SAXS and TR-FRET studies of hIgG anti-
mCD40 antibodies suggest that IgG3 CH1-hinge confers the most
flexibility, whereas IgG2 CH1-hinge confers the most rigidity.
The inverse correlation between the agonism and flexibility of
these antibodies suggests that IgG CH1-hinge flexibility is
detrimental to agonism.

Selected CH1-hinge and Fc synergize to improve hIgG agon-
ism. To test whether modulating the rigidity/flexibility of IgG
hinge can modulate its agonistic potency, we inserted a short
flexible linker (“GSGSGS”) into the hinge of human IgG2 anti-
mCD40 antibodies to generate the IgG2(GS)3 variant. IgG2(GS)3
antibodies retained mCD40 binding (Supplementary Fig. 1b) and
displayed significantly stronger TR-FRET signal as compared to
unmutated IgG2 control antibodies (Fig. 6a), an indication of
increased hinge flexibility. Importantly, IgG2(GS)3 anti-mCD40
antibodies displayed clearly reduced immunostimulatory
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activities as compared to matched control IgG2 antibodies
(Fig. 6b), supporting the notion that IgG CH1-hinge flexibility is
detrimental to IgG agonism and that changing rigidity/flexibility
of IgG hinge can modulate its agonistic potency.

Since hIgG CH1-hinge and Fc domains have completely
different mechanisms driving IgG agonism, we investigated
whether the rigid IgG2 CH1-hinge can synergize with optimized
Fc’s to enhance IgG agonistic potency. V11(H2) combining
human IgG2 CH1-hinge and V11 Fc were compared with both
V11(H1) and IgG2 parental antibodies. As shown in Fig. 6c, V11
(H2) anti-mCD40 antibodies have significantly improved immu-
nostimulatory activities as compared to both parental antibodies.
Importantly, V11(H2) also showed significantly better antitu-
mour activity as compared to both IgG2 and V11(H1) parental
antibodies, with higher number of tumour-free mice in the MC38
tumour model (Fig. 3a) and strongly reduced average tumour size
in both the MC38 and MO4 tumour models (Fig. 3b, c). V11(H2)
anti-mCD40 antibody-treated tumour-free mice also rejected
MC38 re-challenge, suggesting that these mice have developed
long-term immunity to MC38 tumours (Supplementary Fig. 5b).
In contrast, V11(H2) anti-mCD40 antibodies displayed no
antitumour activities in FcγR-deficient mice (Supplementary
Fig. 5a), confirming that Fc–FcγR interactions are required for
their antitumour activities. Together, these data demonstrate that
human CH1-hinge selected for rigidity and Fc domains
engineered for FcγRIIB engagement can synergize to enhance
the immunostimulatory and antitumour activities of anti-CD40
antibodies.

Flexible hIgG CH1-hinge is detrimental for anti-DR5 agonism.
To investigate whether the detrimental effect of the flexible IgG3
CH1-hinge also applies to other anti-TNFR agonistic antibodies,
we studied agonistic anti-DR5 antibodies. Agonistic anti-DR5
antibodies can induce apoptosis by triggering DR5 signalling that
activates caspase-8 and the downstream caspase-314. As shown in
Fig. 7a, all natural hIgG anti-DR5 antibodies failed to induce a
significant percentage of Annexin-V+PI− apoptotic MC38 cells
in the presence of human FcγR-expressing cells, suggesting more
potent CDs might be required for agonistic anti-DR5 antibodies.
Consistent with our anti-CD40 antibody study, the V11 Fc with
enhanced binding to human FcγRIIB conferred clearly improved
pro-apoptotic activity in anti-DR5 antibodies when treating
MC38 cells co-cultured with human FcγR-expressing cells

(Fig. 7a, b). This activity was abrogated either by co-culturing
with FcγR-deficient cells or by the addition of human FcγRIIB-
blocking antibody 2B6 (Fig. 7b), suggesting that human FcγRIIB
engagement is required. Importantly, human IgG3 CH1-hinge
can efficiently inhibit the agonistic activities of V11 anti-DR5
antibodies, as shown by the significantly reduced percentage of
Annexin-V+PI− and active caspase-3+ cells among treated MC38
cells (Fig. 7b, c). Since agonistic anti-DR5 antibodies can trigger
apoptosis in cholangiocytes and cause cholestatic liver
disease14,37, we evaluated the in vivo activities of these agonistic
anti-DR5 antibodies by analyzing their hepatotoxicity effects in
FcγR-humanized mice. As shown in Fig. 7d, e, V11(H1) anti-DR5
antibodies induced significantly increased serum aspartate ami-
notransferase (AST) levels and mortality, with all mice died
within 1 week. In contrast, mice treated with V11(H3) anti-DR5
antibodies were mostly protected (Fig. 7e), suggesting that the
detrimental effect of the flexible IgG3 CH1-hinge on antibody
agonism is not limited to anti-CD40 antibodies.

Discussion
Taken together, our study demonstrates that, in a physiologically
relevant mouse model where human FcγRs are expressed, natural
hIgG CDs confer very different levels of anti-CD40 antibody
agonism, including agonistically inactive IgG3 and superior IgG2.
Interestingly, despite all human IgGs requiring Fc–FcγR
engagement for optimal agonistic activities, these different ago-
nistic potencies are not due to their Fc domains, but rather to
their CH1-hinge regions. Although hinge regions of natural hIgG
CDs have been extensively studied, evidence supporting their
direct role in IgG antibody function under physiological condi-
tions is limited38,39. Our study demonstrates that in the human
FcγR-expressing background, hIgG CH1-hinge is directly impli-
cated in regulating antibody agonistic function, and has a
dominant contribution to the observed divergent agonistic
potency of nature hIgG CDs.

We established an inverse correlation between hIgG CH1-
hinge flexibility and their ability to confer agonism, with the least
potent human IgG3 CH1-hinge being the most flexible and the
most potent IgG2 CH1-hinge being the most rigid. We also
showed that changing the rigidity/flexibility of IgG hinges can
modulate its agonistic potency. How exactly the rigidity of hIgG
CH1-hinge could be translated into the functional potency of
agonistic antibodies is not clear. Since neither the rigid IgG2
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CH1-hinge nor the potent V11 Fc can independently drive anti-
CD40 or anti-DR5 agonism, we speculate that both IgG CH1-
hinge and Fc contribute to antibody-mediated in vivo clustering
and crosslinking of the targeted receptors, a proposed mechanism
explaining how murine IgG Fc-FcγR engagement contributes to
antibody agonism11,15. One possibility is that antibodies with
rigid CH1-hinges are more efficient in clustering the targeted
CD40 receptors and promoting the transition from inactive
monomeric CD40 into active multimeric forms, a process that
requires overcoming an energy barrier40,41. Antibodies with
flexible hinges, on the other hand, might be inefficient in holding
targeted receptors to overcome such an energy barrier to become
active multimeric forms, which mimics the situation where a
flexible lever is not as efficient as a rigid one to move a heavy
object. Interestingly, engineered extracellular matrix binding
properties of anti-CD40 antibodies have also been shown to
enhance their agonistic function, likely by increasing injection-
site tissue retention and promoting antibody cross-link42.

Human IgG2 has two major conformations referred to as
“H2A” and “H2B”, and the “H2B” form has been reported to be
more potent than the “H2A” form in driving anti-CD40 antibody
agonism under the mouse FcγR background in some cases20–22.
Interestingly, the “H2B” form has been suggested to be more
compact as compared to the “H2A” form and has been proposed
to confer better anti-CD40 antibody agonism because it may
promote closer packing of targeted CD40 molecules21,22. How-
ever, our TR-FRET studies showed that human IgG2 antibodies
have the weakest TR-FRET signals, indicating that their Fab arms
do not have the closest distances. We speculate that the more
compact “H2B” form is also more rigid as compared to the less

potent “H2A” form given that flexible molecules often adopt
more extended conformations29,30. Our data suggest that the
conformation dynamic of hIgG antibodies, instead of their spe-
cific conformation, is more relevant to their mode of action in
regulating anti-CD40 antibody agonism. Furthermore, earlier
studies using fluorescence anisotropy have suggested that mouse
IgG1 has a more rigid hinge than mouse IgG2a19, and we and
others have shown that mouse IgG1 confers stronger agonism
than mouse IgG2a in an FcγRIIB-dependent manner10,11.
Therefore, it is possible that mouse IgG agonism is also regulated
by both Fc–FcγR interactions and hinge rigidity.

Our finding of the detrimental effect of IgG hinge flexibility
on anti-CD40 antibody agonism is distinct from the previously
reported beneficial effects of open and flexible IgG hinges on
the neutralizing activity of bi-specific anti-HIV-1 antibodies
and on the capacity of IgG antibodies to fix complement19,43.
These reported beneficial effects are likely due to increased
accessibility of flexible antibodies to their specific binding epi-
topes on antigens. In addition, recent mapping of binding
epitopes of a panel of anti-CD40 antibodies showed a correla-
tion between agonistic activity and binding epitopes, in a way
that antibodies with binding epitopes far away from cell
membrane are more potent, likely due to better accessibility of
antibody Fc to FcγRs22. In this regard, because different
antibody-antigen epitope pairs may have different topological
features, it is possible that extreme rigidity might be detrimental
to the agonistic activities of topologically restricted antibodies.
For these antibodies, there could be different optimal hinge
flexibility levels that support: (1) efficient binding of antibody
Fab to targeted antigen epitopes; (2) efficient binding of
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antibody Fc to FcγRIIB; (3) efficient activation of targeted
antigens upon binding to both antigen and FcγRIIB by antibody
Fab and Fc, respectively.

It is important to note that antibody agonism can be modu-
lated through both Fc and CH1-hinge optimization for both anti-
CD40 and -DR5 antibodies, and for perhaps agonistic antibodies
targeting other TNFR superfamily members as well, which may
help the design of agonistic antibodies for clinical application. So
far, therapeutic agonistic antibodies targeting TNFR superfamily
members are still under development. But most studies use nat-
ural hIgG CDs and have stayed away from engineering the hinge
and Fc domains. Our findings not only highlight the importance
of hinge rigidity and selective FcγR-engagement in antibody
agonistic function, but also strengthen the need for newer stra-
tegies, as compared with those currently developed for clinical
trials, to modulate antibody agonism for improved clinical
application.

Methods
Mice. FcγR-deficient (FcγRα−/−) and -humanized (FcγRα−/−/hFcγRI+

/hFcγRIIAR131+/hFcγRIIB+/hFcγRIIIAF158+/hFcγRIIIB+, or “hFCGRTg”) mice23,
Fcgr2b-deficient (Fcgr2b−/−) and -humanized (Fcgr2b−/−hFcγRIIBTg) mice10,
human CD40/FcγR-transgenic mice20 and OT-I mice44 have been described pre-
viously and were kindly provided by Dr Jeffrey Ravetch (The Rockefeller Uni-
versity). For FcγR-humanized mice and human CD40/FcγR-transgenic mice, both
bred mice and bone marrow chimaera mice derived from their bone marrow cells
were used and confirmed to give the same results. To generate bone marrow
chimeric mice, 8–10-week-old wild-type C57BL/6 mice (SLAC, Shanghai, China)
were lethally irradiated at 8 Gy using RS 2000pro X-ray biological Irradiator (Rad
Source Technologies, Inc., USA) and transferred with 2 × 106 bone marrow donor
cells through tail vein injection. Two months after transplantation, peripheral
blood of the bone marrow reconstituted mice were collected, and the reconstitution
levels were confirmed to be over 95% in B cells and CD11b+ cells by flow cyto-
metry analysis of human FcγRIIA/B expression. All mice were bred and main-
tained in the specific-pathogen-free animal facility at the Department of Laboratory
of Animal Science, Shanghai Jiao Tong University School of Medicine. All animal
care and study were performed in compliance with institutional and NIH guide-
lines and had been approved by SJTUSM Institutional Animal Care and Use
Committee (Protocol Registry Number: A-2015-014).

Antibodies. 1C10-derived anti-mouse CD40 antibodies, anti-human CD40 anti-
bodies (clones 21.4.1 and 3.1.1 of Patent No.: US 7,338,660) and MD5-1-derived
anti-mouse DR5 antibodies of the different heavy chain CDs were produced using
published protocols10,14. Briefly, anti-CD40 and -DR5 antibody heavy chain
expression constructs were generated either by subcloning human IgG CD
sequences into a mammalian expression vector with 1C10 and DR5 heavy chain
gene variable domains, respectively10,14, or by site-directed mutagenesis. Human
IgG1 CD sequences have been described previously10. Human IgG2–4 CD
sequences were obtained by gene synthesis (Biosune, Shanghai, China) based on
human IgG sequences in the IMGT database (http://www.imgt.org/). Sequences of
chimeric CDs G1(H2), G3(H2), G4(H2), G2(H1), and G2(H3) were also synthe-
sized based on IMGT sequences where “G1–G4” refer to the CH2–CH3 regions of
IgG1–4 heavy chain CDs, respectively, and “H1–H3” refer to the CH1-hinge
regions of IgG1–3 heavy chain CDs, respectively. V11(H1) is a previously described
human IgG1 heavy chain CD variant carrying G237D/P238D/H268D/P271G/
A330R mutations25. V11(H2) and V11(H3) use the CH1-hinge of human IgG2 and
IgG3 heavy chain CDs, respectively, together with the CH2–CH3 of V11 variant.
V11(H1)–V11(H3) sequences were synthesized. IgG2(N297A) sequences were
obtained by site-directed mutagenesis using specific primers (Biosune, Shanghai,
China) with the QuikChange® Site-Directed Mutagenesis Kit (Stratagene)
according to the manufacturer’s instructions. Anti-CD40 and -DR5 antibody light
chain expression constructs have been described previously10,14. To produce
antibodies, antibody heavy and light chain expression vectors were transfected
transiently into 293T cells. The secreted antibody in the supernatant was purified
by protein G Sepharose 4 Fast Flow (GE Healthcare), dialyzed into phosphate-
buffered saline (PBS). LPS (endotoxin) levels were analyzed by the Limulus ame-
bocyte lysate assay (Thermo Scientific) and confirmed to be <0.1 EU μg−1. Anti-
body preparations were subjected to SEC analysis to evaluate the levels of
multimeric aggregates and antibodies without discernable aggregations were used.
Primers used for mutagenesis are: IgG2(N297A) heavy chain (G2N297Af 5′
CGGGAGGAGCAGTTCGCCAGCACGTTCCGTGTG3′; G2N297Ar 5′
CACACGGAACGTGCTGGCGAACTGCTCCTCCCG3′); IgG2(GS)3 heavy chain:
(IgG2(GS)3f 5′GGTAGCGGAAGCGGTAGTTGTTGTGTCGAGTGCCCACCG3′;
IgG2(GS)3r 5′ACTACCGCTTCCGCTACCTTTGCGCTCAACTGTCTTGTC3′).

CD40-binding ELISA and FACS. Binding of anti-CD40 antibodies to mouse CD40
was analyzed by ELISA. A 96-well ELISA plate (Nunc) was immobilized with 0.1
μg ml−1 recombinant mouse CD40 protein (Novoprotein, China) at 4 °C over-
night. After thoroughly aspirating the solution, wells were washed three times with
1× PBST (PBS with 0.1% Tween-20) and blocked with PBS/1%bovine serum
albumin (BSA) for 2 h, followed by another three washes. Serially diluted control
IgG or anti-CD40 antibodies (3.16–0.00316 µg ml−1) were then added and incu-
bated for 1 h. After washing for three times, horseradish peroxidase-conjugated
detection antibody (anti-human IgG Fc-HRP, Bethyl Laboratories, 100 ng ml−1)
was added and incubated for 1 h. The plate was then washed and developed with
TMB peroxidase substrate (KPL) in the dark for 20–40 min. The absorbance was
determined at 650 nm using Multiskan™ GO Microplate Spectrophotometer
(Thermo Scientific™, USA). All the procedures after coating were performed at
room temperatures. For competitive FACS, splenocytes of FcγRα−/− mice were
stained with CF640R conjugated 1C10 antibody in the presence of various amounts
of control IgG or anti-CD40 antibodies, and analyzed for 1C10-CF640R staining in
B220+ cells using a BD LSRFortessa™ X-20 analyzer (BD Biosciences). In order to
analyze the relative binding epitope of 21.4.1 and 3.1.1 anti-human CD40 anti-
bodies, human CD40 ECD (Sino Biological, China) is immobilized on the ELISA
plate, and incubated with control, 21.4.1 or 3.1.1 antibodies after blocking and
washing, which is followed by washing and incubation with biotinylated 21.4.1,
3.1.1, and human CD40L (Sino Biological, China), respectively. The binding of
these biotinylated proteins to immobilized CD40 ECD is detected by
streptavidin–HRP and TMB reactions.

FcγR-binding ELISA. ELISA plates were coated with 100 μl of 2 μg ml−1 anti-CD40
antibodies of various CDs in PBS (PH 7.4) overnight at room temperature. On the
next day, the plates were blocked at room temperature for 2 h with 200 μl of 1%
BSA in PBS per well and washed 2 times with PBS containing 0.05% Tween-20
(PBST). Then 100 μl of biotin-conjugated FcγRs (Sino Biological, China), 1:4 seri-
ally diluted from 1 μg ml−1, were added. After 1 h of incubation, the plates were
washed 3 times with PBST and 100 μl of PBS containing 1:5000 diluted
streptavidin–HRP (BD Biosciences) was added and incubated for 1 h. After
washing four times, 100 μl of TMB substrate (KPL) was added per well, and the
absorbance at 650 nm was recorded.

OVA-specific CD8+ T-cell response. Mice were adoptively transferred with
CD45.1+ splenic OT-I cells (2 × 106 cells in 200 μl PBS per mouse) via tail vein
injection on day-1, and immunized through intraperitoneal injection with 2 μg of
DEC-OVA45, in the presence or absence of control or anti-CD40 antibodies
(3.16–100 μg per mouse, as specified in Figure legends), and/or 2B6 (150 μg per
mouse). On day 6, spleen cells were harvested, and after lysing red blood cells, the
single-cell suspension was stained with anti-CD4 (clone RM4-5), anti-CD8 (clone
53-6.7), anti-CD45.1 (A20), anti-TCR-Vα2 (B20.1) to quantify OVA-specific OT-I
CD8+ T cells. OT-I CD8+ T cell is defined as CD45.1+CD8+TCR-Vα2+ cells
(Supplementary Fig. 8a). For intracellular IFN-γ staining, spleen cells were cultured
for 1 h in media (RPMI with 10% fetal bovine serum (FBS), 1% Pen–Strep, 10 mM
HEPES, 50 μM 2-Mercaptoethanol) with 1 μg ml−1 anti-CD28 antibody and 1 μg
ml−1 OVA peptide SIINFEKL at 37 °C with 5% CO2. Then Brefeldin A was added
to a final concentration of 10 μg ml−1, and the splenocytes were cultured for an
additional 5 h. Cultured spleen cells were stained for surface CD4 (clone RM4-5)
and CD8 (clone 53-6.7), then intracellular IFN-γ (anti-IFN-γ clone, XMG1.2)
according to the manufacturer’s protocol (BD Biosciences) and the flow cytometry
is analyzed on BD FACSCanto II (BD Biosciences) (Supplementary Fig. 8b).

Flow cytometry. For surface staining, spleens were harvested, and single cell
suspensions were prepared and depleted of erythrocytes. About 1~4 × 106 splenic
cells were resuspended in 50 μl FACS buffer (1xPBS with 0.5% FBS, 2 mM EDTA,
and 0.1% NaN3) with staining antibody and incubated on ice for 15 min. Then the
cells were washed twice by FACS buffer and resuspended in 200 μl FACS buffer
with DAPI or 7AAD and analyzed by flow cytometry. For the intracellular IFN-γ
staining, an additional staining step was performed using Cytofix/Cytoperm™

Fixation/Permeabilization Solution Kit (BD Biosciences) according to the manu-
facturer’s instructions. For reconstitution level analysis of hFCGRTg chimaera mice,
heparinized blood was collected from the orbit of mice and stained with anti-CD19
(clone 1D3), anti-CD11b (clone M1/70), anti-human CD32 (clone FLI8.26), and
anti-human CD40(clone 5C3) to analyze the reconstitution level of human FcγR
and human CD40.

Small-angle X-ray scattering (SAXS). Information on the condition of SAXS
data collection and analysis is summarized in Supplementary Table 3. In brief,
SAXS data were collected at the beamline BL19U2 equipped with Pilatus 1M
detector (DECTRIS Ltd) at National Center of Protein Science Shanghai (NCPSS)
at Shanghai Synchrotron Radiation Facility (SSRF)46. Monomeric anti-CD40
antibodies were purified and verified by Size-Exclusion Chromatography (SEC).
Serially diluted antibody samples (0.4–2.8 mgml−1) were collected. All samples
were in HBS buffer (150 mM sodium chloride, 10 mM HEPES PH 7.4). 60 µl of
each sample was continuously passed through a capillary tube exposed to a 240 ×
80 μm X-ray beam. Data reduction, normalization for beamline intensity, and
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buffer subtraction were carried out using the BioXTAS RAW software (Version
1.2.1) developed by Cornel High Energy Synchrotron Source (CHESS). SAXS data
analysis was carried out using software from the ATSAS program suite (Version
2.8.4 (r10553))47. SAXS data obtained from samples with the highest concentra-
tions were used for Guinier analysis, P(R) analysis, and Kratky plots, whereas data
obtained from samples with both the highest and lowest concentrations were used
for the EOM31. The radius of gyration (Rg) and I0 were calculated by the “Autorg”
(“Radius of Gyration”) function48 of the program PRIMUSQT from the ATSAS
program suite (version 2.8.4)49. The pair distribution function P(R) and the
maximum particle dimension (Dmax) were determined using GNOM50 (the “Dis-
tance Distribution” function of the program PRIMUSQT49). Porod volume (VP)
values were also estimated using the “Distance Distribution” function of the pro-
gram PRIMUSQT49. Molecular mass (Mr) values were calculated using the
Bayesian Inference approach51 (the “Molecular Weight” module of the program
PRIMUSQT49).

To apply the EOM31, EOM 2.1, to the SAXS data of human IgG antibodies, a
published method was used32. In brief, each antibody was considered as 5 rigid
bodies connected by flexible linkers: 2 fixed CPPC fragments extracted from the
hinge of PDB 1HZH35 simulating the disulfide bond, 2 Fab and 1 Fc domains. The
extracted CPPC fragments were also used as models of the second “CPRC” in the
IgG3 hinge region (Supplementary Table 2). PDB files for Fab and Fc domains
were either extracted from crystal structures (PDB 1HZH35 for IgG1 Fc; PDB
4HAG52 for IgG2 Fc) or generated by homology modelling using SWISS-MODEL
Workspace53. For homology modelling, PDB 5W3854 was selected as the template
for IgG3 and V11 Fcs, and PDB 6AMM55 for all IgG Fab domains. EOM was
performed with the default setting.

Time-resolved FRET (TR-FRET). A previously published method for TR-FRET
(time-resolved FRET) was adopted with modification56. Mouse CD40 extracellular
domain (His-tagged, Novoprotein, China) was labeled with Terbium (Tb) and D2
(HTRF® chemistry, Cisbio Bioassays, China), respectively to obtain CD40-Tb (1.5
Tb per CD40) and CD40-D2 (0.3 D2 per CD40). CD40-Tb, CD40-D2, and control
or anti-CD40 antibodies were diluted in TPBS-BSA (5x PBS+ 0.2%BSA+ 0.05%
Tween-20) to optimized concentrations and mixed to a final volume of 20 μl in
ProxiPlateTM-384 F Plus 384-Well plates (PerkinElmer, part number: 6008260).
The final concentration of mouse CD40-Tb was 2.6 nM, and the final concentra-
tion of mouse CD40-D2 was 41.6 nM (Conc. Ratio, CD40-Tb: CD40-D2= 1:16).
Control and anti-mouse CD40 monoclonal Abs were 2-fold serially diluted from
512 nM to 4 nM. Plates were incubated at room temperature for 1 h and then read
for TR-FRET signal using a Synergy neo microplate reader (BioTek Instruments,
Inc., USA) with the following setting: excitation at 330 nm followed by a delay of 50
μs before recording fluorescent counts for 400 μs with 620 nm (for Tb) and 665 nm
(for D2) emission filters. TR-FRET signal was analyzed as the intensity ratio “Em
665 nm/Em 620 nm”.

Distance between antigen-binding sites on antibodies. Published structure of
full-length IgG1 and IgG4 antibodies were downloaded from PDB database
(human IgG1, PDB:1HZH35; IgG4(PDB: 5DK336). The protein structure figures
were generated by the PyMOL programme (http://www.pymol.org). The distances
between two Fabs are measured from the apex of heavy chain CDR3 to the other
in PyMOL.

MC38 and MO4 tumour models. MC38 is a colon adenocarcinoma tumour cell
line14 and cells were maintained in DMEM with 10% FBS, 1% Pen–Strep, 1 mM
Sodium Pyruvate, 10 mM HEPES (Invitrogen). Mice were inoculated sub-
cutaneously with 2 × 106 MC38 cells in 200 µl PBS. Tumour growth was monitored
with a calliper, and tumour volume was calculated by the formula (L12 × L2)/2,
where L1 is the shortest diameter and L2 is the longest diameter of the tumours.
After tumours were established 5~7 days later, mice were randomized by tumour
volume and treated with two doses of control or anti-CD40 antibodies (31.6 μg/
mouse/dose) via intraperitoneal injection separated by 3 days, and monitored for
tumour growth. MO4 is an OVA-expressing B16F10 melanoma cell line previously
described10, which was maintained in DMEM with 10% FBS, 1%Pen–Strep, and
0.4 mgml−1 Geneticin (Gibco). Mice were inoculated subcutaneously with 107

MO4 cells in 200 µl PBS, and tumour growth was monitored as described for the
MC38 tumour model. After tumours were established, mice were randomized by
tumour volume and treated with two doses of 2 μg of DEC-OVA with control or
anti-CD40 antibodies (31.6 μg/mouse/dose) via intraperitoneal injection separated
by 3 days, and tumour growth was measured every 3 days after initial treatment.

In vitro pro-apoptotic activity of anti-DR5 antibodies. MC38 cells (∼80%
confluent) were split into flat 96-well tissue culture plates (Thermos, catalog no.
167008) at a density of 8 × 104 cells in 200 µl complete culture media (DMEM+
10%FBS+ 1%Pen/Strep) per well, and cultured overnight. After gently aspirating
culture media, 4 × 105 erythrocyte-depleted splenocytes prepared from FcgRα−/−,
or hFCGRTg B6 mice and, resuspended in 100 µl complete culture media, 100 µl of
culture media containing 1 µg ml−1 of control IgG (Jackson ImmunoResearch
Laboratories, catalog no. 009-000-003), αDR5:hIgG1, αDR5:hIgG2, αDR5:hIgG3,
αDR5:hIgG4, αDR5:hIgG V11(H1), or αDR5:hIgG V11(H3) were added with or

without 1 µg ml−1 of 2B6. Four hour later, cells were all harvested and stained with
anti-mouse CD45.2 (BD, catalog no.560691), followed by Annexin V/PI using
Annexin V FITC Apoptosis Detection Kit I (BD Biosciences, catalog no.556547) or
intracellular active caspase-3 (clone C92-605; BD Biosciences) staining according
to manufacturer’s instructions. Samples were analyzed with a BD FACSCaliburTM

or LSRFortessaTM X-20 flow cytometer. MC38 cells were gated based forward, side
scatters and the lack of CD45.2-expression, and analyzed for percentage of
Annexin V+PI− or Actived caspase-3+ apoptosis cells (Supplementary Fig. 8c, d).

Hepatotoxicity. To study the hepatotoxic effects of anti-DR5 antibodies, mice were
treated with 100 μg of anti-DR5 antibodies i.v., and then monitored for survival
over 1 month 6 days after the treatment, serum aspartate aminotransferase levels
were analyzed using the MaxDiscovery Aspartate Transaminase Enzymatic Assay
Kit (Bioo Scientific) according to the manufacturer’s instructions.

Surface plasmon resonance (SPR). SPR experiments were performed with a
Biacore T100 SPR system (Biacore, GE Healthcare) using a published protocol20. In
brief, experiments were performed at 25 °C in HBS EP+ buffer [10 mM HEPES
(pH 7.4), 150 mM NaCl, 3.4 mM EDTA, 0.005% surfactant P20]. His-tagged
soluble human FcγRIIB extracellular domains (Sino Biological Inc.) were immo-
bilized on CM5 chips by amine coupling. Twofold serially diluted (8000–16 nM)
human IgG1 and IgG2 antibodies (clone 21.4.1) were injected through flow cells for
150 s at a flow rate of 30 µL min−1 for association followed by a 6-min dissociation
phase. After each assay cycle, the sensor surface was regenerated with a 30-s
injection of NaOH of optimized concentration at a flow rate of 50 μLmin−1.
Background binding to blank immobilized flow cells was subtracted, and affinity
constant KD values were calculated using the 1:1 binding kinetics model built in the
BIAcore T100 Evaluation Software (version 1.1).

Statistical analysis. Statistical analyses were performed with GraphPad Prism
(version 6.01, for windows) and p values of less than 0.05 were considered to be
statistically significant. Asterisks indicate statistical comparison with the control
group unless indicated otherwise on the figures (*p ≤ 0.05. **p ≤ 0.01, ***p ≤ 0.001,
****p ≤ 0.0001).

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The source data underlying Figs. 1c–g, 2a–c, e, f, 3a–c, 6a–c, 7a–e and Supplementary
Figs. 1a, b, 2a–c, 3a, c, d, 4a, b, and 5a, b are provided as a Source Data file. All data
generated or analyzed during this study are either included in this paper (Figures and
Supplementary Information) or available upon reasonable request.
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