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Abstract Information theory-based methods have been shown to be sensitive and specific for pre-

dicting and quantifying the effects of non-coding mutations in Mendelian diseases. We present the

Shannon pipeline software for genome-scale mutation analysis and provide evidence that the soft-

ware predicts variants affecting mRNA splicing. Individual information contents (in bits) of refer-

ence and variant splice sites are compared and significant differences are annotated and prioritized.

The software has been implemented for CLC-Bio Genomics platform. Annotation indicates the

context of novel mutations as well as common and rare SNPs with splicing effects. Potential natural

and cryptic mRNA splicing variants are identified, and null mutations are distinguished from leaky

mutations. Mutations and rare SNPs were predicted in genomes of three cancer cell lines (U2OS,

U251 and A431), which were supported by expression analyses. After filtering, tractable numbers

of potentially deleterious variants are predicted by the software, suitable for further laboratory

investigation. In these cell lines, novel functional variants comprised 6–17 inactivating mutations,

1–5 leaky mutations and 6–13 cryptic splicing mutations. Predicted effects were validated by

RNA-seq analysis of the three aforementioned cancer cell lines, and expression microarray analysis

of SNPs in HapMap cell lines.
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Introduction

The volume of human next-generation sequencing (NGS) data
requiring bioinformatic analysis has necessitated development
of high-performance software for genome scale assembly and

analysis [1]. Genomic variations found in these analyses,
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particularly single nucleotide polymorphisms (SNPs), have
traditionally been interpreted in terms of amino acid modifica-
tions in coding regions. Clinically-significant non-coding vari-

ants are a relatively unexplored source of pathogenic
mutations and lack a general, high-throughput method to
interpret their effects. We present genome-scale software to

quantify the effect of mutations in the common classes of
splice donor (U1) or acceptor (U2)-type sites in a high-
throughput manner. Mutations predicted with this method will

be useful for pinpointing potentially deleterious variants suit-
able for further laboratory investigation.

Clinical studies have deemed the vast majority of known
variants in patients with Mendelian disorders to be of uncer-

tain pathogenic significance (VUS) [2,3]. Cis mutations can af-
fect protein translation, mRNA processing and initiation of
transcription. In silico methods have been developed for the

first two of these cases (e.g., [4,5]), but have only been routinely
applied for protein coding changes in genome-scale applica-
tions (e.g., [6]). Many NGS studies classify mutations at only

the highly conserved dinucleotides within each splice junction
(e.g., [7]). Although more sensitive methods have been devel-
oped which assess other conserved sequence elements [8–12],

none have been scaled for the large numbers of variants gener-
ated by NGS and nor have they been validated for these data.
Exonic variants in close proximity to splice junctions but out-
side of this window may be classified as synonymous, missense

or nonsense substitutions, yet still have profound effects on
splicing, which may be the predominant contributor to the
phenotype. Unless multiple affected patients are reported with

the same mutation, the mutations are transmitted through
pedigrees, and functional assays verify their effects, these vari-
ants in patients are generally be classified as VUS. mRNA

splicing mutations are common in Mendelian diseases
[13,14], and it is likely that they contribute to many complex
disorders. Clearly, genome-scale predictive methods that filter

out benign or small changes in mRNA splicing due to sequence
variation will be essential for mutation discovery in exomes,
complete genomes and high-density targeted deep sequencing
projects. Examination of individual variants in the laboratory

with functional assays is both expensive and inefficient as
many variants are not likely to be deleterious, or differ signif-
icantly in their pathogenicity.

The Automated Splice Site Analysis (ASSA) [5] server eval-
uates single mutations that change splice site strength with
information theory-based models [15]. The average informa-

tion, Rsequence, of a set of binding sites recognized by the same
protein (such as U1 or U2) describes the conservation of these
sequences. Sequences are ranked according to their individual
information content (Ri in bits) [15–17]. Individual informa-

tion content is a portable, universal measure which allows di-
rect comparison of binding sites across the genome or
transcriptome, regardless of the sequence or protein recog-

nizer. Functional binding sites have Ri > 0, corresponding to
DG < 0 kcal/mol [18]. Strong binding sites have Ri�
Rsequence, while weak sites have Ri� Rsequence. Any sequence

variation may change its protein binding affinity, which is re-
flected by a change in the computed Ri of that binding site.
A 1-bit change in information content (DRi) corresponds to

a P2-fold change in binding affinity (100/2DRi). The ASSA ser-
ver has been widely used and its sensitivity and specificity have
previously been extensively validated in hundreds of studies of
individual mutations (http://tinyurl.com/splice-server-cita-
tions). However, it requires approximately 30 s to examine a
single variant and is therefore not suitable for comprehensive
analysis of whole-genome sequencing data. The Shannon pipe-

line was developed using the same mathematical approach and
information weight matrices as ASSA to carry out batch infor-
mation theory-based analysis of thousands of mutations from

the BRCA1 and BRCA2 genes in Breast Cancer Information
Core Database [19]. In the present study, the software has been
adapted to perform a single matrix algebraic calculation across

a genome with an efficient state machine that significantly in-
creased computational speed over ASSA. Here we describe this
software tool and analyze predicted mutations with RNA-seq
data from genomes of 3 cancer cell lines.
Results

Performance of the Shannon pipeline software

We implemented an efficient algorithm for high-throughput

detection and interpretation of mRNA splicing mutations
based on information theory-based position weight matrices
of a genome-wide set of curated splice donor and acceptor sites

[20]. The present study focuses on software performance, inter-
pretation of contextual changes identified from genomic anno-
tations and supported by genome-scale RNA-seq data. The
strategy underlying the Shannon splicing pipeline is to evaluate

many sequence changes by information analysis quickly; this is
followed by implementation of a set of heuristics based on
these results combined with genome annotations to distinguish

normal splice sites from those with diminished binding and
cryptic sites with competitive binding affinities.

To assess performance, all point mutations detected in the

complete genomes of the three cancer cell lines were analyzed
using the pipeline. Variants in the cell lines U2OS (osteosar-
coma-derived), A431 (epidermoid squamous carcinoma-de-

rived) and U251 (glioblastoma-derived) were examined and
filtered to create tractable sets of variants. Predicted splice-
altering mutations not found in dbSNP135 (a list of �54 mil-
lion known nucleotide polymorphisms) and those with less

than 1% average heterozygosity are reported (Tables S1–3).
The software processes single nucleotide variants (SNVs) to

identify and annotate putative splicing mutations with suffi-

cient speed to analyze single or multiple genomes within a
few hours. Analysis of all single nucleotide substitutions de-
tected in the genome of the U2OS cell line – 211,049 variants

– is completed in 1 h 12 min on an I7-based CPU in either Li-
nux or Mac OSX. The speed of a genome analysis is dependent
on the number of chromosomes represented in the input data.
The state machine facilitates the analysis of all variants on a

single chromosome with the highest efficiency because genomic
data for each chromosome must be read and parsed. A com-
plete analysis of 300 variants on a single small chromosome

(e.g., chromosome 22) can be completed in 5 min. Variants dis-
tributed throughout all chromosomes require at least 1 h to
process. The Shannon pipeline should be executed on a ma-

chine with sufficient RAM to store the entire human genome
(P4 Gb). When all chromosomes are represented, increasing
the number of mutations results in an approximately linear in-

crease in actual computation time, after accounting for the
overhead required for memory management of genome se-
quences and annotations. For example, 2 h 35 min is required

http://www.tinyurl.com
http://www.tinyurl.com


Figure 1 Types of splicing mutations that affect structure and/or

abundance of resulting transcripts

The diagram illustrates potential outcomes of mRNA splicing

mutations predicted by the Shannon pipeline. Variation within

splice donor and/or acceptor sites may lead to altered splicing

events such as exon skipping (e), exonic (h) or intronic (4)

cryptic site use, and/or reduction in the abundance of normally

spliced mRNA forms, termed leaky mutations (s).
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to analyze 1,872,893 sequence variants from the most recent
data release on the Exome Variant Server (http://evs.gs.wash-
ington.edu/EVS/).

The software sorts the results into categories of inactivated,
leaky and cryptic splicing mutations (Figures 1 and 2). How-
ever, further in silico filtering by the user is recommended to

select the variants most likely to be deleterious to normal
mRNA splicing. Results are sorted according to the degree
of change information (i.e., mutation severity) or by heterozy-

gosity, and to deemphasize or eliminate common SNPs that af-
fect mRNA splicing in cases where the phenotype is known to
be rare. Filtering of cryptic splice sites exceeding the strength
of and close to adjacent natural sites of the same phase elimi-

nates many predicted unused cryptic sites with changes in Ri

values. Predicted mutations in known genes with open reading
frames exclude poorly characterized genes lacking HUGO-ap-

proved names or encoding non-coding RNAs, and pseudo-
genes. Post-hoc filtering (especially of cryptic splicing
mutations) significantly enriches for likely mutations in the

genomes of these cancer cell lines by the order of 10,000 fold
(Table 1).
Comparison of predicted splicing mutations with expression data

Several variants detected in genomes of U2OS, U251 and
A431, which were predicted to affect splicing, were compared
to the distribution of RNA-seq reads in their respective regions

of the transcriptome. When interpreting these data, we assume
that predicted mutations are present in a genetic background,
in which the other parentally derived allele lacks the same var-

iant (i.e., heterozygous). Abnormal reads or exon skipping of
the mutant allele is viewed in the context of a single allele
and expected normal splicing of the corresponding exon. For

mutations that are predicted to inactivate a splice site, we as-
sume a binomial distribution in the number of expected reads,
based on the wild type allele. Natural splice site mutations are

expected to significantly reduce the number of splice junction-
spanning reads in relation to those in the adjacent exons, con-
sistent with exon skipping. In some cases, intron inclusion
adjacent to a splice site variant with lower Ri value may also
be evidence of a splicing mutation. In U2OS, 10 of 13 novel
inactivating variants found in mutated natural splice sites
met these criteria, along with 2 additional probable mutations

(Table S1). The same criteria were met by 2 of 4 (with 1 addi-
tional probable) novel inactivating variants in U251
(Table S2), and 4 of 7 (with 1 additional probable) variants

in A431 (Table S3).
Expression data support our predictions for 1 of 7 activated

cryptic site variants inU2OS, 1 of 14 variants inA431 and 0 of 10

in U251. Many of the predicted splice sites reside in intronic re-
gions or alternative exons thatmap far upstreamor downstream
of constitutively expressed exons. They are unlikely to displace
constitutive isoforms, since donor site recognition is processive

[21] and the increased lengths of such cryptic exons would prob-
ably be suboptimal [22]. Often, these sites are associated with
rare, alternatively spliced ESTs expressed in other tissues than

these cell lines. Because these variants are often extra-exonic,
changes in expressionmust be inferred indirectly fromdecreased
read count, intron inclusion or increased exon skipping.

Changes in reading frame from inclusion of out-of-phase intro-
nic sequences may induce nonsense-mediated decay (NMD).
Reads mapping to adjacent introns are expected to be reduced

in number as a result of NMD. Sequencing reads that are con-
centrated in the intronic region adjacent to exon of interest are
considered support for predicted mutations. NMDmay also af-
fect transcript read counts associated with severe leaky or inac-

tivated natural donor sites, which produce exon skipping with
frame-shifting. Several predicted splicing mutations confirmed
by RNA-seq are well-known driver mutations that contribute

to tumor phenotypes.
We highlight a unique natural donor site mutation within

RBBP8 (NM_203291.1:c.248G > Aor chr18:20529676G > A;

6.2 fi3.2 bits, indicating the change in theRi value of the donor
site, before and after it is mutated) in A431, a tumor suppressor
genemutated in numerous neoplasias with a role in endonucleo-

lytic processing of a covalent topoisomerase-DNA complexes.
The mutation weakens but does not abolish the natural donor
site from 6.2 to 3.2 bits. A cryptic mRNA splice form using a
pre-existing donor site 24 bp downstream to the weakened nat-

ural site is confirmed byRNA-seq (Figure 3A). TheASSA server
predicts the activation of this intronic cryptic donor site, as well
as a second site of equal strength further downstream to the mu-

tated donor site (Figure 3B). There are a total of 56 reads that
both encroach into the intron and overlap this variant. Forty-
one of these cover the cryptic exon splice junction of interest

(the aligned reads stop at the 3.2 bit cryptic site, which is 24 nt
downstream of the natural site, and continue into the next nat-
ural exon). Thirty-one junction spanning reads also contain the
A-allele. There are an additional 23 reads that cross into the in-

tron, but do not extend as far as the cryptic site of interest. In 19
cases, these reads contain the A-allele. The remaining 4 intron-
crossing reads which contain the G-allele appear to be misa-

ligned, as they contain short matches (of 63 nt) to the down-
stream exon. There are an additional 2 reads that span the
junction between the downstream cryptic exon junction and

the adjacent exon (31 nt downstream; also 3.2 bits). Finally,
12 reads are correctly spliced and contain the mutant A-allele,
suggesting that the natural site is not completely inactivated

by this nucleotide substitution, which is consistent with leaky
splicing.

Changes in expression are also noted in other genes.
DDX11 is inactivated in U2OS (chr12:31242087T > G;

http://www.evs.gs.washington.edu
http://www.evs.gs.washington.edu


Figure 2 Sample output of the Shannon pipeline software

The Shannon pipeline software generates the following types of output. A. Tabular results showing the first 12 of 134 changes in Ri values

at different genomic coordinates predicted to be significant, after filtering for cryptic splicing mutations from all variants (n= 22,197) in a

complete genome sequence. The first filter eliminates exonic cryptic sites, the second selects cryptic sites with increased Ri values, the third

ensures that the cryptic site is stronger than the corresponding natural site of the same phase and the final filter ensures that all remaining

sites exceed the minimum Ri value of a functional splice site. B. Manhattan-like plot indicating the locations and changes in Ri of all

variants which alter splice site information in a region within intron 1 of BRCA1 (chr17:41277500-41288500) from different individuals

with increased breast cancer risk. C. Custom track illustrating a cryptic splicing mutation detected in an ovarian serous carcinoma that

inactivates the acceptor site of exon 4 in STXBP4, resulting in the activation of a pre-existing, in frame, alternative splice site 6 nucleotides

downstream.

Table 1 Performance of Shannon pipeline for human mRNA

splicing mutation prediction

Source of variants Number of variants analyzed Running timea

U2OS cell line 211,049 1 h 12 min

A431 cell line 290,589 1 h 17 min

U251 cell line 314,637 1 h 20 min

ESP 6500 Exomes 1,872,893 2 h 35 min

Note: aIntel I7 CPU with 16 Gb RAM.
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6.89 fi �11.73 bits). DDX11 is a component of the cohesin

complex which has a crucial role in chromosome segregation,
and is essential for survival of advanced melanoma [23]. In
U2OS, WWOX, a tumor suppressor gene in osteosarcoma
[24], contains a leaky mutation (chr16:78312497C > A;

10.24 fi 6.67 bits). Both alleles of APIP, an apoptosis associ-
ated gene, are inactivated in U251 (chr11:34905054G > C;
9.32 fi 0.54 bits). Gene expression of APIP is down regulated

in non-small cell lung carcinoma [25]. Amplification of
METTL2B, which harbors a leaky mutation in U251
(chr7:128117227G > A; 5.48 fi 2.47 bits), has been demon-

strated in several cancers, including glioblastoma [26].
In A431, leaky mutations are also confirmed in the
glioblastoma-initiating gene TRRAP (chr7:98533187T > G;
9.09 fi 7.16 bits) [27] and USF1 (chr1:161013165G > T;

4.89 fi 3.59 bits), which encodes a transcription regulator



Figure 3 Predicted mutation splicing phenotype supported by RNA-seq

Predicted RBBP8 splicing mutation, chr18:20529676G > A (NM_203291.1: c.248G > A), is related to transcripts mapped to this region.

A. IVG genome browser display of read distribution at the exon 4/intron 4 junction. Green boxes within the vertical hashed lines indicate

the presence of the A allele. B. The natural and cryptic splice sites illustrated by sequence walkers generated on the ASSA server. The

arrow tail and head draw attention to the location and sequence of the reference and variant sequence. The mutation reduces the strength

of the natural donor site from 6.2 to 3.2 bits. All but 3 of the 59 reads extending into the intron contain the variant allele, as indicated by

the green positions within the reads. These reads extend into the exon and terminate at the closest intronic cryptic donor site

(chr18:20529700). The mutated natural and cryptic sites are of equal strength, which explains splicing at both sites.
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important for TGFb2 expression in glioblastoma [28]. SYNE2,
which is mutated in a significant percentage of head and neck

squamous cell carcinomas [29], contains an inactivating splice
site variant in A431 (chr14:64669514T > A; 1.89 fi �0.83
bits). RRM2B, an inducible DNA repair gene that has been

implicated in squamous cell carcinoma [30], contains an
inactivating mutation in A431 (chr8:103250667A > C;
3.6 fi �15.02 bits). SMARCD1, encoding a chromatin modu-

lator that interacts with nuclear receptor transcription factors,
is also inactivated in A431 (chr12:50480538G > C;
8.46 fi �3.21 bits), and has been shown to be mutated in hep-
ato- and other carcinomas [31].

Several mutations were found in potential tumor-associated
genes, with either suggestive or little supporting expression
data. However, defects in many of these genes have been impli-

cated in various neoplasias including glioblastoma, osteosar-
coma, and epidermoid squamous carcinoma. In general,
these were predicted leaky mutations, where effects (dimin-

ished read counts and exon skipping) were inferred against
the confounding background of a presumably intact allele.
Natural site mutations in FANCD2 (NM_033084.3:c.

3106-9T > A; 6.0 fi 3.5 bits; delayed activation of the
DNA damage response in gliomas [32]) and MDC1
(NM_014641.2:c.2129-8G > C; 6.4 fi 4.7 bits; mediator of

the DNA damage checkpoint and underexpressed in many
cancers [33]) were found in the U251 cells.

Characterization of defective biochemical and functional

pathways

Potential driver mutations affecting protein coding of genes
from the A431, U2OS, and U251 cell lines have recently been
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reported [34]. Functionally significant driver mutations
affecting splicing are expected to comprise many of the same
pathways implicated by protein coding mutations that are

predicted to be damaging. The gene set with combined dri-
ver point and copy number alteration was examined using
Reactome [35]. Shannon pipeline results, supported by

RNA-seq data, were added to gene sets proposed by [34]
and the expanded gene set was examined with the overrep-
resentation analysis tool in Reactome. Of the genes contain-

ing transcript-validated splicing mutations, both datasets
were consistent in 2 of 5 pathways in A431 (interferon sig-
naling and cytokine signaling in immune system), 8 of 8
pathways in U2OS (cell cycle mitotic, cell cycle, DNA repli-

cation, mitotic M–M/G1 phases, M phase, kinetochore cap-
ture of astral microtubules, mitotic prometaphase and
apoptosis) and 0 of 2 pathways in U251. The gene set

including all inactivating and leaky variants (regardless of
verification status) was found in 5 of 7 of the same path-
ways in A431 (additionally, a variant was found in the sem-

aphorin interaction pathway), 8 of 12 of the same pathways
in U2OS and 0 of 11 pathways in U251. In A431 and
U2OS, these splicing mutation predictions enhance and

strengthen the pathway analysis based on protein coding
mutations alone.
Discussion

Complete genome and exome sequencing detects numerous
rare, non-recurrent mutations in different individuals with

the same disease diagnosis. Making sense of genetically het-
erogeneous results requires detection and interpretation of
mutations in many genomes. The identification of significant

mutations in different driver genes, followed by a gene set or
pathway analysis can reveal common, essential pathways in
otherwise genetically heterogeneous diseases, such as cancer.
Incomplete detection or reclassification of coding mutations

will most likely impact the sensitivity of these analyses. Most
existing methods to predict the effects of splice site variation
lack scalability, transparency or portability, with respect to

their scoring systems. Information content can be applied
to any region of any adequately annotated genome. Change
in information (DRi) is a portable measure and its thermo-

dynamic basis meaningfully estimates the effects of splicing
variation. By contrast, other systems (e.g., [36]) are not sui-
ted for genome scale analysis and produce results that are

not directly related to splice site strength.
A recent study reported the genomic, transcriptomic and

protein sequences in the cell lines that were the source of the
data that we analyzed [34]. It described the same single splicing

mutation in the APIP gene identified in the present study, but
none of the others that we predicted. Further, there was no
overlap between the genes containing predicted protein coding

mutations in [34] and those indicated from the current study.
This was somewhat surprising, as we anticipated that some
loss of function mutations in tumor suppressor genes would

arise from compound heterozygosity. Instead, mutant genes
from both studies tended to occur in the same pathways (for
U2OS and A431).

Many of our predictions were supported by the same RNA-

seq data that identified only APIP [34]. Conventional splice
junction mutation analysis of NGS data, which tends to
emphasize only the significance of changes in conserved splice
junction, intronic dinucleotides does not appear to be as sensi-
tive or comprehensive as the information theory-based ap-

proach we describe [7]. Assuming the cell line genotypes
faithfully reflect the tumor genetics, likely driver mutations
in the tumors were missed. These genes contribute to the tumor

signatures and in most instances, belong to major pathways
that are dysfunctional in the tumor. The caveat is that many
of these cancer-associated genes have been uncovered in other

tumor types, rather than the tumors that gave rise to the cell
lines studied here.

Many of the predicted mutations that are supported by
expression data make sense in light of independent studies,

which have suggested the same driver genes and pathways that
are defective in these tumor types [29,37–39]. We note that the
recommended filtering procedures eliminate and/or minimize

inclusion of mutations in gene classes with no known connec-
tion to neoplastic disease etiology. The sensitivity and specific-
ity of these predictions support use of the Shannon pipeline in

other somatic genomic analyses, and possibly for a wider spec-
trum of heritable genetic disorders.

The interpretation of potential splicing mutations in com-

plete genome data is also challenging because the source of
annotations, Ensembl, contains many accurate but appar-
ently irrelevant genomic features. These comprise of exons
called on the basis of a single or a few ESTs with deep in-

tronic locations (relative to constitutive exons) [40,41], and
predicted mutant ESTs that are in fact present in non- or
low expression genes (due to tissue specificity of the gene).

Where the RNA-seq data are either insufficient or irrelevant,
pseudogenes (or genes which are members of families con-
taining pseudogenes) may contain mismapped reads for the

non-functional copies that can produce false positive muta-
tion calls. Automatic filtering of genes from the RNA-seq
data prior to validating information theory-based predictions

would significantly simplify post hoc processing of the Shan-
non pipeline. Until such a workflow is available, individual
predicted mutations have to be assessed manually, because
cryptic sites that alter the strength of a ‘‘decoy’’ exon, while

a technically legitimate result, is probably irrelevant as a po-
tential disease-causing mutation.

Accurate genome-scale mutation analysis of bulk sequenc-

ing data in a timeframe suitable for integration with prediction
tools for other types of mutations will be needed to discover
disease-related genes and pathways in large-scale genomic

studies of many patients. The need to distinguish the probable
pathogenic from benign sequence changes has become acute
[42]. Computing efficiency is essential for concurrent analysis
of large sets of genome sequences [43]. The processing speed

we have attained has distinct advantages for identifying func-
tional non-coding variants detected in large multi-genomic
analyses. However, increased speed comes at the expense of

diminished ability to analyze complex mutations on the fly,
such as insertions and deletions or multinucleotide substitu-
tions. Such variation is significantly less common than SNPs

in wild type genome and exome sequences [44], but neverthe-
less can have consequences on gene function and phenotype.
The ASSA server is capable of analyzing these categories of

mutations; however it is considerably slower than the Shannon
pipeline (30 s per variant). In the future, the Shannon pipeline
will be integrated with the ASSA server to examine complex
variants seamlessly.
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Materials and methods

Shannon pipeline software architecture

We have implemented the Shannon pipeline software plugin
using the CLC-Bio genomics developer toolkit to simplify ac-

cess to this technology and interpretation by novice users. The
same plugin can be executed on a single client computer, a re-
mote server or a grid system, and benefits from automated
software updates. The server version uses an architecture in

which a Workbench client transmits variant data to the server,
which performs the computations, and returns results that can
be filtered and formatted on the client. A standalone version of

the fully functional Genome Workbench plugin is also avail-
able. By contrast, the splicing mutation feature that is native
in CLC-Bio Genomics products is limited to detecting changes

in dinucleotides at the exon boundaries, which represent fewer
than 5% of all splicing mutations detected by the Shannon
pipeline.

The Shannon Human Splicing Pipeline uses an efficient
algorithm coded in C++ to quickly analyze genome-scale
data sources for information changes (Figure S1). Methods
for computing Ri and DRi values determine the dot product

of an information weight matrix and the unitary sequence vec-
tor for each genomic window and compare the resultant scalar
values of the reference and variant sequences [45]. C++ li-

braries determine the information content of a position in
the reference genome and after a variant is introduced. This
method uses convolution-style sliding-window computation

of all sequence changes for each complete chromosome se-
quence resident in RAM. To expedite processing, the software
currently only handles SNVs – which are the most prevalent.

Future versions will handle complex multi-nucleotide muta-
tions. Changes in Ri introduced by genomic variation are com-
puted by subtracting the initial Ri value of a position by the
sum over a surrounding window, then adding the new value

for each position (DRi). Perl scripts wrap these C libraries
and annotate output. Integration with the CLC-Bio work-
bench environment was achieved through code written in Java

utilizing the CLC-Bio developer API. This software is assem-
bled as a client plugin requiring a connection to the server to
execute, a server plugin and a standalone client plugin. Two

additional dependency plugins contain a modified dbSNP135
(containing only variant, rsID and overall frequency), Ensembl
Exon Data (Build 66) and GRCh37/NCBI36, respectively,
allowing the software to execute with no active internet con-

nection and incorporates all necessary annotations required
to contextualize a potential mutation.

Input flat files containing sequence variants that differ from

the reference genome are imported into the CLC-Bio Java
environment. The file must be either a Variant Call Format
(VCF) [46] or a tab-delimited format with the following fields:

[chromosome #] [unique identifier] [coordinate] [reference/var-
iant]. Coordinates can be hg18/NCBI36 or hg19/GRCh37. All
variants appearing in this study are hg19. Genomic insertions

and deletions (indels) present in input files are not considered
for analysis. The unique identifier serves several purposes. In-
put data may be stored in a hash allowing efficient annotation
of individual variants or those originating from multiple

exome or genome sequences. Given the minimum startup time
incurred to process each individual chromosome present in the
input data (�1 h if all chromosomes present in input file), un-
ique identifiers allow input to be combined, thus reducing total
run-time and required user interaction.
Stratification of variants

Similar to ASSA, the pipeline analysis produces summary ta-
bles (e.g., Figure 2A) for different types of mutations (assum-
ing each type is represented): (1) complete sets of all splicing

variants, (2) mutations predicted to inactivate splice sites, (3)
leaky splicing mutations that reduce but do not abolish splic-
ing and (4) cryptic splice sites that are either activated, inacti-
vated or reduced in strength. We define inactivating variants as

those that reduce the Ri of the affected binding site below 1.6
bits [20]. Binding sites containing a leaky variant are defined as
those, in which initial Ri is decreased upon mutation to

Ri > 1.6. Finally, candidate cryptic sites encompass all sites
with higher affinity for binding than a corresponding natural
site based on comparison of their respective Ri values (see be-

low). Tabular data can be sorted by clicking the column header
of each column. Data can be exported and viewed without
modification in a spreadsheet program.

The 50 end of the first exon and the 30 end of the last exon of
a gene are not splice sites. Therefore, the Shannon pipeline
does not report mutations that affect their DRi at these posi-
tions; the exception is genes that encode alternate splice forms

using further upstream/downstream exons present in Ensembl
66. Variants which alter the strength of cryptic splice sites
within the first and last exons are also considered. Use of a

strengthened cryptic donor in the first exon or acceptor in
the last exon could lead to a truncated exon. The Shannon
pipeline considers the exonic cryptic sites of the opposite polar-

ity (acceptors in first exons and donors for last exons), as their
activation could potentially (but rarely) lead to the formation
of a cryptic intron within these exons if a second pre-existing

cryptic site of opposite polarity is present in the proper
orientation.

Although the Shannon pipeline output contains a vastly re-
duced number of potentially significant variants, further filter-

ing is usually necessary to obtain the final set of functionally
relevant sites. Pipeline output is generated for variants that re-
sult in DRi > ±1 bit. Each variant is annotated with the dis-

tance from nearest natural site, Ri of nearest natural site,
location of cryptic sites (exonic or intronic), the strength of a
cryptic site strength relative to the nearest natural site, gene

name, information contents of the reference and variant sites,
type of splice site (acceptor or donor) and rsID of SNP if cat-
alogued. The user then filters out those variants least likely to
be functionally relevant. For example, a natural site that in-

creases in information content will generally not be of interest.
The increase will likely only serve to widen the gap in Ri be-
tween the natural and nearby cryptic sites. Thus, we remove

those natural sites with positive DRi values as well as cryptic
sites with reductions in Ri value. Pipeline generated annota-
tions that were found in the tabular output help simplify the

data filtering process. To predict those variants with significant
changes, tables were filtered to distinguish natural and cryptic
splicing mutations (Tables S1–3). The filters used for cryptic

splicing mutations were based on criteria given in [47] (a)
DRi > 0, (b) either occurring within an exon or within an
intron less than 300 bp from nearest natural site, (c) cryptic



Table 2 Enrichment for predicted splicing mutations after processing and filtering

Cell

line

Initial variants

analyzed

Novel natural

site

Novel cryptic

site

Natural site

(SNP)a
Cryptic site

(SNP)a
Overall mutation

fraction (%)

A431 290,589 16 13 13 3 0.015

U251 314,637 7 10 18 3 0.012

U2OS 211,049 22 9 13 4 0.022

Total 816,275 46 32 49 10 0.017

Note: adbSNP135; <1% heterozygosity; minor allele.
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splice site Ri value exceeding the strength of the nearest natural
site Ri of the same type and (d) intronic cryptic splice sites are

selected 50 to the exon if acceptors and 30 to the exon, if donors.
All reported variants were further categorized according to
whether they had been previously reported or were novel. In

Table 2, only novel and known variants of <1% average het-
erozygosity in dbSNP are reported, which are more likely to be
functionally significant due to selection. Nevertheless, the

threshold for filtering based on heterozygosity can be specified
by the user.

Pipeline results are also displayed visually. DRi and final Ri

values are plotted by chromosome location, similar to Man-

hattan-style representations, for either individual chromo-
somes or entire genomes (Figure 2B). Hovering the cursor
over data points generates tooltips containing information

needed to find the complete entry within the corresponding
tabular data. To locate interesting data points, a zoom func-
tion allows closer inspection of the plot. This visualization al-

lows patterns to be observed and data points which stand out
to be easily located and inspected more closely in a tabular for-
mat or on the ASSA server.

Chromosome-specific, custom browser tracks indicating

DRi values in the BED format are created during analysis. This
enables visualization of predicted mutations in the context of
other genome annotations, for example, mapped reads from

RNA-seq, spliced ESTs and known mRNAs. Figure 2C dis-
plays a result on the CLC Genomics Workbench browser
along with the Ensembl genes v.66 track.

Experimental validation

RNA-seq analysis using published data from these cell lines

[34] was used to compare our methods with expression data.
TopHat [48] was executed with the following command-line
options: -g 5 –solexa1.3-quals -p 8, and examined with the
Integrative Genomics viewer (IGV) [49] to interrogate predic-

tions made with the Shannon pipeline.
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