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a b s t r a c t 

Aim: To develop a method that segments preterm EEG into bursts and inter-bursts by extracting and 

combining multiple EEG features. Methods: Two EEG experts annotated bursts in individual EEG channels 

for 36 preterm infants with gestational age < 30 weeks. The feature set included spectral, amplitude, and 

frequency-weighted energy features. Using a consensus annotation, feature selection removed redundant 

features and a support vector machine combined features. Area under the receiver operator characteristic 

(AUC) and Cohen’s kappa ( κ) evaluated performance within a cross-validation procedure. Results: The 

proposed channel-independent method improves AUC by 4–5% over existing methods ( p < 0.001, n = 36 ), 

with median (95% confidence interval) AUC of 0.989 (0.973–0.997) and sensitivity–specificity of 95.8–

94.4%. Agreement rates between the detector and experts’ annotations, κ = 0 . 72 (0.36–0.83) and κ = 0 . 65 

(0.32–0.81), are comparable to inter-rater agreement, κ = 0 . 60 (0.21–0.74). Conclusions: Automating the 

visual identification of bursts in preterm EEG is achievable with a high level of accuracy. Multiple features, 

combined using a data-driven approach, improves on existing single-feature methods. 

© 2017 The Authors. Published by Elsevier Ltd on behalf of IPEM. 

This is an open access article under the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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1. Introduction 

Preterm birth is the single largest risk factor for perinatal mor-

tality and morbidity, accounting for over 1 million deaths every

year [1] . The immature brain of the preterm infant is especially

vulnerable and often the source of long-term health problems. The

electroencephalogram (EEG) can help identify at-risk infants by

providing continuous cot-side monitoring of brain activity in the

neonatal intensive care unit (NICU). The EEG, however, requires

interpretation by specialist staff which often makes it impractical

to provide continuous reporting for all infants. Automated EEG

analysis could overcome this limitation and provide the clinician

with relevant information, in real time, to guide treatment during

critical care. 

Early preterm EEG exhibits an intermittent or discontinuous

pattern ( tracé discontinu ) consisting of low-voltage activity, known
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s inter-bursts, followed by short-duration higher-voltage activity,

nown as bursts or spontaneous activity transients [2] . This pat-

ern differs to the burst-suppression pattern found in the EEG

f adults and full-term infants, a pattern associated with severe

rain injury or coma [3] . In contrast, the discontinuous pattern

s indicative of normal, healthy neurological development for the

reterm infant. An important first stage for any automated anal-

sis of preterm EEG is to distinguish between bursts and inter-

ursts. Simple features of this bursting pattern, such as maximum

nter-burst duration, relate to neurological development and are

ssociated with neurological delay [4–7] . Segmentation of the EEG

nto bursts and inter-bursts is an essential first-stage for more ad-

anced automated analysis; for example to predict neurodevelop-

ental outcome [8] , detect changes in sleep states [9] , or assess

hanges in maturation [7] . 

Existing methods for detecting bursts in preterm EEG rely

n either amplitude or frequency characteristics, or combina-

ions of both [2,6,8,10–19] . Many of these methods, however,

ere not designed as stand-alone detection methods and have

ot been assessed with the gold standard, the EEG expert’s

isual interpretation of the EEG [2,8,10,11,13,16] . For those meth-

ds with performance validation metrics, the more promising

ethods employ frequency-weighted energy measures, which
en access article under the CC BY license. 
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ultiply amplitude and frequency to estimate energy [6,17–

9] . Yet the relative importance of amplitude and frequency

eatures is unknown, and their optimal combination is as yet

nexplored. 

Here, we propose to assess multiple amplitude and frequency

eatures separately and then combine these features in a classi-

er. This approach has been applied to detecting burst-suppression

atterns in full-term EEG [20,21] . Based on training from a large

atabase of preterm EEG, machine learning algorithms can infer

he best combination rules. We apply a feature selection proce-

ure, that maximises relevancy and minimises redundancy, thus

etaining only necessary features. Unlike existing methods, which

ither operate on 1 specific channel [17] or all channels simul-

aneously [6,18] , channels are processed independently as bursts

an be focal or multi-focal and not always generalised across all

hannels. For example, in asynchronous activity bursts will not oc-

ur simultaneously across hemispheres [22] . For performance test-

ng, feature sets and all parameters are estimated using strata

f cross-validations to avoid overlap between training and testing

ata. 

. Methods 

.1. Acquiring and annotating the EEG 

EEG data were collected from the NICU of the Cork Univer-

ity Maternity Hospital, Ireland, during the period 2009–2011. Data

ollection was approved by the Cork Research Ethics Committee

f Cork Teaching Hospitals, Ireland. Informed and written parental

onsent was obtained before EEG recording. 

EEG was recorded with the NicoletOne EEG system (CareFusion

o., San Diego, USA) using 11 electrodes according to the inter-

ational 10–20 system of electrode configuration over the frontal,

entral, temporal, and occipital regions, a reference electrode at Fz,

nd a ground electrode behind the left ear. EEGs were recorded

ithin 72 h of birth with a sampling frequency of 256 Hz. Infants

ith reported severe brain injuries, determined by cranial ultra-

ound scans within the first week of life, were not included. 

Ten-minute segments with minimal artefact were selected from

6 EEG records (one segment per infant). These 10 min segments

ere, on average, 14 h post-birth (range: 3–41 h). Gestational age

anged from 23.4 weeks to 29.7 weeks with a mean of 27.4 weeks.

Two clinical physiologists (RO Lloyd and RM Goulding) anno-

ated all EEG segments for bursts and inter-bursts. Bursts were

efined as any preterm EEG activity not explicitly categorised

s inter-bursts. Therefore the annotations included long-duration

ursts ( > 20 s) which some classification systems would label as

ontinuous activity [4] . We chose not to distinguish between bursts

nd continuous activity because the difference between continuous

nd discontinuous activity is not clearly defined for infants with

estational age less than 32 weeks [4] . Example annotations are in

ig. 1 . 

EEG was analysed using the bipolar montage F4-C4, C4-O2, F3-

3, C3-O1, T4-C4, C4-Cz, Cz-C3, and C3-T3. EEG channels were

nnotated separately to develop a channel independent detector.

s bursts do not always occur synchronously across all channels,

 single channel was extracted for review to avoid annotation

ias caused by the simultaneous display of multiple channels. One

hannel per infant was annotated and channel selection was alter-

ated over all EEG records to avoid a channel bias. For example,

4-C4 was used for the first EEG, C4-O2 was used for the second,

nd so on. For all 36 EEGs, each channel was selected a median of

.5 (range: 3–6) times. 

Annotations differed between the two reviewers, as the exam-

le in Fig. 1 highlights. A consensus annotation, including only the
urst or inter-burst periods where both reviewers agreed, was used

or training and testing the classifier. 

.2. Feature set 

Fig. 2 highlights differences between bursts and inter-bursts.

or example spectral power, across all frequencies, is greater for

ursts comparative to inter-bursts [ Fig. 2 (a)]. Not surprising, con-

idering amplitude plays a key role in many detection methods

2,6,8,12,17–19] . 

But also of interest are spectral characteristics independent of

otal power. Differences in relative spectral power is evident in the

ormalised spectra in Figs. 2 (b) and the burst-to-inter-burst ratio

the difference in spectral power in dBs between the median burst

nd inter-burst spectra) in Fig. 2 (c). Fig. 2 (b) shows that the inter-

ursts have an almost linear log–log frequency response compared

ith the more nonlinear response of the bursts. The following fea-

ure set aims to capture these differences in amplitude, relative

pectral power, and spectral shape. These features are calculated

ithin four frequency bands: band 1 (0.5–3 Hz), band 2 (3–8 Hz),

and 3 (8–15 Hz), and band 4 (15–30 Hz) [2,23] . 

.2.1. Amplitude features. Discrete EEG signal x ( n ) was bandpass fil-

ered using a 5th-order Butterworth filter into the i th frequency

and ( i = 1 , 2 , 3 , 4 ) to produce x i ( n ). These filters implement the

orward–backwards procedure to produce a zero-phase filter. We

alculated signal envelope a i ( n ) of x i ( n ) as 

 i (n ) = | z i (n ) | 2 = | x i (n ) + j H[ x i (n )] | 2 (1) 

here z i ( n ) is the analytic associate of x i ( n ); H represents the

ilbert transform and j represents the imaginary unit of the

omplex-valued z i ( n ). 

.2.2. Spectral features. Multiple features are used to quantify

pectral characteristics. Relative spectral power for the i th band is

stimated as 

 i = 

∑ 

k ∈ i | X (k ) | 2 
P total 

(2) 

here X ( k ) is the discrete Fourier transform (DFT) of length- N x ( n ),

 total is the total spectral power over the 0.5–30 Hz range, and no-

ation �k ∈ i represents summation over the i th frequency band. 

To quantify spectral shape, we fit the line 

ˆ 
 (k ) = c 1 + c 2 k (3)

o the log–log spectrum Y ( k ) and then use slope c 2 and measure-

f-fit r 2 , defined as 

 

2 
i = 1 −

∑ 

k ∈ i 
[
Y (k ) − ˆ Y (k ) 

]2 

∑ 

k ∈ i 
[
Y (k ) − 1 

N 

∑ 

k ∈ i Y (k ) 
]2 

, (4) 

s features. This process has some similarity to a multifractal ap-

roach [24] but differs in the EEG frequency-band selection and

ummary measures. 

Mean frequency is calculated using the periodic-mean fre-

uency estimate, 

 i = 

f s 

4 π

{ 

arg 

[ 

N/ 2 −1 ∑ 

k =0 

∣∣X i (k ) 
∣∣2 

e j2 πk/N 

] 

mod 2 π

} 

(5) 

ith mod 2 π representing the modulus function in 2 π , f s the sam-

ling frequency, and X i ( k ) is the DFT of x i ( n ). Instantaneous fre-

uency is calculated using the central-finite difference estimate, 

f i (n ) = 

f s 

4 π

{ 

[ φi (n + 1) − φi (n − 1) ] mod 2 π
} 

(6) 
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detection method

Fig. 1. Annotations of bursts for 1-channel EEG recorded from 3 different preterm infants. Reviewers’ annotations (1 and 2) for bursts (labels) and inter-bursts (no labels) 

are used to generate a consensus annotation. Background shaded areas highlight this consensus annotation: blue for bursts and light brown for inter-bursts. Also included is 

the output from the proposed detection method. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article). 
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Fig. 2. Spectral characteristics of bursts and inter-bursts with frequency responses of burst detection methods. Power-spectral density (PSD) estimates in (a) and (b) from 

10 min EEG records of 36 preterm infants (grey thin lines) and median values (blue thick lines). PSDs are generated with Welch’s periodogram using a 2 s Hamming window. 

Normalised spectra in (b) is calculated by dividing by total spectral power in the 0–30 Hz region. Bursts-to-inter-bursts ratio in (c) is defined as the difference in median dB 

values in (b) between burst and inter-burst normalised spectra. Frequency responses in (d) for the nonlinear energy operator (NLEO), envelope–derivative operator (EDO), and 

line-length methods. These responses are plotted for comparison with the spectral characteristics in (a)–(c); responses are based on a single sinusoidal input and includes 

bandpass filtering (0.5–10 Hz for NLEO and EDO and 1–20 Hz for line-length). (For interpretation of the references to colour in this figure legend, the reader is referred to 

the web version of this article). 
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Table 1 

Feature set of 26 features. The 4 frequency bands are 0.5–3, 3–8, 

8–15, and 15–30 Hz. 

Feature Analysis Frequency 

(relevant equation) window (s) band 

Envelope–derivative operator (10) 1 0.5–10 Hz 

Fractal dimension (7) 1 0.5–30 Hz 

Envelope a (1) 1 4 bands 

Relative PSD power (2) 2 4 bands 

Mean frequency (5) 2 4 bands 

Instantaneous frequency a (6) 2 4 bands 

log–log PSD: slope (3) 2 4 bands 

log–log PSD: r 2 (4) 2 4 bands 

a median value of the analysis window. 

Key: PSD, power spectral density. 
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ith phase function φi (n ) = arg [ z i (n )] , where z i ( n ) is the analytic

ignal described in (1) . 

We also include fractal dimension because of its association

ith spectral shape [25] . The Higuchi method first estimates curve

ength for scale value k as 

 m 

(k ) = 

(N − 1) 

� (N − m ) /k � k 2 
� (N−m ) /k � ∑ 

i =1 

∣∣x [ m + ik ] − x [ m + (i − 1) k ] 
∣∣

(7) 

ver m = 1 , 2 , . . . , k, using the entire frequency range 0.5–30 Hz for

 ( n ). Curve length L ( k ), at scale k , is then computed as the mean

alue of L m 

( k ) over all m values. This process is iterated for differ-

nt scale values k . If the process is self-similar and stationary then

 (k ) ∝ k −D , where D is the fractal dimension. The slope of a line fit

o the points (log k , log L ( k )) provides an estimate of −D [25] . 

.2.3. Frequency-weighted energy features. Recent detection meth-

ds apply features of frequency-weighted energy measures [6,17–

9] . These measures produce an instantaneous estimate of signal

nergy that is dependent on both amplitude and frequency [19] .

almu et al. used the absolute value of the nonlinear energy oper-

tor (NLEO) with a moving average window, defined as [17,23] 

= 

N−1 ∑ 

n =1 

∣∣x (n − 1) x (n − 2) − x (n ) x (n − 3) 
∣∣ (8)

nd Koolen et al. used the line-length measure [18] 

 = 

N−1 ∑ 

n =1 

∣∣x (n + 1) − x (n ) 
∣∣. (9)

Although line-length was presented as a measure of fractal di-

ension [18] , it better fits the definition of a frequency-weighted

nergy measure. Relating line length in (9) to curve length in (7) ,

 = L (1) where L (1) is the intercept point on the log L ( k )–log k plot.

ecause the intercept is independent of the slope, line length has

o apparent relation to fractal dimension. 

Both NLEO and line-length measures are not included in the

eature set. Instead, we use the envelope–derivative operator which

as similar properties to the NLEO but is non-negative [19] . The

perator for discrete signal x ( n ) is defined as [19] , 

(n ) = 

1 

4 

[
x 2 (n + 1) + x 2 (n − 1) + h 

2 (n + 1) + h 

2 (n − 1) 
]

+ 

1 

2 

[ x (n + 1) x (n − 1) + h (n + 1) h (n − 1) ] (10) 

here the discrete Hilbert transform h ( n ) is defined as

DFT {−j sgn (N/ 2 − k ) sgn (k ) X(k ) } ; IDFT represents the inverse

FT and sgn represents the sign function. 

NLEO and line length methods are compared with the proposed

etector and are implemented according to published specifica-

ions [17,18] : EEG is bandpass filtered (0.5–10 Hz for NLEO and 1–

0 Hz for line length) and a moving average filter is applied to the

utput of the operator (1.5 s for NLEO and 1 s for line length). The

andpass filtering uses a 1st-order Butterworth filter for the high-

ass component and a 6th-order elliptic filter for the low-pass

omponent [17] . The envelope-–derivative operator is implemented

ith the same NLEO specifications (0.5–10 Hz pre-processing filter

nd 1.5 moving-average post-processing filter). 

Although nonlinear functions, we present the frequency re-

ponse of a single sinusoidal input in Fig. 2 (d) for these frequency-

eighting energy methods. For this diagram, the methods are im-

lemented without the post-processing moving-average filter. The

LEO and envelope–derivative operator are implemented accord-

ng to O’Toole et al. [19] ; for the line-length, only the forward-

ifference com ponent of the method is implemented, as the fre-

uency response for x (n + 1) − x (n ) is known but unclear for
 x (n + 1) − x (n ) | . Each frequency response includes the previously

escribed pre-processing filters and are normalised within the 0–

0 Hz region. 

.2.4. Short-time analysis of features. For all features, except the

requency-weighted energy measures, EEG is down-sampled to

4 Hz. For these exceptions (NLEO, line-length, and envelope–

erivative operator) the higher sampling rate (256 Hz) is used

nstead because of the known sensitivity to sampling frequency

6,19] . Once calculated, the feature itself is then down-sampled to

4 Hz to ensure uniformity of sampling across all features. 

Features are estimated within a short-time window, shifted in

ime with a 75% overlap, as detailed in Table 1 . Spectral features

se a 2 s window to include low-frequency activity at 0.5 Hz; am-

litude and fractal dimension features use a 1 s window to allow

or faster non-stationary activity. 

Features with asymmetric or heavy-tailed distributions are

ransformed using the natural log. Log-transformed features in-

lude line-length, NLEO, envelope–derivative operator, envelope,

nd spectral-power features. All features are then normalised to z -

cores. 

.3. Feature selection and classification 

Feature selection was implementing using the maximum-

elevance–minimum-redundancy (mRMR) approach [26] . This

ethod includes both a filter and wrapper stage. The filter stage,

hich is independent of the classifier, uses mutual information to

nd a feature subset that maximises relevance and minimises re-

undancy. The wrapper stage uses backwards elimination to rank

eature subsets based on classifier performance. The reduced fea-

ure set from the filter stage allows implementation of the more

ophisticated backwards-elimination procedure with a realisable

omputational load. 

Next, features were combined using a support vector machine

SVM). We selected an SVM because of its successful application in

ther newborn EEG methods [21,27] . SVMs can use different ker-

els to generate different decision boundaries [28] . In initial testing

e found no significant improvement for the radial basis function

ver the linear kernel and thus implemented the linear kernel. The

inear-kernel SVM can be expressed as the linear regression equa-

ion 

 [ x (n )] = 

K−1 ∑ 

p=0 

w p x p (n ) + b (11)

here w p = 

∑ N−1 
q =0 αq x p (q ) for K features x (n ) =

 x 1 (n ) , x 2 (n ) , . . . , x K (n ) } . For training data y (n ) = ±1 , with 1

or bursts and −1 for inter-bursts, the algorithm estimates the

arameters b and αq ; the support vectors are the set x ( q ) for

hich αq � = 0. [28] . 
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Fig. 3. Training and testing for the burst detector. Consensus annotation (left) is de- 

rived from the two individual annotations of the human experts (right). The detec- 

tor generates features from the EEG and combines them in the SVM (boxes 1–2). A 

threshold (box 3) then converts the continuous SVM output to a binary output that 

indicates bursts or inter-bursts. As part of the testing stage, features of the tempo- 

ral distribution of the bursts, for example maximum IBIs, are estimated from this 

binary output (box 4) and compared with features derived from the human experts’ 

annotations. The detector is developed using the consensus annotation and tested 

using multiple metrics: AUC, sensitivity and specificity, Cohen’s kappa, and abso- 

lute difference between features of the burst annotations. Key: SVM, support vector 

machine; AUC, area under the receiver operator characteristic; IB, inter-burst; IBI, 

inter-burst interval. 
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To produce a binary output indicating either bursts or inter-

bursts, a threshold is applied to the discriminating function D [ x ( n )]

in (11) . We implement both the static threshold T thres = 0 and

the infant-dependent (adaptive) threshold T thres = mean { D [ x (n )] }
[6,18] . 

We set lower limits on the duration of bursts and inter-bursts

to remove short-duration segments. These limits are estimated

from the reviewers’ annotations by selecting the 2.5th percentile

of burst (and inter-burst) duration. 

2.4. Analysis of detection performance 

The detector is developed using the consensus annotation; for

testing, both consensus and individual annotations were used.

Fig. 3 gives an overview of this process. 

Both the individual features and the detector are assessed us-

ing the area under the receiver operator characteristic (AUC), gen-

erated from a time-based assessment on a sample-by-sample basis.

AUC measures detection performance with values ranging from 0

to 1 where 0.5 representing random chance. Bursts were labelled

as the signal-of-interest: true positives implies correct detection of

bursts. For the individual features, an AUC was generated for each

infant ( n = 36 ) and features were deemed statistically significant

( p < 0.05) when the 95% CI of the AUC excluded 0.5. 

Performance of the detector was assessed within a cross-

validation procedure, thus avoiding over-fitting and reducing bias

in testing error. Feature selection was implemented in a nested (in-

ner) cross-validation for each outer training fold, as described in

Ref. [29] . Both inner and outer cross-validation folds used a leave-

one-out scheme, with testing on each left-out EEG record (one

record per infant). 

All parameters, including feature z -score parameters and SVM

weights, were estimated within the training set and then applied

to the testing set. Lower duration limits for bursts and inter-bursts

were estimated from the reviewers’ annotations in the outer cross-

validation. Features were generated from the EEG first. For feature
election and SVM training, only 1/500th of the training data (ev-

ry 500th sample of the generated features) were used. This reduc-

ion in training data gave a good compromise between providing

 representative distribution of values for both bursts and inter-

ursts and computational efficiency during the training stage. For

he testing stage, all available data was used. 

AUC values for the NLEO and line-length methods [17,18] were

ompared to the AUC (cross-validation testing results) for the pro-

osed detector. In addition to the time-based assessment, we also

nclude an event-based assessment for sensitivity–specificity. The

vent-based assessment quantifies detection performance indepen-

ent of burst and inter-burst duration, defining a true positive

hen detecting more than 75% of the burst duration. 

Inter-rater agreement between the two human experts is quan-

ified using Cohen’s kappa statistic ( κ) with the two annotations

 Fig. 3 ). Bias and prevalence terms are reported with the κ statistic

o better estimate agreement: prevalence quantifies the difference

n the proportion of bursts to inter-bursts and bias quantifies the

ifference in the proportion of agreed bursts and inter-bursts. To

ssess the detector’s performance relative to inter-rater agreement,

he detector is compared to each annotation separately using κ . 

Three measures are calculated on the detector’s binary out-

ut: median inter-burst interval; maximum inter-burst interval;

nd burst-to-inter-burst ratio, the percentage of time the EEG is

nnotated as a burst per EEG record. These features represent im-

ortant summary measures of preterm EEG as markers of normal

aturation [4–7,9,23] . These three features were also calculated

sing the reviewer’s annotation; absolute differences were calcu-

ated between the two annotations and the detection method, as

ndicated in Fig. 3 . 

Pair-wise comparisons use the Wilcoxon signed-rank test and

nclude the median difference with a 95% CI. CIs are generated

sing the bootstrap method with 10 0 0 iterations. P -values are re-

orted with sample size n ; in most instances n = 36 , the number

f EEG records and infants in the study. When comparing the pro-

osed detector to existing methods, we require p < 0.05 and at

east a 1% improvement in performance to link statistical signifi-

ance to engineering significance. 

Finally, the detector was trained on all EEG records to gener-

te a prototype burst detector suitable for validation on indepen-

ent data. Matlab and Octave code for this detector (version 0.1.1)

s provided in the Supplementary Material and updates are avail-

ble at https://github.com/otoolej/burst _ detector . 

. Results 

Fig. 4 shows the distribution of burst and inter-burst periods.

edian (95% CI) burst duration is 5.7 (1.1–73.7) s, inter-burst du-

ation is 4.1 (0.9–36.9) s, and burst-to-inter-burst ratio of 51%

32–86%). Lower-duration limits (2.5th percentile), over the cross-

alidation folds, had a median (95% CI) burst duration of 1.13 (1.12–

.17) s and inter-burst duration of 0.85 (0.84–0.88) s. The consen-

us annotation comprised of 77.5% of the total annotation. 

Fig. 5 ranks detection performance for the 26 features in the

eature set ( Table 1 ); NLEO and line length methods are included

or comparison. Less than one-half (11/26) of the features had

ignificant detection performance. The 0.5–3 Hz envelope feature,

ith median (IQR) AUC of 0.974 (0.959–0.982), outperformed the

LEO (0.952, IQR: 0.937–0.970) and line-length (0.936, IQR: 0.916–

.962) features. The three frequency-weighted energy measures

roduced similar results, although the envelope–derivative opera-

or, ranked second with median (IQR) AUC of 0.960 (0.940–0.974),

ad a slightly higher AUC (1–2%) than the NLEO and line-length

UCs. 

https://github.com/otoolej/burst_detector
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Fig. 4. Distribution of the duration of (a) bursts and (b) inter-bursts periods using reviewers’ annotations. Individual annotations from the two reviewers are concatenated 

over all infants ( n = 36 ). Bursts are defined as valid EEG activity (non-artefacts) not categorised as inter-bursts. Plots limit maximum duration to 20 seconds although 

distributions do extend beyond this limit. 

ll−PSD: r2

ll−PSD: slope

ll−PSD: r2

IF

MF

envelope

FD

envelope

line length

envelope

NLEO

EDO

envelope

0.50.60.70.80.91
AUC

 

 existing methods
proposed alternatives
pass−band: 0.5−3 Hz
pass−band: 3−8 Hz
pass−band: 8−15 Hz
pass−band: 15−30 Hz

(a)

ll−PSD: slope
 r−PSD power

MF
ll−PSD: slope

ll−PSD: r2
IF

ll−PSD: r2
MF
IF

ll−PSD: slope
 r−PSD power

MF
 r−PSD power

IF
 r−PSD power

00.20.40.60.81
AUC

(b)

Fig. 5. Detection performance for all 26 features of the feature set and 2 existing features, the NLEO and line-length. Features in (a) reach statistical significance ( p < 0.05) as 

the 95% confidence interval excludes 0.5, whereas features in (b) fail to reach significance. Dots represent median values, thick lines represent inter-quartile range, and thin 

lines represent the 95th percentiles. Key: EDO, envelope–derivative operator; NLEO, non-linear energy operator; FD, fractal dimension; MF, mean frequency; IF, instantaneous 

frequency; ll-PSD, log–log power spectral density (PSD); r-PSD, relative PSD; AUC, area under the receiver operator characteristic. 
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Table 2 

Frequency of selected features using the maximum-relevance–

minimum-redundancy procedure over the 36 cross-validation folds. All 

features, except for the fractal dimension and EDO, are estimated over 

4 frequency bands: 0.5–3 Hz (band 1), 3–8 Hz (band 2), 8–15 Hz (band 

3), 15–30 Hz (band 4). 

Frequency (%) Feature Frequency band 

36 (100.0) Fractal dimension –

36 (100.0) Envelope–derivative operator –

36 (100.0) Envelope 3 

36 (100.0) Envelope 4 

35 (97.2) Envelope 1 

35 (97.2) Relative PSD power 4 

33 (91.7) log–log PSD r 2 1 

29 (80.6) Envelope 2 

18 (50.0) Mean frequency 4 

12 (33.3) Instantaneous frequency 4 

6 (16.7) log–log PSD slope 4 

5 (13.9) log–log PSD r 2 4 

5 (13.9) instantaneous frequency 1 

4 (11.1) log–log PSD r 2 2 

4 (11.1) log–log PSD slope 1 

2 (5.6) Instantaneous frequency 2 

1 (2.8) Relative PSD power 2 

1 (2.8) log–log PSD slope 2 

1 (2.8) log–log PSD r 2 3 

Key: PSD, power spectral density. 

Table 3 

Comparison of detection performance using the consensus annotations. 

% difference is between the proposed detector and other methods. 

AUC % difference p -value a 

median (95% CI) median (95% CI) 

NLEO 0.952 (0.888, 0.988) 3.70 (2.40, 3.94) < 0.001 

line length 0.936 (0.694, 0.986) 5.25 (3.37, 6.04) < 0.001 

proposed 0.989 (0.973, 0.997) – –

a Wilcoxon signed-rank test. 

Key: AUC, area under the receiver operator characteristic; CI, confi- 

dence intervals; and NLEO, nonlinear energy operator. 
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Selected feature sets from the mRMR procedure over the cross-

validation folds included a median of 9 (range: 8–12) features.

Table 2 lists the selected features with frequency of occurrence. 

Table 3 shows a significant 4–5% improvement in AUC for the

proposed detector over existing methods ( p < 0.001; n = 36 ). The

detector also significantly improves over the best performing fea-

ture, the 0.5–3 Hz envelope feature, with a median (95% CI) in-

crease in AUC of 1.55% (0.98–2.26%), p < 0.001 ( n = 36 ). Median

(95% CI) sensitivity–specificity for the detector (using the static

threshold) was 95.8% (77.3–99.7%) for sensitivity and 94.4% (66.7–

99.5%) for specificity. 

Sensitivity–specificity using the time-based assessment for both

static and adaptive thresholds is plotted in Fig. 6 (a). Sensitivity is

higher for the static threshold, with median (95% CI) difference be-

tween the static and adaptive thresholds of 17.9% (11.5–24.6%). But

specificity is lower for the static threshold, with a difference be-

tween thresholds of −5.0% ( −7.6% to −3.3%). Both differences are

significant: p < 0.001, n = 36 . A similar picture emerges for the

event-based assessment in Fig. 6 (b): median (95% CI) difference

between the static—adaptive thresholds is 1.2% (0.0–7.4%) for sen-

sitivity and −8.7% ( −11.5 to −3.4%) for specificity, with p < 0.001

( n = 36 ) for both comparisons. 

Table 4 shows inter-rater agreement together with the agree-

ment between the detector and two reviewers, using AUC and κ
as measures of agreement. Whereas the consensus annotation is

used to train and test the detector, with results in Table 3, Ta-

ble 4 presents testing results using the full individual annotations

(see Fig. 3 ) and compares with inter-rater (reviewer) agreement.
ig. 1 shows examples of EEG segments comparing the two anno-

ations to the detection method. 

Fig. 7 shows differences in estimates of median and maximum

nter-burst intervals and burst-to-inter-burst ratio, based on the

nnotations of the human experts and the proposed detector. Dif-

erences between detector and the two human experts is signifi-

antly lower than differences between human experts in 3 out of

he 6 comparisons. 

And lastly, we assessed processing speed for the proposed and

xisting methods. All methods were implement in Matlab (Release

013a, The Mathworks Inc., Massachusetts, United States) on a

esktop computer with a 2.8 GHz Intel Xeon processor and 8 GB of

AM. We used 2 h of EEG with 8-channels sampled at 256 Hz and

rocessed each channel separately. The computational time was

4 s for the proposed method, 47 s for the NLEO method, and

 s for the line-length method. Although slower than the single-

eature methods, the proposed method is capable of processing

EG in real time. 

. Discussion 

The proposed method outperforms existing methods for detect-

ng bursts in preterm EEG, with improvements of approximately

–5% in AUC ( p < 0.001; n = 36 ) over the frequency-weighted

nergy methods [17,18] . Unlike these existing methods, the pro-

osed method combines different f eatures of amplitude and spec-

ral content with a frequency-weighted energy measure. The cross-

alidation testing results—median AUC of 0.989 and sensitivity–

pecificity of 95.8–94.4%—show that the detector is capable of op-

rating with a high-level of accuracy. The proposed method is also

apable of analysing EEG in real time, with un-optimised code pro-

essing 2-h of 8-channel EEG in just over 1 min. 

The 0.5–3 Hz envelope feature outperforms all frequency-

eighted energy measures, with a difference in AUC of 2–4%

 Fig. 5 ). An increase in low frequency amplitude is known to be as-

ociated with burst activity [2] . In contrast, the frequency-weighted

nergy measures suppress content within this band [ Fig. 2 (d)]. Al-

hough the frequency responses in Fig. 2 (d) will differ for multi-

omponent signals, their similarity for mono-components suggests

hat the pre-processing bandpass filters may be the most influen-

ial discriminating factor. 

Most of the significant spectral features (5/7) are specific to the

5–30 Hz band ( Fig. 5 ). And almost all spectral features (11/12) in

requency bands < 15 Hz performed poorly ( p > 0.05). This sug-

ests that frequency-weighted energy measures, which all operate

 20 Hz, rely heavily on amplitude and not on spectral character-

stics. Yet the feature set always ( Table 2 ) included the envelope–

erivative operator, implying that there is value in including a fea-

ure which multiplies frequency by amplitude. In addition, both

mplitude and frequency features were frequently ( > 90%) in-

luded by the feature selection process ( Table 2 ). Future work

ould develop features to further exploit spectral differences. For

xample, the burst-to-inter-burst spectral ratio in Fig. 2 (c) could be

pplied in a spectral density correlator [30] . This type of matched

lter correlates a received signal (EEG PSD) with a template (PSD

stimate of bursts). 

The two threshold methods, static and adaptive, produced sim-

lar results: better sensitivity with the static threshold and better

pecificity with the adaptive threshold. The static threshold may

e a more robust approach however, as the adaptive threshold will

ail in continuous or inactive EEG and will hinder a real-time im-

lementation because of the required time-lag involved in thresh-

ld estimation. 

Agreement between the detector and reviewer annotations

as moderate ( κ = 0 . 65 and 0.72) with broad CIs, similar to

greement between the reviewers ( κ = 0 . 60 ). The seemingly high



J.M. O’Toole et al. / Medical Engineering and Physics 45 (2017) 42–50 49 

sens. spec. sens. spec.
0

10

20

30

40

50

60

70

80

90

100
%

static threshold adaptive threshold

***

***

(a)

sens. spec. sens. spec.
0

10

20

30

40

50

60

70

80

90

100

%

static threshold adaptive threshold

***

***

(b)

Fig. 6. Detector using the static threshold, T thres = 0 , and adaptive threshold, T thres = mean { D [ x (n )] } , for (a) time-based assessment and (b) event-based assessment. Circles 

represent sensitivity (sens.) and specificity (spec.) for each infant, and squares represent median values. Statistical significance: ∗∗∗ p < 0.001, Wilcoxon signed-rank test. 

Table 4 

Agreement between reviewers’ annotations (A1 and A2) and detection method. 

AUC Cohen’s κ bias, prevalence 

median (95% CI) median (95% CI) 

detector vs. A1 0.844 (0.769, 0.916) 0.651 (0.316, 0.807) 0.08, 0.27 

detector vs. A2 0.850 (0.649, 0.925) 0.721 (0.363, 0.831) 0.05, 0.16 

A1 vs. A2 a 0.815 (0.720, 0.879) 0.604 (0.213, 0.735) 0.15, 0.25 

a Average AUC from A1 vs. A2 and A2 vs. A1. 

Key: CI, confidence intervals; AUC, area under the receiver operator characteristic. 
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Fig. 7. Differences in estimation of three features: (a) median duration of inter-burst interval (IBI), (b) maximum duration of IBI, and (c) ratio of bursts to inter-bursts. Plots 

show absolute differences for the 3 features between reviewers’ annotations (A1 and A2) and proposed detection method (using the static threshold). Pair-wise comparisons: 

either not significant (ns), ∗ for p < 0.05, or ∗∗∗ for p < 0.001 using the Wilcoxon signed-rank test. 
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erformance for the detector with the consensus annotation (AUC

f 0.99, Table 3 ) drops to 0.84 and 0.85 when tested on the two

nnotations separately, reflecting the level of inter-rater agreement

etween human experts ( Table 4 ). Our findings are consistent with

nown agreement rates: Palmu et al. reported rates of between

1% and 86% [23] and Murphy et al. reported rates of 71% with

appa values between 0.53 and 0.66 [6] , although both studies

ncluded three, not two, annotations. This moderate inter-rater

greement highlights the inconsistencies in annotating bursts in

reterm EEG and will limit the efficacy of any machine learning

pproach. 
v  
There is a clear advantage to an automated approach for the es-

imation of summary statistics of the burst annotation compared to

isual interpretations ( Fig. 7 ). Visual annotations will vary because

f only moderate inter-rater agreement. The objectivity of the algo-

ithm will decrease variability within these measures and therefore

ncrease the reliability of preterm EEG analysis. 

This study has several limitations. The proposed method was

eveloped on EEG from infants with gestational ages ranging from

3 to 30 weeks, thus we are uncertain of how the method will

erform for infants older than 30 weeks. The EEG data was largely

rtefact free, representative of a realistic sample of EEG used for

isual analysis by clinical physiologists. For recordings with major
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artefacts, it may be necessary to include a pre-processing artefact

detection system to assess the quality of the EEG [31,32] . Although

we have compared the method to existing detection methods, a

fair comparison is difficult as methods were developed on differ-

ent channel montages, with single channel or multi-channel im-

plementations, and with different underlying definitions of bursts

and inter-bursts [6,17,23] . Nonetheless, our results indicate that the

multi-feature approach, with data-driven combination rules, better

captures the complexity of the burst waveform compared to the

single-feature approach. Although our method was developed on

a larger EEG data set of preterm infants ( n = 36 ) compared to ex-

isting methods ( n = 18 and n = 16 [17,18] ) the proposed method

requires validation on a large, independent data set. 

5. Conclusions 

An important stage for the automated analysis of preterm EEG

is to distinguish between bursts and inter bursts. We show that

using a combination of features improves detection performance

over existing methods. We also show that automated methods of

detection improve the reliability of estimates of the median inter-

burst interval and the burst-to-inter-burst ratio. Improving burst

detection will improve downstream analysis of preterm EEG such

as tracking maturation and predicting neurodevelopmental delay

[7,9] . 
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