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Background: Laryngeal squamous cell carcinoma (LSCC) is the prominent cancer in head and neck, 
which greatly affects life quality of patients. The pathogenesis of LSCC is not clear. Presently, the LSCC 
treatments include chemotherapy, surgery and radiotherapy; however, these methods have poor efficacy in 
patients with recurrent and persistent cancer. Therefore, the study identified the hub genes accompanied 
with LSCC, which may be a potential therapeutic target in the future.
Methods: We extracted whole transcriptome high-throughput sequencing (HTS) LSCC data from The 
Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases and calculate differentially 
expressed genes (DEGs) between LSCC and normal samples using statistical software RStudio. Through 
weighted gene co-expression network analysis (WGCNA), enrichment examination of Kyoto Encyclopedia 
of Genes and Genomes (KEGG) pathways and Gene Ontology (GO) functions, and examination of protein-
protein interaction (PPI) network, we obtained network hub genes and validated the hub genes prognostic 
value and expression levels of protein.
Results: Through analysis of differential gene expression, from the GEO and TCGA databases 2,139 
and 2,774 DEGs were obtained, respectively, 13 and 15 modules were screened from TCGA-LSCC and 
GSE127165 datasets by WGCNA, respectively. The most significant positive and negative correlation 
modules in the WGCNA and DEG lists were overlapped, and overall 36 co-expressed overlapping genes 
were retrieved. Through enrichment analysis of GO and KEGG, it was found that the gene functions were 
highly concentrated in cell junction assembly, basement membrane, extracellular matrix (ECM) structural 
constituent etc., and the pathways were mainly concentrated in ECM receptor interaction, focal adhesion, 
small cell lung cancer, and toxoplasmosis. Through analysis of PPI network analysis, 10 network hub genes 
(SNAI2, ITGA6, LAMB3, LAMC2, CAV1, COL7A1, GJA1, EHF, OAT, and GPT) were obtained. Finally, 
survival analysis and protein expression validation of these genes confirmed that low OAT expression and 
high CAV1 expression remarkably influenced the survival of patient’s prognosis with LSCC.
Conclusions: We recognized the hub genes and key modules nearly associated to LSCC and these 
genes were validated by survival analysis and the database of Human Protein Atlas (HPA), which is of high 
importance for unveiling the pathogenesis of LSCC and probing for new precise biological marker and 
potential therapeutic targets.
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Introduction

Laryngeal squamous cell carcinoma (LSCC) is the 
prominent cancer in head and neck, which greatly affects 
life quality of patients. According to the latest European 
Head and Neck Society (EHNS)-European Society 
for Medical Oncology (ESMO)-European Society for 
Radiotherapy and Oncology (ESTRO) clinical practice 
guidelines, the incidence is 4.6/100,000 and the year 
relative survival rate is 61% (1). The pathogenesis of LSCC 
is not clear and is presently believed in the involvement 
of the synergistic effect of numerous carcinogenic factors 
like alcohol consumption, smoking, human papillomavirus 
(HPV) infection and environmental factors (2). Presently, 
the LSCC treatments include chemotherapy, surgery and 
radiotherapy; however, these methods have poor efficacy in 
patients with recurrent and persistent cancer (3). Therefore, 
there is an urgent need to recognize the hub genes 
accompanied with LSCC and identify novel therapeutic 
targets.

With modern creation evolution of genomics and high-
throughput sequencing (HTS) technology, numerous 
gene datasets store a high quantity disease gene expression 
information and clinical information (4,5), which lays a 
foundation for evaluating the mechanism of disease at the 
molecular level and biological gene functions through 
bioinformatic analysis. Analysis of weighted gene co-
expression network analysis (WGCNA) is a systematic 

bioinformatic analysis which is used to recognize modules 
of co-expressed genes which are greatly associated with 
clinical practice. WGCNA promotes screening methods 
of complex-based differential genes that can recognize 
potential biological markers and therapeutic targets (6).

In the present study, WGCNA and examination of 
differential expression of genes were conducted on whole 
transcriptome of LSCC sequencing data from The Cancer 
Genome Atlas (TCGA) and Gene Expression Omnibus 
(GEO) datasets, and co-expressed differential genes and key 
modules were obtained. Through Gene Ontology (GO) 
and enrichment analyses of Kyoto Encyclopedia of Genes 
and Genomes (KEGG), examination of protein-protein 
interaction (PPI), survival analysis, protein expression 
validation, we further explored the molecular mechanism of 
the incidence and growth of LSCC.

Methods

Collation of data from TCGA and GEO database

Data of gene expression in LSCC were copied from 
TCGA database (7) (https://portal.gdc.cancer.gov) and 
GEO databases (8) (https://www.ncbi.nlm.nih.gov/gds). All 
expression matrices and correlated clinical data of LSCC 
were copied through the R package TCGAbioLinks (9) in 
TCGA database. Overall, 123 samples were collected, 
including 111 cases of LSCC and 12 cases of normal tissue 
(see Table 1). In the GEO database, the large-sample HTS 
database GSE127165 was obtained using the R package 
GEOquery (10) and included 57 LSCC tissue samples and 
57 adjacent normal mucosal tissue samples (see Table 2) (11).  
The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013).

Screening of differentially expressed genes (DEGs)

RStudio statistical software (12) (version 1.3.959; https://
rstudio.com/) and Bioconductor packages (13) (http://www.
bioconductor.org/) were employed in the bioinformatic 
analysis of LSCC and normal tissue samples. First, raw data 
from the TCGA database and GEO dataset GSE127165 
were gathered and brought up in accordance to the RStudio 
input file format software. Heatmaps and volcano plots of 
DEGs were drawn by the R packages limma, edgeR, ggplot2, 
and pheatmap (14-17). The adjusted (adj.) P values <0.05 and 
|logfold change (logFC)| >1 were determined statistically 
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Table 2 Basic characteristics of 57 LSCC samples in dataset 
GSE127165

Parameters Number of cases (%)

Age (years)

≤60 31 (54.4)

>60 26 (45.6)

Gender

Female 4 (7.0)

Male 53 (93.0)

Primary site

Glottic 30 (52.6)

Supraglottic 21 (36.8)

Subglottic 2 (3.5)

Transglottic 4 (7.0)

Differentiation

High 8 (14.0)

Medium 37 (64.9)

Low 12 (21.1)

T staging

T1 21 (36.8)

T2 13 (22.8)

T3 17 (29.8)

T4 6 (10.5)

Metastasis of cervical lymph node

N0 43 (75.4)

N+ 14 (24.6)

Distant metastasis

M0 57 (100.0)

M1 0 (0.0)

Clinical stage

I 20 (35.1)

II 10 (17.5)

III 15 (26.3)

IV 12 (21.1)

LSCC, laryngeal squamous cell carcinoma.

Table 1 Basic characteristics of 111 LSCC samples in dataset 
TCGA

Parameters Number of cases (%)

Age (years)

≤60 47 (42.3)

>60 64 (57.7)

Gender

Female 20 (18.0)

Male 91 (82.0)

T staging

T1 7 (6.3)

T2 12 (10.8)

T3 25 (22.5)

T4 54 (48.6)

Unknown 13 (11.7)

Metastasis of cervical lymph node

N0 39 (35.1)

N1 12 (10.8)

N2 39 (35.1)

N3 2 (1.8)

Unknown 19 (17.1)

Distant metastasis

M0 40 (36.0)

M1 1 (0.9)

Unknown 70 (63.1)

Clinical stage

I 2 (1.8)

II 9 (8.1)

III 14 (12.6)

IV 71 (64.0)

Unknown 15 (13.5)

LSCC, laryngeal squamous cell carcinoma; TCGA, The Cancer 
Genome Atlas.
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significant.

WGCNA

WGCNA is a systematic bioinformatic method. It is a 
network-based gene screening method that explores the 
complex relationships between highly correlated gene 
modules and disease phenotypes in different samples (18,19). 
R package WGCNA (6) in RStudio were used to carry out 
WGCNA for the LSCC gene expression data in TCGA 
and GEO databases. First, the sorted raw data were input, 
sample information and clinical data were read, and the 
LSCC tissue samples and normal samples were gathered. 
To construct the biological hub network, we fixed the 
optimal power value using function PickSoftThreshold to 
calculate the gene co-expression fitting index and average  
connectivity (20). The corresponding relationship was then 
transfigured to a topological overlap matrix (TOM), that 
was employed for sorted gathering of genes and modules 
of rigidity was recognized, and identical modules were 
gathered and merged (21). Then, the listing of genes of 
every single module, tree diagram of gene-module, and 
module-trait relationship diagram were output (22).

Overlapping of DEG analysis and WGCNA

We used R package VennDiagram (23) and intersected 
DEGs and WGCNA results to get the associated genes of 
LSCC. First, the modules with the most significant positive 
and negative associations with LSCC samples in module-
trait relationship diagrams were obtained, intersected the 
module genes with positive and negative correlations with 
DEGs, and then drew two Venn diagrams. Finally, the hub 
intersection genes in the two Venn diagrams (24) were 
combined to obtain the final genes related to LSCC.

Functional and pathway enrichment analysis

The R packages org.hs.eg. db, clusterProfiler, enrichplot, and 
ggplot2 (16,25) were used for conducting GO analysis of 
genes associated to LSCC, consisting of cell components 
(CCs), biological processes (BPs), and molecular functions 
(MFs) (26). These genes were analyzed by the KEGG (27)  
to probe the biological functions and key pathways nearly 
correlated with the occurrence and development of  
LSCC (28). Statistical significance was fix at P<0.05.

PPI network establishment and hub genes probing

The PPI network can provide interaction information 
for various proteins and help identify key genes and 
important modules implicated in the growth of LSCC (29).  
The Search Tool for the Retrieval of Interacting Genes 
(STRING) database (http://www.string-db.org/) was 
employed for establishing PPI network of candidate  
genes (30). Genes with minimum required interaction score 
≥0.500 were selected to construct a whole network model 
that was further anticipated in Cytoscape software (http://
www.cytoscape.org). Using plugin Cytohubba, the leading 
10 genes with maximal clique centrality (MCC) from the 
candidate genes as network hub genes were chosen and 
visualized them (31).

Hub genes prognostic value

To validate the hub genes credibility, the interrelationship 
among overall survival (OS) and hub genes was tested by 
survival analysis of Kaplan-Meier. Using R package survival 
and survminer depending on TCGA database clinical 
data (32). We employed the online tool Gene Expression 
Profiling Interactive Analysis 2 (GEPIA2; http://gepia2.
cancer-pku.cn/) to identify association between disease-free 
survival (DFS) and hub genes in LSCC patients (33). In this 
research work, complete follow-up information of patients 
was checked for analyze further, split as two divisions 
according to the hub genes median expression. Cut-off 
criteria genes of P<0.05 were regarded to be hub genes 
related to survival prognosis.

Protein expressions validation of prognostic-associated hub 
genes

In addit ion,  immunohistochemistry (IHC) of the 
Human Protein Atlas (HPA) (https://www.proteinatlas.
org/) database was employed to recognize the protein 
expression levels of genes associated with survivance 
among LSCC tissues and normal tissue samples (34). 
The HPA is a noteworthy dataset that gives researchers 
with transcriptome and proteomic information on a large 
number of diseased and normal tissue samples (35).

Statistical analysis

All statistical analyses were performed with RStudio 
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http://gepia2.cancer-pku.cn/
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https://www.proteinatlas.org/
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software (2021.09.2 Build 382) and Perl (v5.30.3). 
Differences were statistically significant at P<0.05.

Results

DEGs identification

From the TCGA dataset, LSCC gene expression and 
clinical data were copied. In total, 123 samples were 
collected, including 111 cases of LSCC and 12 cases of 
normal tissue. The HTS dataset GSE127165 was copied 
from the GEO dataset and 57 LSCC tissue samples and 
57 corresponding normal tissue samples were included. 
Next to data preprocessing and analysis of differential 
gene expression, 2,774 DEGs were obtained from 

TCGA database, including 1,404 upregulated DEGs 
and 1,370 downregulated DEGs (Figure 1A), and 2,139 
DEGs, including 1,095 upregulated DEGs and 1,044 
downregulated DEGs, were obtained from the GSE127165 
dataset (Figure 1B). The top 50 DEGs with the most 
significant upregulation and downregulation are displayed 
by heat maps of genes (Figure 1C,1D). Adj. P values <0.05 
and |logFC| ≥1 were used as the cut-off criteria.

WGCNA of whole transcriptome gene expression matrix

To identify identical expression trend of genes and analogy 
of biological functions, weighted gene co-expression 
network was constructed based on the RNA-sequencing 
(RNA-seq) count data of 14,556 genes in TCGA-LSCC 
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Figure 1 DEGs identification among TCGA and GEO databases of LSCC with the cut-off criteria of |logFC| ≥1.0 and adj. P<0.05. 
Volcano graphs of DEGs in the TCGA (A) and GEO (B) databases. Heat maps of the top 50 DEGs in the TCGA (C) and GEO (D) 
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and 25,522 genes in the GSE127165 database. We 
recognized 13 modules from the TCGA-LSCC database 
(Figure 2A) and 15 modules from the GSE127165 dataset 
(Figure 2B) and module-trait diagrams were plotted to 
assess the relationship among every module and clinical 
phenotypes (tumor and normal). As shown in Figure 2C,2D, 
the MEturquoise module in TCGA-LSCC and the MEred 
module in GSE127165 had the greatest negative correlation 
with LSCC tissue, however the MEcyan module in TCGA-
LSCC and the MEblack module in GSE127165 had the 
greatest positive correlation with LSCC tissue.

Gene recognition among WGCNA modules and the DEGs 
lists

According to analysis of differential expression and 
WGCNA, there were 2,774 DEGs in the TCGA-LSCC 
database and 2,139 DEGs in the GSE127165 database, 
3,683 and 1,620 co-expressed genes in the MEturquoise 
module of TCGA-LSCC and the MEred module of 
GSE127165, respectively, and 249 and 1,409 co-expressed 
genes in the MEcyan module of TCGA-LSCC and the 
MEblack module of GSE127165, respectively. Overall 36 
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Figure 2 Recognition of modules correlated to clinical phenotype among TCGA and GEO databases of LSCC. Gene-module tree diagrams 
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intersecting co-expressed genes were retrieved for further 
analysis (Figure 3A,3B).

Thirty-six genes functional and pathway enrichment 
examination

GO functional and enrichment examination of KEGG 
pathway were conducted on the 36 intersecting co-expressed 

genes by the R package cluster profiler. GO functional 
enrichment analysis (Figure 4A) exhibited that the BP of 
the 36 genes were mainly concentrated in hemidesmosome 
assembly, cell junction assembly, and fat cell differentiation. 
Regarding CC, these genes were determined to be greatly 
associated to the basement membrane and collagen-
containing extracellular matrix (ECM). In addition, in 
analysis of MF, ECM structural constituents and coenzyme 
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binding were considered to be associated to these 36 genes. 
Through enrichment examination of KEGG pathway 
(Figure 4B), we demonstrated that binding of ECM-
receptor interaction, focal adhesion, small-cell lung cancer, 
toxoplasmosis, and HPV infection are nearly associated to 
these genes.

Hub genes acquisition by PPI network analysis

Using STRING database, we constructed a PPI network of 
the 36 overlapping co-expressed genes (Figure 5A). Using 
plug-in Cytohubba in the software Cytoscape, hub genes 
were chosen from the PPI network by the MCC algorithm 
are shown in Figure 5B. The top 10 hub genes in network 
are SNAI2, ITGA6, LAMB3, LAMC2, CAV1, COL7A1, 
GJA1, EHF, OAT, and GPT.

Survival analysis and hub genes protein expression 
validation

Through the above analyses, the leading 10 network hub 
genes (SNAI2, ITGA6, LAMB3, LAMC2, CAV1, COL7A1, 
GJA1, EHF, OAT, and GPT) were identified. Also by using 

the R package and GEPIA2 database survival analysis, OS 
and DFS examination of the 10 hub genes were carried out 
to investigate their prognosis in patients with LSCC. OS 
analysis showed that downregulation of OAT expression 
was remarkably associated with worse patients’ prognosis 
with LSCC (P<0.05) (Figure 6A), while DFS analysis 
recommended that high expressive CAV1 was closely related 
with worsening prognosis (P<0.05) (Figure 6B). Furthermore, 
depending on the HPA database, the OAT gene protein 
expression was remarkably reduced in tumor tissues 
compared with that in normal tissues (Figure 7A), while the 
CAV1 expression was remarkably increased (Figure 7B).

Discussion

Laryngeal carcinoma (LC) is a malignant neoplasm that 
occurs in supraglottic, glottic, and subglottic regions. 
Squamous cell cancer (SCC) is the prominent type of 
cancer. At present, LSCC mainly adopts the comprehensive 
treatment strategy of surgical adjuvant chemoradiotherapy; 
however, due to the absence of accurate molecular targets, 
especially for patients with higher clinical stages, the 
prognosis is often poor. Therefore, recognizing novel 
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Figure 6 The leading 10 hub genes survival analysis of LSCC patients. (A) OS examination for OAT in LSCC by survival of R package. (B) 
Analysis of DFS for CAV1 in LSCC from the GEPIA2 database. Stratified the patients into high-level group (red) and low-level group (green) 
based on the median expression of gene. P<0.05 was a statistically remarkable variation. TPM, transcript per million; HR, hazard ratio; 
LSCC, laryngeal squamous cell carcinoma; OS, overall survival; DFS, disease-free survival; GEPIA2, Gene Expression Profiling Interactive 
Analysis 2.

biological indicators and therapeutic targets is crucial for 
improving prognosis and LSCC patient’s survival. In the 
present study, we employed bioinformatic analysis methods 
such as WGCNA to recognize 36 co-expressed DEGs in 
the TCGA-LSCC and GSE127165 databases. The gene 
functions were mainly exacerbated in cell junction assembly, 
basement membrane, and ECM structural constituents, and 
the pathways were highly concentrated in ECM-receptor 
interaction, focal adhesion, small cell lung cancer and 
toxoplasmosis. In addition, the top 10 hub genes (SNAI2, 
ITGA6, LAMB3, LAMC2, CAV1, COL7A1, GJA1, EHF, 
OAT, and GPT) were identified using the established 
PPI network. Low expressed OAT and high expressed 
CAV1 remarkably influenced the LSCC patients’ survival 
prognosis. Finally, our conclusions were confirmed by OS, 
DFS, and IHC analyses of OAT and CAV1.

OAT, a mitochondrial enzyme, is found highly in the liver, 
intestine, kidneys, and brain. An important role is to regulate 
the signaling molecules and mediators generation. OAT 
deficiency leads to cyclotron atrophy, an uncommon but 
serious genetic disorder, then illustrating the significance of 
this enzyme (36). Also the differential expression of OAT has 
been shown to be resulted in hepatocellular carcinoma (37),  
non-small cell lung cancer (38), and retinoblastoma (39).  
In this research work, the OAT expression level in LSCC 

tissues was significantly downregulated and nearly associated 
with survival prognosis. CAV1 is an oncogenic membrane 
protein involved in endocytosis, metabolic alterations, cell 
migration, and signal transduction (40). One study found 
that the overexpression and secretion of CAV1 is related to 
the occurrence and progression of prostate cancer (41), and 
is closely linked with the migration, apoptosis, proliferation 
and drug impedance of lung cancer cells, and can be labeled 
as a prognostic factor for lung cancer (42). In addition, 
experimental data have shown that CAV1 can induce the 
expression of fucosyl transferase Pofut1 and enhance the 
metastasis and infiltration of mouse liver cancer cells in vitro 
and in vivo by activating the Notch and MAPK signaling 
pathways (43). The results indicate that WGCNA and other 
comprehensive bioinformatic analyses can reveal novel 
pathogenic genes and supply rich reference resources for 
further experimental verification.

Conclusions

In conclusion, through comprehensive bioinformatics 
analysis, we identified hub genes and key modules that 
are closely associated with LSCC incidence and growth, 
and verified these genes by survival analysis and protein 
expression. Our study is of high importance to uncover the 
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pathogenesis of LSCC and probe for new precise biological 
markers and potential therapeutic targets. However, studies 
on different subtypes and stages of LSCC are limited. Many 
experiments are required to further validate the genes 
associated with pathogenesis and prognosis of LSCC.
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