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Oncogenic fusion proteins expressed in immature hematopoietic
cells fail to recapitulate the transcriptional changes observed
in human AML
N Rapin1,2,3,4 and BT Porse1,2,4

Reciprocal chromosomal translocations are observed in one-third of acute myeloid leukemia (AML) cases. Targeting and
understanding the effects of the resulting aberrant oncogenic fusion proteins may help developing drugs against specific leukemic
subtypes, as demonstrated earlier by the use of ATRA in acute promyelocytic leukemia. Hematopoietic stem/progenitor (HSPCs)
cells transduced with oncogenic fusion genes are regarded as promising in vitromodels of their corresponding AML subtypes. Here,
we critically assessed the potential of such in vitro models using an integrative bioinformatics approach. Surprisingly, we found that
the gene-expression profiles of CD34þ human HSPCs transformed with the potent oncogenic fusion proteins AML-ETO or
MLL-AF9, only weakly resembled those derived from primary AML samples. Hence, our work raises concerns as to the relevance of
the use of in vitro transduced cells to study the impact of transcriptional deregulation in human AML.
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INTRODUCTION
Acute myeloid leukemia (AML) arises from the transformation of
normal hematopoietic stem/progenitor cells (HSPCs) mediated by
mutations or chromosomal aberrations that are essential drivers of
the leukemic process1–3 In particular, chromosomal rearrange-
ments leading to the expression of oncogenic fusion proteins are
frequent in AML and have been widely studied.3,4 Genes targeted
by chromosomal rearrangements often encode transcriptional
or epigenetic regulators and, consequently, expression of the
resulting fusion proteins is associated with transcriptional
deregulation of gene expression programs in the targeted cells.
Indeed, gene expression profiling studies have shown that distinct
oncogenic fusion proteins are associated with distinct gene-
expression signatures thus, providing a molecular explanation for
their differential impact on prognosis and survival.5,6

The importance of oncogenic fusion proteins in leukemogenesis
is further supported by the ability of several of these to transform
HSPCs in vitro.7–13 Examples are fusion proteins such as MLL-ENL
and MLL-AF9 (representative of translocations involving the MLL1
locus at 11q23) as well as AML-ETO (t(8;21)), which can transform
HSPCs from both mouse and human.4,14,15 This have led to
widespread use of fusion protein-driven tissue culture models of
AML; however, the extent to which these faithfully mirror the
transcriptional changes in primary human AMLs have not been
rigorously tested.

We have recently developed a bioinformatics pipeline that
allow us to identify transcriptional differences between cancer
and its nearest normal counterpart.16 In the present study, we
used this approach to ask to what extent the gene expression
changes conferred by the expression of either MLL-AF9 or
AML-ETO in CD34þ HSPCs mirrored those observed in primary
AML patient blasts.

RESULTS AND DISCUSSION
In order to determine the extent to which fusion protein-
expressing HSPCs cultured in vitro mirrored the transcriptional
changes observed in primary leukemic blasts, we collected
microarray-based gene expression data from several sources
(Table 1). These include normal HSPCs, empty vector-, MLL-AF9-
and AML-ETO-transduced CD34þ cells cultured in vitro (6 h, 3 d or
8 d after transduction) as well as primary leukemic blast from
patients with corresponding karyotypic lesions. Using our recent
cancer versus normal (CvN) approach based on principal
component analysis (PCA), we mapped gene expression profiles
from in vitro cultured cells and patient samples onto the gene
expression landscape of normal hematopoiesis (Figure 1a).16

Strikingly, we find that the transduced cells cluster tightly as a
function of time but independent of the expression of the
transforming oncogene. Moreover, the oncogene-transduced
CD34þ cells map nowhere near their respective patient
counterparts. Therefore, these findings suggest that the main
driver of the transcriptional changes of transduced cells is related
to the culturing process and not to the expression of the
oncogenic fusion protein. Indeed, when we quantify the extent of
differentiation using a newly defined ‘stemness’ score, we find
that the transduced cells progressively lose stemness (that is, they
differentiate) over time in a manner independent of the
expression of the fusion oncogene (Figure 1b).

We next used hierarchical clustering of the gene expression
data sets of normal HSPCs, transduced cells and primary AML
blasts to further assess their relationship (Figure 1c). In line
with the PCA, we find that transduced CD34þ cells form a
distinct cluster embedded in the normal HSPCs and that their
behavior was independent of the expression of oncogenic fusion
protein. Importantly, the patient samples harboring either MLL
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rearrangements or the AML-ETO translocation formed distinct
clusters clearly separated from normal HSPCs and transduced cells
(Figure 1c).

We next focused on the top 1% genes that were selectively
upregulated in AML blasts versus their nearest counterpart using
the CvN approach, as well as on the top 1% genes upregulated in
cultured cells following fusion gene expression (Figure 1d).
Specifically, we used a hypergeometric test to score the
enrichment of genes belonging to previously reported gene-
expression signatures associated with MLL-rearranged or t(8; 21)-
driven AML. Strikingly, and in contrast to the primary AML
samples, the expression of these signatures was only marginally
enriched in fusion protein-expressing cultured cells, clearly
demonstrating that they fail to induced the transcriptional
program associated with the presence of these lesions in human
AML (Figure 1d).

Next, we took a more gene-centric approach and identified
deregulated genes (|log2 FC|41, Po5e� 3, moderated t-test) in
either fusion protein-transduced cells or in AML blasts. This
analysis revealed a very limited overlap between genes exhibiting
deregulated expression in both transduced CD34þ cells and in
AML blasts harboring corresponding karyotypic lesions (Figures 1e
and f). Furthermore, when we attempted to correlate the extent of
deregulation of aberrantly transcribed genes in transduced
CD34þ cells with that observed in leukemic blasts, the correlation
was very poor (Figures 1g and h). However, we do note that a
subset of well-known MLL-fusion target genes, including HOXA9
and MEIS1,17,18 exhibit very similar patterns of deregulation in
MLL-rearranged AML and MLL-AF9-transduced CD34þ cells. This
suggests that enforced expression of MLL-AF9 in CD34þ is able
to recapitulate some, albeit a minor fraction, of the transcriptional
changes associated with MLL-rearranged AML.

Finally, we took a pathway-centric approach to compare the
transcriptional changes in AML blasts with those in transduced
CD34þ cells. Specifically, we first identified gene signatures
found to be significantly (Po1e� 5, hypergeometric test)
deregulated in AML blasts versus normal cells.16 We next report
their median fold changes, relative to control and nearest
normal counterparts, in transduced CD34þ cells and in a subset
of AML blast samples, respectively (Figure 2). Strikingly, while
gene signatures associated with cell cycle processes are generally
downregulated in AML blasts, we note that the transduced
CD34þ cells only exhibit a transient downregulation of these
pathways. Such behavior could potentially be associated
with an adaptation to the culture conditions. Similarly, pathways
found to be frequently upregulated in cancer patients,19–21 such
as immune response and various signaling pathways, are
either unaffected or show opposite trends in transduced
CD34þ cells compared with AML blasts. Hence in conclusion,
the pathway-centric analyses clearly demonstrate that AML
blasts and oncogene-transduced CD34þ cells express distinct
transcriptional programs.

Previously, Wei et al.15 reported good correlations between the
transcriptional profiles derived from long-term cultures of
transformed human cells and leukemic cells from patients with
either MLL-rearranged or core-binding factor AML. However, only
a small selection of genes found to be differentially expressed
between the two AML subtypes were used to classify the in vitro-
transformed cells, meaning that only a limited selection of the
entire transcriptome was probed in that study. In contrast, here we
have used an unbiased bioinformatics approach to analyze gene-
expression profiles of AML blasts, normal HSPCs as well as
transduced CD34þ to assess the extent to which the latter are
likely to constitute good experimental surrogates of human AML.

Table 1. Source of the data

Type Cell types included Reference (GEO accession)

Normal hematopoiesis Hematopoietic stem cells; multi-potent progenitors; common myeloid progenitors;
granulocyte–monocyte progenitors; megakaryocyte–erythrocyte progenitors; early
promyelocytes; late promyelocytes; myelocytes; metamyelocytes; band cells;
polymorphonuclear neutrophilic granulocytes; monocytes

Rapin et al.16 (GSE42519)

Transformed CD34þ
hematopoietic cells

Empty vector control CD34þ cells at 6 h, 3 days and 8 days; MLL-AF9-transformed
CD34þ cells at 6 h, 3 days and 8 days; AML1-ETO-transformed CD34þ cells at 6 h,
3 days and 8 days; AML1-ETO, MLL-AF9

Abdul-Nabi et al.22 (GSE57194)

Acute myeloid
leukemia

Whole-bone marrow extracts from patients with AML with t(11q23)/MLL and AML
with t(8;21)

Haferlach et al.,11 Verhaak
et al.12,13 (GSE13159, GSE6891)

Abbreviation: AML, acute myeloid leukemia.

Figure 1. Side-by-side comparison of gene expression profiles derived from AML blasts and fusion gene-transduced CD34þ cells cultured
in vitro. (a) Mapping of relevant samples into the PCA space of the hierarchy of normal hematopoiesis. The replicates of the different
populations have been averaged into one data point for readability. Hematopoietic stem cells (HSCs); multi-potent progenitors (MPPs);
common myeloid progenitors (CMPs); granulocyte–monocyte progenitors (GMPs); megakaryocyte–erythrocyte progenitors (MEPs); early
promyelocytes (early PMs); late promyelocytes (late PMs); myelocytes (MYs); metamyelocytes (MMs); band cells (BCs); polymorphonuclear
neutrophilic granulocytes (PMN_BM); monocytes (Mono); empty vector control CD34þ cells at 6 h (c_6 h), 3 days (c_3 d) and 8 days (c_8 d);
MLL-AF9-expressing CD34þ cells at 6 h (mll_6 h), 3 days (mll_3 d) and 8 days (mll_8 d); AML-1ETO-expressing CD34þ cells at 6 h (eto_6 h),
3 days (eto_3 d) and 8 days (eto_8 d); leukemic blasts from patients with t(8;21) AML (AML with t(8;21)); leukemic blasts from patients with
MLL-rearranged AML (AML with t(11q23)/MLL). The PCA was performed on 2119 probe sets selected by variance filtering.16 (b) Stem cell score
of gene expression profiles of transformed cells, AML blasts and normal HSPCs. (c) Hierarchical clustering of samples in (a) using genes from
the gene signatures RAPIN_CVN_t(8;21)_up/_dn and RAPIN_CVN_t(11q23)_MLL_up/_dn.16 (d) AML1-ETO- and MLL-published gene signatures
enrichment represented as –log(P-value) for transformed cells and AML blasts (MLL signatures *Po0.05, **Po0.001, ***Po1e5; AML1-ETO
signatures 1Po0.05, 11Po0.001, 111Po1e5). (e) Overlap between genes deregulated (|log2-fold change|41, Po5e� 3, moderated t-test) in
AML with t(8;21) versus normal cells and AML1-ETO-transduced CD34þ cells versus control after 8 days of culture. (f ) Overlap between genes
deregulated (|log2-fold change|41, Po5e� 3, moderated t-test) in AML with t(11q23)/MLL versus normal cells and MLL-AF9-transduced
CD34þ cells versus control after 8 days of culture. (g) Correlation between the extent of deregulation in AML with t(8;21) and transduced
CD34þ cells of the genes selected in e. Genes displaying good correlation (AML blast fold change¼ transduced CD34þ cells fold
change±0.25) are depicted. (h) Same as g for MLL-rearranged AML using genes selected in f.
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Strikingly, we only observed a limited overlap between the fusion
protein-driven gene expression changes in culture and those
observed in AML blasts. We can only speculate as to the
underlying reasons, but likely candidates could be the lack of
additional mutations in the transduced CD34þ cells or the failure
of the culture conditions to recapitulate the ‘leukemic’ niche in
which AML blasts are normally residing. AML is not a monogenic
disease and different driver mutations may deregulate distinct
transcriptional programs or even collaborate to deregulate others.
Similarly, human leukemic blasts are inherently difficult to grow in
culture, suggesting that they receive distinct signals from the
‘leukemic’ niche that current culture systems fail to recapitulate. In
conclusion, whereas fusion protein-expressing in vitro models
certainly mimic some features of their corresponding AML, our

work clearly demonstrate that they only recapitulate parts of the
transcriptional deregulation observed in primary patient-derived
leukemic material. Hence, our findings raise concerns as to the
widespread use of fusion protein-expressing cultured HSPCs as a
tool to understand the biology of human AML.

MATERIALS AND METHODS
Microarray-based gene expression data from in vitro transformed HSPCs
(CD34þ controls and MLL-AF9/AML-ETO-transduced CD34þ cells at three
distinct time points following transduction)22 and primary AML blasts with
either MLL rearrangements or t(8;21) translocations11–13 were normalized
alongside with distinct subsets of normal human HSPCs, as described in
Rapin et al.16
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Following batch correction, we used PCA to construct a gene expression
landscape of normal hematopoiesis and subsequently mapped individual
CD34þ -derived and AML samples to this space, thereby allowing us to
identify the nearest normal counterpart for each sample. Fusion protein-
mediated gene expression differences within the in vitro data set were
calculated by comparing the fusion protein samples with vector controls
sampled at identical time points. Gene expression differences between
leukemic samples and corresponding normal were determined as
described previously.16,23 Genes were defined as deregulated by the
following criteria: |log2-fold change41|, Po5e� 3, Smyth’s moderated
t-test.24

To approximate the extent of cellular differentiation, we generated a
stem cell signature defined by genes that are downregulated continuously
at all stages of normal hematopoiesis, from stem cells to early
promyelocytes (Po0.05, t-test, see Rapin et al.16 for details and gene
list). We report the mean expression of the signature genes to quantify the
degree of maturation.

Using a hypergeometric test with the top 1% upregulated genes in
fusion protein-expressing CD34þ cells versus empty vector controls at
each time point, or AML blasts versus normal counterpart, we quantify the
enrichment of published AML t(8;21), MLL-fusion gene signatures9,16,25,26

as well as MSigdb26 signatures as described previously.16 For the gene

signatures, we also report the median fold change of all the genes in the
signature for each individual sample.16
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