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Abstract Ribosomes can stall during translation due to defects in the mRNA template or

translation machinery, leading to the production of incomplete proteins. The Ribosome-associated

Quality control Complex (RQC) engages stalled ribosomes and targets nascent polypeptides for

proteasomal degradation. However, how each RQC component contributes to this process remains

unclear. Here we demonstrate that key RQC activities—Ltn1p-dependent ubiquitination and

Rqc2p-mediated Carboxy-terminal Alanine and Threonine (CAT) tail elongation—can be

recapitulated in vitro with a yeast cell-free system. Using this approach, we determined that CAT

tailing is mechanistically distinct from canonical translation, that Ltn1p-mediated ubiquitination

depends on the poorly characterized RQC component Rqc1p, and that the process of CAT tailing

enables robust ubiquitination of the nascent polypeptide. These findings establish a novel system

to study the RQC and provide a framework for understanding how RQC factors coordinate their

activities to facilitate clearance of incompletely synthesized proteins.

DOI: 10.7554/eLife.27949.001

Introduction
Eukaryotic cells contain several cotranslational quality-control pathways that limit the production of

aberrant proteins and thereby maintain protein homeostasis. One such pathway is activated when a

ribosome fails to complete translation, leading to the recruitment of specialized factors that disas-

semble the stalled ribosome and facilitate degradation of the nascent protein (Brandman and

Hegde, 2016; Shoemaker and Green, 2012). A key effector of this process is the highly conserved

Ribosome-associated Quality control Complex (RQC), which in budding yeast comprises the E3

ubiquitin ligase Ltn1p, the ATPase Cdc48p, and the poorly characterized proteins Rqc1p and Rqc2p

(Brandman et al., 2012; Defenouillère et al., 2013; Verma et al., 2013)—the human homologs of

which are Listerin, VCP/p97, TCF25, and NEMF, respectively. The stalled translation complex is first

separated into subunits by ribosome splitting factors, allowing the small ribosomal subunit (40S) and

mRNA to be released. The RQC then recognizes and assembles on the large ribosomal subunit (60S)

that still contains a nascent polypeptide linked to a tRNA molecule (60S:peptidyl–tRNA). Ltn1p facili-

tates ubiquitination of the nascent chain while on the 60S subunit, marking the incompletely synthe-

sized protein for proteasomal degradation (Bengtson and Joazeiro, 2010; Shao et al., 2013).
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Additionally, Rqc2p recruits charged tRNAs to the 60S subunit to direct elongation of the nascent

protein with a Carboxy-terminal Alanine and Threonine extension, or CAT tail (Shen et al., 2015).

Structural analysis of the yeast RQC, identification of the tRNA molecules that co-purify with the

RQC, and biochemical characterization of failed nascent chains suggested that CAT tailing occurs on

the 60S subunit by a unique mechanism that does not require an mRNA template or the 40S subunit

(Shen et al., 2015). However, many questions about the mechanism of CAT-tail synthesis and the

consequences of elongating nascent polypeptides with CAT tails remain unanswered. Recent studies

have suggested that one function of CAT tails is to facilitate aggregation of nascent polypeptides

that fail to be ubiquitinated by Ltn1p (due to either disruptions in LTN1 or the absence of a suitable

ubiquitin acceptor). CAT tail-driven aggregation may limit the otherwise toxic effects of incomplete

translation products accumulating in the cytoplasm (Choe et al., 2016; Defenouillère et al., 2016;

Yonashiro et al., 2016). However, our understanding of the functions of CAT tails in the context of

an intact RQC or of the process of CAT tailing itself remains incomplete.

Previous studies have analyzed the RQC in vitro by using cell-free translation systems based on

rabbit reticulocyte lysates (Shao et al., 2013) or Neurospora crassa extracts (Doamekpor et al.,

2016). In the presence of a suitable mRNA substrate, both cell-free systems recapitulate Ltn1p-

dependent ubiquitination and thereby provide valuable insight into the mechanism by which Ltn1p

orthologs discriminate between elongating and stalled ribosomes (Shao et al., 2013) and the role of

the N-terminal domain of Ltn1p in binding the 60S subunit (Doamekpor et al., 2016). However, nei-

ther system recapitulates Rcq2p-dependent CAT tailing, leaving important unanswered questions

eLife digest Cells make proteins by reading instructions encoded in molecules called

messenger RNAs. Structures called ribosomes move along the messenger RNAs and translate the

coded instructions to build new proteins from building blocks known as amino acids. Normally, a

ribosome will encounter a stop signal on the messenger RNA, which ends translation and allows the

newly built protein to be released. Sometimes, however, ribosomes stall before they reach the

genuine stop signal, which can happen due to defects in the messenger RNAs or ribosomes.

To prevent incomplete proteins from accumulating and causing damage, cells contain a group of

other proteins called the Ribosome-associated Quality-control Complex (or RQC for short). This

quality-control complex is composed of three components that assemble on stalled ribosomes and

attach two different tags to the incomplete protein. One component adds a degradation tag called

ubiquitin. A second component works with the ribosome to tag the incomplete protein with a ‘tail’

that contains the amino acids alanine and threonine. These amino acids are abbreviated to A and T,

and are added to the end of the protein known as the ‘C-terminus’, so this tag is named a ‘CAT tail’.

Although all three RQC components are needed to degrade incomplete proteins, little was known

about why the CAT tails are added, or what the third component – a protein called Rqc1p – actually

does.

Osuna et al. have now investigated how the apparently unrelated activities of RQC components

are coordinated to destroy incomplete proteins. Ribosomes and RQC components from yeast cells

were extracted and mixed in the laboratory with a messenger RNA that stalls ribosomes. In this cell-

free system, the RQC components could still tag incomplete proteins with both ubiquitin and CAT

tails. Osuna et al. then used this system to show that the way the ribosome added amino acids to

form a CAT tail was different from how it normally builds proteins. The experiments also showed

that in order for the ubiquitin tags to be added efficiently, Rqc1p must be present, and in some

cases, the incomplete proteins also need to be ‘CAT tailed’.

When either were missing, very few ubiquitin tags could be added to the incomplete proteins.

The results show that the three core RQC components need to work together to degrade

incomplete proteins. This quality-control complex is also found in mice and humans, and mice with

mutations in the genes that encode RQC components often have damaged nervous systems. In the

future, researchers building upon these findings and other studies of the RQC may eventually

understand the relationship between the RQC and neurodegenerative diseases in humans.

DOI: 10.7554/eLife.27949.002
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about how CAT tails are synthesized and whether the two principal activities of the RQC—ubiquiti-

nation by Ltn1p and CAT tailing by Rqc2p—are functionally related.

Although many studies have identified Rqc1p/TCF25 as a core component of the yeast and mam-

malian RQC required for nascent-chain degradation (Brandman et al., 2012; Defenouillère et al.,

2013; Shao and Hegde, 2014), Rqc1p’s precise structural and functional roles in the complex

remain unclear. Previous work in yeast suggested that Rqc1p acts after Ltn1p to promote nascent-

chain degradation. This hypothesis emerged from two lines of evidence: The presence of polyubiqui-

tinated proteins in purified RQC depends on Ltn1p (and to a lesser extent on Rqc2p) but not on

Rqc1p or Cdc48p (Brandman and Hegde, 2016; Brandman et al., 2012); and recruitment of

Cdc48p to the 60S subunit requires Rqc1p and nascent-chain ubiquitination (Defenouillère et al.,

2013). However, these studies did not determine whether Rqc1p is necessary for ubiquitination of

the nascent chain itself or whether recruitment of Cdc48p requires a direct interaction with Rqc1p.

Therefore, the mechanism by which Rqc1p promotes nascent-chain degradation in vivo has

remained unclear.

In this study, we provide an in vitro characterization of the RQC in a budding-yeast extract that

uniquely recapitulates ubiquitination by Ltn1p and CAT tailing by Rqc2p, providing new insights into

RQC action in promoting degradation of stalled translation products.

Results

A cell-free system that recapitulates Rqc2p-mediated nascent-chain
elongation
Because CAT tails have thus far only been observed in S. cerevisiae (Choe et al., 2016;

Defenouillère et al., 2016; Shen et al., 2015; Yonashiro et al., 2016), we used S. cerevisiae

extracts to recapitulate Rqc2p-mediated elongation in vitro. Although S. cerevisiae has long been

used for in vitro translation (Hussain and Leibowitz, 1986; Iizuka et al., 1994; Rojas-Duran and Gil-

bert, 2012; Tarun and Sachs, 1995), these reactions are notoriously inefficient. Further exacerbating

this problem, we aimed to program these reactions with truncated mRNA substrates that trigger

quality control, which are translated less efficiently because they lack poly(A) tails that normally

enhance translation. Thus, we found it necessary to first establish an optimized protocol that could

reproducibly generate translation products that were detectable by immunoblotting (see Materials

and methods). Critical aspects of our protocol included: (1) lysing cells with a freezer mill under cryo-

genic conditions rather than by bead beating in the cold; (2) minimizing the number of lysis cycles;

(3) removing small molecules by dialysis rather than by size-exclusion chromatography; and (4) pro-

gramming translation reactions with an mRNA encoding a small protein (i.e., 23 kDa NanoLuc lucifer-

ase), which is translated more efficiently than an mRNA encoding a larger protein (e.g., 62 kDa

firefly luciferase).

To produce a substrate for the RQC, we used a truncated reporter mRNA that terminates with a

sense codon (i.e., does not contain a stop codon, 30–untranslated region (30-UTR), or poly(A) tail).

This type of mRNA substrate has been shown previously to generate a ribosome–nascent chain com-

plex stalled at the 30 end of the message (Becker et al., 2011; Shao et al., 2013). Our reporter

mRNA encodes a NanoLuc luciferase (NL) protein in which the seven native lysine residues have

been mutated to arginine to avoid potential confounding effects of lysine ubiquitination. The protein

also includes an N-terminal 3xHA tag (which is naturally devoid of lysines) to allow detection of trans-

lation products by immunoblotting.

Programming S. cerevisiae in vitro translation (ScIVT) reactions with a full-length control mRNA

that contains a stop codon and 30-UTR resulted in the time-dependent accumulation of a 23 kDa

product corresponding to 3xHA-NL (Figure 1A, left). In contrast, ScIVT of a truncated mRNA initially

produced a ~43 kDa mass-shifted product not observed in control reactions (Figure 1A, right), which

we hypothesized corresponded to a peptidyl–tRNA intermediate. Remarkably, as the reaction pro-

ceeded we observed the disappearance of the initial ~43 kDa product and concomitant accumula-

tion of smaller mass-shifted products ranging from 23 kDa to 43 kDa (Figure 1A, right). These mass-

shifted products were reminiscent of CAT-tailed species previously observed in vivo (Choe et al.,

2016; Defenouillère et al., 2016; Shen et al., 2015; Yonashiro et al., 2016).
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To further characterize the mass-shifted species, we added a sequence encoding a TEV protease

cleavage site (TCS) at the 30 end of our mRNA substrate (Shen et al., 2015) and determined the sus-

ceptibility of the mass-shifted species to TEV protease and RNase. We reasoned that a nascent poly-

peptide with its C-terminus covalently linked to a tRNA molecule would be liberated by either TEV

protease or RNase. In contrast, a nascent polypeptide containing an untemplated C-terminal amino-

acid extension (e.g., a CAT tail) would be cleaved by TEV protease but not RNase, and a protein

containing additional mass due to modifications anywhere except the C-terminus would be unaf-

fected by either treatment. When treated with either RNase or TEV protease, the ~45 kDa intermedi-

ate observed at early time points was converted to a 25 kDa species, corresponding to the

Figure 1. An S. cerevisiae in vitro translation system recapitulates synthesis of Rqc2p-dependent polypeptide extensions. (A) Time courses of S.

cerevisiae in vitro translation (ScIVT) reactions. ScIVT reactions were prepared using wild-type (WT) extracts and 1 mg of either a full-length (left; includes

a stop codon and 30-UTR) or truncated (right; encodes a terminal valine residue) mRNA encoding lysine-free 3xHA-NanoLuc (3xHA-NL). At the indicated

time points, aliquots of the reactions were quenched in 2X Laemmli Sample Buffer. Proteins were separated by SDS-PAGE, and HA-tagged translation

products were visualized by immunoblotting. (B) Analyses of mass-shifted products. An ScIVT reaction was prepared using WT extracts and a lysine-free

truncated mRNA substrate that also encodes a TEV cleavage site (TCS). Translation was halted after 15 or 60 min by addition of 20 mM EDTA, after

which reactions were treated without (–) or with (+) TEV and/or RNase A/T1 cocktail for 60 min. Translation products were analyzed by immunoblotting

as in (A). ‘Long’ and ‘Short’ refer to exposure times of the blots. (C–E) Genetic analysis of mass-shifted products. ScIVT reactions were prepared using

extracts from strains of the indicated genotypes and a lysine-free truncated mRNA substrate. Reactions were performed and analyzed as in (A) but with

less mRNA (480 ng). The species that migrate just below the peptidyl–tRNA in rqc2D extracts in (D) represent peptidyl–tRNA degradation products that

arise due to prolonged incubation in the absence of Rqc2p. (F) Rescuing Rqc2p deficiency in vitro. ScIVT reactions were prepared using rqc2D extracts

and a lysine-free truncated mRNA substrate. After 30 min of translation, reactions were supplemented with either protein storage buffer (–) or purified

Rqc2p (WT or CAT-tailing deficient D98A at 420 nM final concentration) and indicated time points were analyzed by SDS-PAGE and immunoblotting.

Dashed lines indicate where intervening lanes were removed for clarity.

DOI: 10.7554/eLife.27949.003

The following figure supplement is available for figure 1:

Figure supplement 1. Purified wild-type and mutant Rqc2p.

DOI: 10.7554/eLife.27949.004
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molecular weight of 3xHA-NL-TCS (Figure 1B). Given that the average molecular weight of a tRNA

is ~20 kDa, these results suggest that the ~45 kDa species contained a tRNA covalently linked to the

C-terminus of 3xHA-NL-TCS (‘peptidyl–tRNA’)—which has previously been characterized as an inter-

mediate of the quality-control pathway (Shao et al., 2013; Shoemaker et al., 2010; Tsuboi et al.,

2012). In contrast, the heterogeneous collection of ~25–45 kDa products that accumulated at later

time points were only affected by TEV protease, converting them to a discrete 25 kDa species

(Figure 1B), as expected if the products originally contained additional mass downstream of the

TCS (i.e., appended to the C-terminus of 3xHA-NL-TCS). Because the truncated mRNA substrate

used for ScIVT contained no sequences downstream of the TCS, this additional mass was necessarily

untemplated and therefore consistent with CAT tails. Notably, the prominent peptidyl–tRNA species

that accumulated at early time points was largely absent after 60 min of translation (Figure 1A and

B), presumably due to peptidyl–tRNA hydrolysis that occurred after untemplated elongation of the

nascent chain.

In addition to being C-terminal and untemplated, another known feature of CAT tails is that their

synthesis is strictly dependent on Rqc2p but not on Ltn1p or Rqc1p (Choe et al., 2016;

Defenouillère et al., 2016; Shen et al., 2015; Yonashiro et al., 2016). To determine if the ~23–43

kDa mass-shifted species share this property, we took advantage of the genetic tractability of S. cer-

evisiae and non-essential nature of the RQC by performing ScIVT using extracts prepared from

ltn1D, rqc1D, and rqc2D strains. While reactions using ltn1D and rqc1D extracts yielded all of the

mass-shifted products observed when using wild-type (WT) extracts (Figure 1C), reactions using

rqc2D extracts did not (Figure 1D), consistent with those species corresponding to CAT-tailed pro-

tein. However, rather than producing the expected 23 kDa 3xHA-NL protein, reactions lacking

Rqc2p generated a relatively stable 43 kDa peptidyl–tRNA species, indicating a defect in peptidyl–

tRNA hydrolysis. This finding suggests that in addition to facilitating the incorporation of untem-

plated amino acids, Rqc2p may also be involved in promoting hydrolysis of the final peptidyl–tRNA

bond and thereby liberating the nascent polypeptide.

Previous biochemical and structural studies have suggested that Rqc2p engagement and subse-

quent CAT tailing must be preceded by ribosome splitting, which exposes the P-site tRNA and the

surface of the Sarcin-Ricin loop (SRL) that are recognized by Rqc2p/NEMF (Lyumkis et al., 2014;

Shao et al., 2015; Shen et al., 2015). In the case of truncated mRNAs that generate a ribosome

stalled at the mRNA 30 end with an empty A site, ribosome splitting is effected by the release-factor

mimics Hbs1p and Dom34p (Shao et al., 2013; Shoemaker et al., 2010). Accordingly, ScIVT of a

truncated mRNA in hbs1D or dom34D extracts generated only the ~43 kDa product corresponding

to an especially stable peptidyl–tRNA (Figure 1E), which is presumably protected within a stalled

but intact 80S ribosome. Collectively, these data demonstrate that ScIVT of a truncated mRNA gen-

erates polypeptides containing untemplated Rqc2p-dependent C-terminal extensions. Although we

have not been able to confirm that these extensions are composed of alanine and threonine residues

(for technical reasons), we suspect that this is the case and therefore refer to the extensions as CAT

tails for simplicity.

The lack of CAT-tailing activity in rqc2D extracts (Figure 1D) is consistent with previous observa-

tions that CAT tails are absent from rqc2D strains in vivo (Choe et al., 2016; Defenouillère et al.,

2016; Shen et al., 2015; Yonashiro et al., 2016), which could reflect either a direct role for Rqc2p

in CAT tailing (as suggested by structural studies) or indirect effects of RQC2 disruption on CAT tail-

ing. To distinguish between these possibilities, we tested whether the absence of CAT-tailing activity

in rqc2D extracts could be rescued by adding purified Rqc2p to ScIVT reactions already in progress.

Remarkably, the addition of exogenous Rqc2p (Figure 1—figure supplement 1) to rqc2D extracts

restored both CAT-tail synthesis and peptidyl–tRNA hydrolysis, whereas the addition of a CAT-tail-

ing-deficient Rqc2p mutant containing the D98A substitution (Shen et al., 2015; Yonashiro et al.,

2016) did not promote either CAT-tail synthesis or robust peptidyl–tRNA hydrolysis (Figure 1F).

These results provide direct evidence that Rqc2p is biochemically required for CAT tailing, consistent

with its proposed role in recruiting alanine- and threonine-charged tRNAs to the 60S subunit

(Shen et al., 2015). Also, our ability to temporally separate CAT tailing from canonical translation in

vitro (by the addition of exogenous Rqc2p to rqc2D extracts) provided an experimental strategy for

specifically testing the requirements of CAT-tail elongation.
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Mechanistic differences between CAT-tail synthesis and canonical
translation
Though previous structural studies of the RQC were instrumental in discovering CAT tailing and sug-

gested a direct role for Rqc2p in the process (Shen et al., 2015), the mechanism of CAT tailing has

only been inferred from these data and otherwise remains poorly characterized. In particular, no

published studies have investigated the extent to which CAT tailing by the 60S subunit is mechanisti-

cally similar to canonical elongation by the 80S ribosome. To address this question, we sought to

examine the sensitivity of in vitro CAT tailing to a collection of well-characterized chemical inhibitors

that target different sites of the ribosome or elongation factors (Figure 2A) and thereby interfere

with canonical translation. Importantly, because canonical translation is required to generate the sub-

strate for the RQC (i.e., a stalled ribosome at the post-splitting stage), it was necessary to temporally

Figure 2. CAT-tail synthesis is mechanistically distinct from canonical translation. (A) Schematics of small-molecule inhibitors that directly bind the

ribosome (top) or that target the translation elongation factors eEF1a or eEF2 (bottom). Inhibitors: (A) anisomycin; (C) cycloheximide; (D2A) didemnin

2A; (DB) didemnin B; (E) emetine; (G) G418; (H) hydrolyzable GTP; (NH) non-hydrolyzable GTP-analog GMP-PCP; (P) puromycin; (S) sordarin. (*) Denotes

the peptidyl-transferase center of the 60S subunit. (B–D) Effects of small-molecule inhibitors on CAT tailing. ScIVT reactions were prepared using rqc2D

extracts and a lysine-free truncated mRNA substrate. After 0 min (t = 0) or 20 min (t = 20) of translation, reactions were supplemented with either

protein storage buffer (–) or purified Rqc2p at 670 nM final concentration (+) and the indicated inhibitor(s). Indicated time points (‘Time (min)’) were

analyzed by SDS-PAGE and immunoblotting. Additional t = 0 controls for the remaining inhibitors can be found in Figure 2—figure supplement 1.

DOI: 10.7554/eLife.27949.005

The following figure supplement is available for figure 2:

Figure supplement 1. Inhibitors and purified Rqc2p used to dissect the mechanism of CAT-tail synthesis.

DOI: 10.7554/eLife.27949.006
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separate canonical translation from CAT tailing to isolate the effects of these inhibitors on the latter

reaction. To do so, we first translated a truncated mRNA in rqc2D extracts in the absence of any

inhibitors for 20 min to generate a pool of RQC substrate (60S:peptidyl–tRNA). We then supple-

mented the reactions with one of the inhibitors (at a concentration that completely inhibited canoni-

cal translation in vitro; Figure 2—figure supplement 1A) and purified Rqc2p (Figure 2—figure

supplement 1B) (or a buffer-only control) to initiate CAT-tail synthesis. Finally, we allowed the reac-

tions to proceed for an additional 40 min before analyzing the products by immunoblotting.

As predicted by the structural analyses, treatment with drugs that target the peptidyl-transferase

center (PTC) of the 60S subunit (anisomycin and the chain terminator puromycin) completely pre-

vented CAT-tail synthesis, providing direct evidence that the catalytic activity of the ribosome is

required for CAT tailing (Figure 2B and C). Puromycin treatment also resulted in a complete col-

lapse of the 43 kDa mass-shifted species to 23 kDa, confirming the identity of this larger species as

peptidyl–tRNA (Figure 2B). In contrast to the dramatic effects of PTC inhibitors, inhibitors that tar-

get the 40S subunit (emetine and G418) did not inhibit CAT-tail synthesis (Figure 2B), consistent

with the proposed 40S subunit–independent mechanism of CAT tailing. Surprisingly, cyclohexi-

mide—which binds in the E site of the 60S subunit and sterically clashes with the 30 end of the deacy-

lated tRNA during canonical translation—did not inhibit CAT tailing (Figure 2B). Cycloheximide

insensitivity identifies an unanticipated feature of CAT-tail elongation that may reflect a distinct

mechanism of deacylated-tRNA displacement in the absence of mRNA and the 40S subunit.

It was previously proposed that specific Rqc2p–tRNA interactions impart selectivity for alanine-

and threonine-tRNAs to CAT-tail elongation (Shen et al., 2015). However, it is not known if the

translation elongation factors eEF1a and eEF2—which deliver aminoacyl-tRNAs to the ribosome and

promote translocation, respectively—collaborate with Rqc2p to facilitate CAT-tail synthesis. Strik-

ingly, we found that drugs targeting either eEF1a or eEF2 (didemnin variants (Carelli et al., 2015) or

sordarin (Justice et al., 1998), respectively) had no effect on CAT tailing (Figure 2C). Because many

canonical translation factors are GTPases, including eEF1a and eEF2, we also examined whether

CAT tailing requires GTP hydrolysis. We tested for inhibition by the non-hydrolyzable GTP analog

GMP-PCP, using a similar approach as before except that at the time of Rqc2p addition we stopped

translation by adding emetine to prevent ongoing translation in the GTP control reaction. Consistent

with the above differences between CAT-tail elongation and translation, treatment with GMP-PCP

had no impact on CAT tailing (Figure 2D), indicating that this mRNA-independent elongation mech-

anism does not require energy from GTP hydrolysis or the canonical activities of the translational

GTPases eEF1a and eEF2. Collectively, these findings provide direct evidence that CAT tailing is a

40S subunit–independent, PTC-catalyzed reaction and identify key differences from canonical trans-

lation that suggest an entirely different elongation cycle.

Ltn1p- and Rqc1p-dependent ubiquitination in the yeast cell-free
system
The ability of ScIVT to recapitulate Rqc2p-dependent CAT tailing (Figure 1) led us to explore

whether this system also recapitulates the other key activity of the RQC, Ltn1p-dependent nascent-

chain ubiquitination. Initial experiments comparing a lysine-containing truncated reporter mRNA to

a lysine-free version revealed a faint smear of high-molecular-weight (HMW) products (~50–115 kDa)

unique to the lysine-containing reporter (Figure 3A, compare lanes 1 and 4). We reasoned that

these HMW products were likely ubiquitinated proteins because lysine residues are the canonical

ubiquitination sites (Pickart, 2001). However, because ScIVT extracts contain many ubiquitin ligase

activities and a finite pool of endogenous ubiquitin, we suspected that Ltn1p-dependent ubiquitina-

tion of the reporter protein (which occurs late in the reactions) might have been limited by the

amount of ubiquitin available to Ltn1p. Indeed, supplementing ScIVT reactions with exogenous ubiq-

uitin resulted in enhanced accumulation of the lysine-dependent HMW products (Figure 3A). Treat-

ment of ubiquitin-supplemented reactions with TEV protease or RNase did not fully collapse the

HMW species as it did for CAT-tailed species (Figure 3B), consistent with the HMW species contain-

ing ubiquitin-modified residues rather than simply having exceptionally long CAT tails. To directly

demonstrate that these HMW species contained ubiquitin, we translated truncated mRNAs (with or

without lysines) in the presence of exogenous Myc-tagged ubiquitin and purified the reporter pro-

tein under denaturing conditions, followed by immunoblotting to detect Myc-tagged ubiquitin. In
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Figure 3. S. cerevisiae in vitro translation recapitulates Ltn1p-mediated ubiquitination. (A) Effects of adding exogenous ubiquitin to ScIVT reactions.

ScIVT reactions conducted in WT extracts with lysine-containing (+Lys) or lysine-free (–Lys) truncated mRNA were supplemented with the indicated

concentrations of recombinant ubiquitin, incubated for 60 min, and then analyzed by SDS-PAGE and immunoblotting. Dashed line indicates where

intervening lanes were removed for clarity. (B) Analysis of high-molecular-weight smears. RNase A/T1 and TEV protease treatment of ScIVT reactions

Figure 3 continued on next page
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reactions conducted with WT extracts, we readily detected Myc-tagged ubiquitin within the purified

HMW species (Figure 3C, fourth lanes in left and right panels).

As expected, we did not observe ubiquitination of the reporter protein in reactions performed

with ltn1D extracts (Figure 3C and Figure 4A), consistent with Ltn1p being the responsible E3 ubiq-

uitin ligase. The addition of purified Ltn1p to ltn1D extracts restored ubiquitination, while the addi-

tion of purified Ltn1p containing the W1542E substitution—a RING domain mutant that does not

support protein turnover in vivo (Bengtson and Joazeiro, 2010)—did not (Figure 4A and Figure 4—

figure supplement 1). These results demonstrate that the lack of ubiquitination in ltn1D extracts is a

direct consequence of the absence of Ltn1p rather than an indirect effect. Collectively, these results

demonstrate that in addition to Rqc2p-dependent CAT tailing the ScIVT system we established also

recapitulates Ltn1p-dependent ubiquitination, as previously shown for lysates derived from N. crassa

and rabbit reticulocytes (Doamekpor et al., 2016; Shao et al., 2013).

Unexpectedly, we did not detect any Ltn1p-dependent ubiquitination of the reporter protein in

rqc1D extracts (Figure 3C). The addition of purified Rqc1p (Figure 4—figure supplement 1), how-

ever, fully rescued ubiquitination in rqc1D extracts (Figure 3C and Figure 4B). Increasing the con-

centration of Ltn1p in the reaction did not bypass the requirement for Rqc1p in ubiquitination

(Figure 4—figure supplement 2). These observations suggest that Rqc1p is directly involved in

nascent-chain ubiquitination. Such a role is consistent with the fact that LTN1 deletion phenocopies

RQC1 deletion in both the accumulation of stalling reporters in vivo and, more broadly, in their cor-

related set of genetic interactions (Brandman et al., 2012; Defenouillère et al., 2013). Although

TCF25/Rqc1p was previously reported to be dispensable for Listerin/Ltn1p-mediated ubiquitination

of purified 60S-bound stalled nascent chains (Shao and Hegde, 2014), the stringent purification of

ribosome–nascent chain complexes in that study might have removed factors that otherwise impose

a requirement for Rqc1p/TCF25 (e.g., chaperones that protect the nascent chain). Our results sup-

port a model in which Rqc1p directly promotes Ltn1p-mediated ubiquitination of the nascent chain

via a mechanism that remains to be determined.

Interplay between CAT tailing and ubiquitination
Previous studies have shown that a CAT-tailing-deficient mutant of Rqc2p preserves degradation of

stalled nascent chains (Shen et al., 2015) and that in vitro reconstitution of Listerin/Ltn1p-mediated

ubiquitination does not strictly require NEMF/Rqc2p (Shao and Hegde, 2014; Shao et al., 2013).

Together, these studies suggested that CAT tailing is dispensable for degradation of the assayed

reporter constructs. Based on these results and structural data, it was proposed that Rqc2p indirectly

contributes to ubiquitination by recognizing the aberrant 60S:peptidyl–tRNA complex, stabilizing

Ltn1p on the 60S subunit, and sterically preventing the 40S subunit from rejoining (Shao et al.,

2015). Together with the minimal impact of LTN1 disruption on CAT tailing in vivo (Choe et al.,

2016; Defenouillère et al., 2016; Shen et al., 2015; Yonashiro et al., 2016) and in vitro (Figure 1),

these studies led to a model in which ubiquitination by Ltn1p and CAT tailing by Rqc2p are indepen-

dent activities of the RQC (Inada, 2017).

The unique ability of our ScIVT system to recapitulate both activities of the RQC, combined with

its genetic tractability, allowed us to directly test this model in vitro. Consistent with the proposed

scaffolding function of Rqc2p in ubiquitination, disruption of RQC2 abrogated nascent-chain ubiqui-

tination by Ltn1p (Figure 3C and Figure 4C), and addition of wild-type Rqc2p rescued ubiquitination

Figure 3 continued

programmed with lysine-containing truncated mRNA encoding a TEV cleavage site (TCS) in WT extracts supplemented with 100 mM recombinant

ubiquitin. Translation was halted after 60 min by addition of 20 mM EDTA, after which reactions were treated without (–) or with (+) TEV and/or RNase

A/T1 for 60 min, and then analyzed by SDS-PAGE and immunoblotting. Note that due to long incubations (120 mins), very little peptidyl–tRNA persists

in these reactions. (C) Isolation and detection of ubiquitinated ScIVT products. ScIVT reactions were conducted with 1.2 mg of truncated mRNA (3xHA-

10xHis-NanoLuc, with or without lysines or His tag as indicated) in extracts prepared from strains of the indicated genotypes and supplemented with 10

mM recombinant Myc-ubiquitin. For input samples (bottom panels), one-third of the ScIVT reaction was quenched with 2X Laemmli Sample Buffer. For

Ni-NTA-purified samples (top panels), two-thirds of the ScIVT reaction was quenched with 6 M guanidine-HCl. For SDS-PAGE, 30% of input samples

and 100% of Ni-NTA-purified samples were separated on 12% NuPAGE gels and translation products were visualized by immunoblotting with

antibodies indicated at left. Dashed lines indicate where intervening lanes were removed for clarity.

DOI: 10.7554/eLife.27949.007
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(Figure 4C and Figure 1—figure supplement 1). Unexpectedly, however, the addition of CAT-tail-

ing-deficient (D98A) Rqc2p to rqc2D extracts only partially rescued ubiquitination (Figure 4C). Simi-

larly, reactions using extracts containing endogenously expressed Rqc2p(D98A) as the only RQC2

gene product yielded minimal ubiquitinated protein (Figure 3C). To rule out the possibility that the

effect of the D98A substitution on ubiquitination was due to disruption of the known scaffolding

function of Rqc2p, we took an alternative approach to inhibit CAT tailing in the context of wild-type

Rqc2p. As observed in the Rqc2p(D98A) experiments, preventing CAT tailing of stalled nascent

chains—in this case with anisomycin treatment (Figure 2C)—substantially reduced ubiquitination

(Figure 4D and Figure 4—figure supplement 3). These results suggest that Rqc2p not only pro-

vides structural support for Ltn1p but also that CAT tailing directly enhances Ltn1p-dependent ubiq-

uitination of at least some substrates (see Discussion). Collectively, our in vitro analyses reveal that

Figure 4. Rqc1p and CAT tailing contribute to Ltn1p-dependent ubiquitination. (A–C) Genetic analysis of RQC-mediated ubiquitination in ScIVT. ScIVT

reactions were prepared using extracts from strains of the indicated genotype, a lysine-containing truncated mRNA substrate, ubiquitin storage buffer

(–) or 100 mM recombinant ubiquitin (+), and either protein storage buffer (–) or the indicated purified proteins (+): Ltn1p at 130 nM, Rqc1p at 70 nM,

and Rqc2p at 420 nM final concentration. (D) ScIVT reactions were conducted using rqc2D extracts, a lysine-free or lysine-containing truncated mRNA

substrate, and 100 mM exogenous ubiquitin. After 0 min (t = 0) or 30 min (t = 30) of translation, all reactions were supplemented with an equal volume

of ‘mock ScIVT’ (i.e., without mRNA) containing 1.34 mM purified Rqc2p, 100 mM exogenous ubiquitin, and the indicated inhibitor(s). Indicated time

points (‘Time (min)’) were analyzed by SDS-PAGE and immunoblotting. ‘Long’ and ‘Short’ refer to exposure times of the blots.

DOI: 10.7554/eLife.27949.008

The following figure supplements are available for figure 4:

Figure supplement 1. Purified Ltn1p and Rqc1p.

DOI: 10.7554/eLife.27949.009

Figure supplement 2. Impact of excess Ltn1p on ubiquitination in rqc1D extracts.

DOI: 10.7554/eLife.27949.010

Figure supplement 3. Impact of CAT-tailing inhibition on ubiquitination.

DOI: 10.7554/eLife.27949.011
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all three components of the RQC—Ltn1p/Listerin, Rqc1p/TCF25, and Rqc2p/NEMF—contribute to

ubiquitination of the nascent chain.

Discussion
We have shown that establishing a cell-free system that recapitulates both CAT tailing and ubiquiti-

nation opens new opportunities to explore how the fully functional RQC promotes clearance of aber-

rant translation products. Our analyses reveal that Rqc2p-mediated nascent-chain elongation is

mechanistically distinct from canonical translation, that ubiquitination of the nascent polypeptide

requires both Ltn1p and Rqc1p, and that the ubiquitination and CAT-tailing activities of the RQC are

coupled through a mutual requirement for active Rqc2p (Figure 5).

The key benefit of an in vitro system to study CAT tailing is the ability to perform experiments

that would be intractable in vivo. Indeed, a major difficulty in studying CAT tailing is that it utilizes

some of the same machinery as canonical translation (i.e., the 60S subunit) and requires a substrate

that is generated by canonical translation, making it difficult to perturb CAT tailing specifically. By

temporally separating the translation- and CAT-tailing-phases of in vitro reactions, we overcame this

obstacle and specifically tested the sensitivity of the CAT-tailing reaction to a wide range of well-

Figure 5. Model for CAT tailing and ubiquitination of stalled nascent chains. When an 80S ribosome stalls during translation, splitting factors recognize

the stalled translation complex to facilitate dissociation of the 40S subunit and mRNA. Ltn1p, Rqc2p, and Rqc1p (unknown location indicated by ‘?’)

bind the resulting 60S:peptidyl–tRNA complex. Together with the peptidyl-transferase center of the 60S subunit, Rqc2p facilitates elongation of the

stalled nascent chain with a CAT tail by recruiting alanine- and threonine-charged tRNAs to the A site. If the nascent chain contains a lysine residue (red

circle) located within the vicinity of the Ltn1p RING domain (or potentially hidden inside the ribosome exit tunnel), CAT tailing and Rqc1p enhance or

facilitate Ltn1p-mediated ubiquitination of the nascent chain, respectively, for subsequent proteasomal degradation (green box). If the nascent chain

does not contain any lysine residues (or contains lysine residues that are too distant from the Ltn1p RING domain), CAT tails may promote aggregation

of incompletely synthesized proteins (red box). In both instances, Rqc2p activity promotes hydrolysis of the peptidyl–tRNA linkage and liberation from

the 60S subunit.

DOI: 10.7554/eLife.27949.012
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characterized ribosome and translation inhibitors. These analyses revealed that aside from requiring

the catalytic PTC of the ribosome, CAT tailing is otherwise fundamentally different from translation

elongation in ways that could not have been fully anticipated from previous studies (Figure 2). In

particular, our findings that CAT tailing does not require the canonical activities of the elongation

factors or energy from GTP hydrolysis suggest a unique mechanism of elongation. Reexamining 60S:

RQC structures (Shao et al., 2015; Shen et al., 2015), we noted that the network of interactions

between Ltn1p/Rqc2p and the 60S subunit overlaps with the ribosome-binding sites of eEF1a

(Shao et al., 2016) and eEF2 (Taylor et al., 2007). The overlap in binding sites indicates that either

eEF1a/eEF2 are dispensable for CAT tailing, or that eEF1a/eEF2 and the RQC interact transiently

with the 60S subunit during elongation. Our findings favor the former model and suggest that

Rqc2p directly recruits charged tRNAs with its selective tRNA-binding activity (Shen et al., 2015),

without the involvement of eEF1a. Following peptide-bond formation by the 60S subunit, the A/P

and P/E tRNAs may spontaneously translocate in the absence of interactions with an mRNA tem-

plate or 40S subunit; whereas during canonical translation such interactions impose an energy

requirement for translocation that is fulfilled by the GTPase activity of eEF2. Given that CAT tailing

was proposed to occur on the 60S subunit (Shen et al., 2015), we predicted that all translation

inhibitors that bind the 60S subunit would inhibit CAT-tail synthesis. However, we found that CAT

tailing was not inhibited by cycloheximide, suggesting that the deacylated tRNA may rapidly dissoci-

ate from the 60S subunit following peptidyl transfer.

Together, these findings suggest that a minimal set of factors—a 60S:peptidyl–tRNA complex,

charged alanine and threonine tRNAs, and Rqc2p—may be sufficient for CAT-tail synthesis. In 1969,

Monro demonstrated that in the presence of certain alcohols, isolated bacterial 50S ribosomal subu-

nits could catalyze polymerization from aminoacyl-tRNAs in the absence of an mRNA template and

30S subunits (Monro, 1969). Thus, it is conceivable that Rqc2p may stimulate nascent-chain elonga-

tion much as in Monro’s minimal prokaryotic system. Many questions remain about Rqc2p dynamics

during CAT tailing, including whether a single molecule of Rqc2p remains on the 60S subunit for suc-

cessive cycles of peptide-bond formation or whether each cycle of elongation requires binding by a

new Rqc2p–tRNA complex.

CAT-tail synthesis eventually terminates by hydrolysis of the peptidyl–tRNA linkage, which is pre-

sumably needed to release the CAT-tailed nascent chain from the 60S subunit for its destruction by

the proteasome. Indeed, one critical function of CAT tailing might be to provide a mechanism of ter-

mination in the absence of a stop codon. The wide range of CAT-tail lengths observed both in vivo

(Choe et al., 2016; Defenouillère et al., 2016; Shen et al., 2015; Yonashiro et al., 2016) and in

vitro suggests that termination is a stochastic process. Furthermore, our finding that peptidyl–tRNA

intermediates are relatively stable in vitro in the absence of Rqc2p (Figure 1D and F, Figure 2, and

Figure 4C) indicates a potentially direct role of Rqc2p in the termination reaction. These observa-

tions lead to a model for CAT-tailing termination in which Rqc2p recruits a termination factor to the

60S subunit in a stochastic manner during the process of elongation. Because Rqc2p interacts with

A-site tRNAs at a site distant from the acceptor stem (Shen et al., 2015), it is possible that the ‘ter-

mination factor’ is an uncharged alanine- or threonine-tRNA (Caskey et al., 1971; Zavialov et al.,

2002). Alternatively, Rqc2p might interact with the canonical termination factor eRF1 or another pro-

tein with peptidyl–tRNA hydrolase activity to facilitate termination.

Taking advantage of the fact that our extracts also recapitulated Ltn1p-dependent ubiquitination,

we found that Rqc1p plays a critical role in nascent-chain ubiquitination in vitro (Figure 3C and

Figure 4B). This direct role of Rqc1p in ubiquitination contrasts with its previously suggested role in

recruiting Cdc48p downstream of ubiquitination (Brandman et al., 2012; Defenouillère et al.,

2013). Nevertheless, our discovery that ubiquitination in vitro is as dependent on Rqc1p as it is on

the E3 ligase Ltn1p is consistent with the fact that yeast strains lacking Rqc1p and Ltn1p have very

similar phenotypes and genetic interaction profiles, suggesting a similar molecular defect in these

strains (Brandman et al., 2012). We speculate that Rqc1p may facilitate ubiquitination by position-

ing the nascent chain in proximity to the Ltn1p RING domain, by promoting binding of the E2 ubiq-

uitin-conjugating enzyme, or by activating Ltn1p’s E3 ligase activity on the 60S subunit.

With a system that uniquely recapitulates both nascent-chain elongation by Rqc2p and ubiquitina-

tion by Ltn1p, we discovered that Rqc2p can elongate the nascent chain to enhance ubiquitination,

rather than just providing structural support for Ltn1p binding to the 60S subunit (Figure 3C and

Figure 4C). This finding was surprising given that previous studies have shown that a CAT-tailing-
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deficient mutant of Rqc2p preserves degradation of aberrant nascent chains in yeast cells

(Shen et al., 2015) and that in vitro reconstitution of Listerin/Ltn1p-mediated ubiquitination does

not strictly require NEMF/Rqc2p (Shao and Hegde, 2014). How can we reconcile these findings?

Structural studies of full-length Listerin/Ltn1p on the 60S subunit localized its RING domain (which

binds an E2 ubiquitin-conjugating enzyme) near the ribosomal exit tunnel (Shao et al., 2015), poised

to facilitate ubiquitination of lysine residues close to or recently emerged from the tunnel. The physi-

cal tethering of the RING domain near the exit tunnel suggests that Ltn1p may not be able to access

more distantly positioned lysines in the nascent polypeptide, nor can the most recently translated

lysines—contained within the 30–60-amino-acid long exit tunnel (Kramer et al., 2009)—be accessed

by Ltn1p until their emergence. Our observations lead to a model in which Ltn1p can only ubiquiti-

nate a spatially restricted set of lysines, while CAT tailing enables access to other lysines—as previ-

ously proposed (Brandman and Hegde, 2016; Simms et al., 2017) and recently demonstrated in

vivo (Kostova KK et al., 2017). We reason that the few nascent chain RQC substrates previously

studied in vivo could be degraded in a CAT-tailing-independent manner (Choe et al., 2016;

Defenouillère et al., 2016; Shen et al., 2015; Yonashiro et al., 2016) due to native lysines being

fortuitously positioned proximal to the Ltn1p RING domain.

Recent studies in budding yeast have demonstrated that CAT tails mediate formation of deter-

gent-insoluble aggregates when the nascent chain cannot be degraded due to its limited ubiquitina-

tion potential or due to inactivation of Ltn1p (Choe et al., 2016; Defenouillère et al., 2016;

Yonashiro et al., 2016). In the context of a fully intact RQC, however, our findings suggest that CAT

tailing and ubiquitination are interdependent activities. Elongation of the nascent chain with CAT

tails can result in two outcomes: positioning lysine residues proximal to the Ltn1p RING domain for

efficient ubiquitination; or distancing lysine residues from the Ltn1p RING domain, making ubiquiti-

nation less efficient. Thus, CAT tailing and ubiquitination must be tightly coordinated to promote

nascent-chain degradation and to avoid, where possible, aggregate formation and the detrimental

sequestration of cytosolic chaperones. These studies collectively suggest that rather than being the

primary role of CAT tails, aggregation is more likely a backup pathway to mitigate the toxic effects

of stalled polypeptides that cannot be efficiently ubiquitinated and degraded (Figure 5). A notable

distinction between the aggregation- and ubiquitination-promoting functions of CAT tails is that the

former depends on the alanine/threonine composition of the CAT tail (Choe et al., 2016), while the

latter depends on the process of CAT tailing itself.

While CAT tailing has yet to be reported in metazoans, the conservation of Rqc1p/TCF25,

Rqc2p/NEMF, and Ltn1p/Listerin—including critical residues that we mutated in this study—suggest

that both RQC activities are conserved and together provide a means of protecting cells against the

accumulation of faulty translation products. Ltn1p-dependent ubiquitination has been detected in

rabbit reticulocyte extracts, so a CAT-tailing-dependent mechanism to facilitate ubiquitination of

inaccessible lysine residues likely operates in metazoans as well. Underscoring the importance of this

quality-control mechanism in maintaining proteostasis, mutations in the mammalian homologs of

HBS1 (Ishimura et al., 2014) and LTN1 (Chu et al., 2009) cause neurodegeneration in mice.

With our newfound insights, the similarities between the bacterial tmRNA system and the eukary-

otic RQC become even more striking than previously appreciated. In certain bacteria, a stalled ribo-

some is rescued by the recruitment of a hybrid tRNA/mRNA-like molecule (tmRNA) to the empty

A-site of the ribosome, leading to translation of a tmRNA-encoded C-terminal degron that includes

a dedicated stop codon (Moore and Sauer, 2007). In this way, stalled nascent chains are marked for

degradation and translation can terminate even when the mRNA template lacks a stop codon. The

RQC fulfills these same functions but in a different manner that is compatible with the ubiquitin-pro-

teasome system: Stalled nascent chains are marked for degradation by ubiquitination (in certain

cases facilitated by CAT tailing), and translation can terminate without a stop codon with the help of

Rqc2p. Thus, both mechanisms involve a ribosome-catalyzed peptidyl-transferase reaction that adds

a C-terminal extension that is not templated by the parent mRNA molecule. The addition of the

C-terminal extension, moreover, facilitates peptidyl–tRNA hydrolysis and nascent-chain release

either directly (tmRNA) or indirectly (RQC) to promote degradation. These functional similarities

between the tmRNA system and the RQC—despite not sharing any related factors other than the

ribosome—provide a striking example of convergent evolution that emphasizes the physiological

importance of discarding incompletely synthesized proteins and recycling the translation machinery.
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Materials and methods

Yeast strain construction
Saccharomyces cerevisiae strains used in this study were derived from BY4741 (MATa his3D1 leu2D0

met15D0 ura3D0) and are listed in Supplementary file 1. Yeast transformations were performed

using the PEG–lithium acetate method (Gietz and Woods, 2006). To generate gene knockouts, the

entire coding sequence of the gene of interest was replaced with the URA3 cassette of pRS416.

Strains containing point mutations at endogenous loci were generated from URA3-disrupted strains

by transformation with PCR fragments encoding the mutant gene of interest and 5-FOA counterse-

lection (Boeke et al., 1987). Transformants were screened by PCR to identify integrants, which were

subsequently verified by PCR and Sanger sequencing of the entire integrated cassette.

Preparation of mRNA for in vitro translation
pcDNA3.1(+) (Thermo Fisher Scientific, Waltham, MA) was modified using Gibson Assembly Master

Mix (New England Biolabs, Ipswich, MA) and appropriate DNA fragments according to the Gibson

assembly method (Gibson et al., 2009) to generate pBAO1124, which contains (in order): T7 pro-

moter, 46-nt 50-UTR lacking any AUG or near-AUG codons (i.e., NUG, ANG, or AUN, where N is any

nucleotide), 3xHA-NanoLuc luciferase ORF, 56-nt 30-UTR, and 50-nt poly(A) sequence. RNAs were

generated by run-off transcription with T7 RNA Polymerase using the MEGAscript T7 Transcription

Kit (Thermo Fisher Scientific) according to the manufacturer’s instructions using PCR-amplified DNA

templates derived from pBAO1124 or its variants (DNA sequences are provided in

Supplementary file 2). Transcription reactions were terminated by addition of ammonium acetate

stop solution. RNA was extracted with neutral phenol:chloroform:isoamyl alcohol (25:24:1) (Sigma,

St. Louis, MO), precipitated with ethanol, and resuspended in nuclease-free water. A 50�7-methyl-

guanosine cap was added to RNA post-transcriptionally using the Vaccinia Capping System (New

England Biolabs). Capping reactions were desalted using Micro Bio-Spin Columns with Bio-Gel P-30

(Bio-Rad, Hercules, CA) before RNA was extracted with phenol, precipitated with ethanol, and resus-

pended in nuclease-free water.

S. cerevisiae in vitro translation extract preparation
S. cerevisiae strains were grown overnight to saturation in rich YPAD media, diluted the next morn-

ing to OD600 0.2 in a total volume of 1 L YPAD, and harvested at OD6001.4–1.8 by centrifugation at

3500 rpm for 6 min at 4˚C. The cell pellet was washed with water and resuspended in lysis buffer A

(30 mM HEPES-KOH pH 7.4, 100 mM KOAc, 2 mM Mg(OAc)2, 2 mM DTT, and cOmplete mini

EDTA-free protease inhibitor cocktail [Roche, Switzerland]) using 1 ml per 6 g of wet cell pellet. The

cell slurry was dripped into liquid nitrogen to produce frozen pellets, which were then pulverized

using a 6970EFM Freezer/Mill (SPEX SamplePrep, Metuchen, NJ) by three cycles of 12 Hz agitation

for 1.5 min with cooling for 2 min after each cycle. The resulting ‘grindate’ was combined with an

equal volume of pre-chilled lysis buffer A (i.e., 1 ml per 1 g of grindate) and allowed to thaw on ice.

Cell debris was cleared by sequential centrifugation at 4˚C at 1000 g for 5 min, 1350 g for 5 min,

14000 g for 30 min, and finally 14000 g for an additional 10 min. The clarified lysate was dialyzed

twice for 2 hr against 250 ml lysis buffer A (except without protease inhibitor cocktail) using 3500

MWCO cassettes (Thermo Fisher Scientific #87722). After dialysis, lysates were flash frozen in 50 ml

aliquots in liquid nitrogen and stored at –80˚C.

S. cerevisiae in vitro translation
Endogenous mRNAs in thawed extracts were degraded by treatment with 0.3 U/ml micrococcal

nuclease (MNase) and 480 mM CaCl2 for 10 min at room temperature, followed by addition of 2 mM

EGTA and transfer to ice. ScIVT reactions were initiated by adding m7G-capped RNA (40 ng per ml

of reaction volume) to MNase-treated yeast extracts and incubating at 25˚C for up to 90 min. Final

concentrations of reaction components were 48.67% (v/v) MNase-treated yeast extract, 22 mM

HEPES-KOH (pH 7.4), 120 mM potassium acetate, 1.5 mM magnesium acetate, 0.75 mM ATP, 0.1

mM GTP, 0.04 mM each amino acid, 1.7 mM DTT, 25 mM creatine phosphate, 0.34 mg/ml creatine

kinase, 0.14 U/ml SUPERase.In RNase Inhibitor (Thermo Fisher Scientific), and 0.16X cOmplete mini

EDTA-free protease inhibitor cocktail (Roche). Where indicated, reactions also included 10 or 100
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mM recombinant human ubiquitin or Myc-ubiquitin (Boston Biochem, Cambridge, MA). Reactions

were halted by transferring to ice or by adding an equal volume of 2X Laemmli Sample Buffer (Bio-

Rad). The results shown for all ScIVT experiments are representative of at least two technical repli-

cates (i.e., experiments conducted with independently prepared reagents).

Inhibitor concentrations
Concentrated stock solutions are diluted 1:10 into the ScIVT reactions. For example: 1 ml of 2 mM

Anisomycin (in 5% DMSO) was added to a 10 ml ScIVT reaction. All stock solutions should be dis-

solved in water (or diluted with water) as ScIVT reactions cannot tolerate 100% DMSO or ethanol.

Small molecules were used at the following final concentrations:

. (A) anisomycin: 200 mM [stock = 2 mM in 5% DMSO]

. (C) cycloheximide: 300 mM [stock = 3 mM in water]

. (D2A) didemnin 2A: 50 mM [stock = 500 mM in 5% DMSO]

. (DB) didemnin B: 50 mM [stock = 500 mM in 5% DMSO]

. (E) emetine: 400 mM [stock = 4 mM in water]

. (G) G418: 200 mM [stock = 2 mM in water]

. (H) hydrolyzable GTP: 500 mM (i.e. 5x excess of GTP in reaction) [stock = 5 mM in water]

. (NH) non-hydrolyzable GTP-analog GMP-PCP: 500 mM (i.e. 5x excess of GTP in reaction) [stock
= 5 mM in water]

. (P) puromycin: 500 mM [stock = 5 mM in water]

. (S) sordarin: 10 mM [stock = 100 mM in water]

Denaturing purification of ScIVT products
30 ml ScIVT reactions were assembled with 1.2 mg 3xHA-10xHis-NL mRNAs and 10 mM recombinant

Myc-ubiquitin (Boston Biochem) and incubated at 25˚C for 1 hr. For input samples, 10 ml was

removed and quenched in an equal volume of 2X Laemmli Sample Buffer. For Ni-NTA-purified sam-

ples, the remaining 20 ml was quenched by addition of denaturing buffer (6 M guanidine-HCl, 50

mM Tris pH 7.8, 300 mM KCl, 10 mM imidazole, 0.1% NP-40, 5 mM b-mercaptoethanol [bME]), and

then incubated with 10 ml of pre-washed Ni-NTA Magnetic Agarose Beads (Qiagen, Germany) at

4˚C overnight with end-over-end rotation. Beads were washed three times with wash buffer I (dena-

turing buffer except 500 mM KCl) and three times with wash buffer II (denaturing buffer except 50

mM KCl and no guanidine-HCl), each for 5 min at room temperature. Bound proteins were eluted

from beads by adding 15 ml elution buffer (wash buffer II except 200 mM imidazole) and incubating

at 22˚C for 5 min with shaking at 1000 rpm. The elution step was repeated, and eluates were pooled

and mixed with an equal volume of 2X Laemmli Sample Buffer. The results shown for all experiments

that include a denaturing purification of ScIVT products are representative of at least three technical

replicates (i.e., experiments conducted with independently prepared reagents).

Immunoblotting
Protein samples were separated by SDS-PAGE using 12% Bolt Bis-Tris gels (Thermo Fisher Scientific)

and transferred in 1X CAPS Buffer onto 0.22 micron PVDF membrane (Bio-Rad). Blots were probed

with the following antibodies diluted 1:5000 in 1X TBS-T containing 5% nonfat dry milk: mouse anti-

HA (RRID:AB_627809, Santa Cruz Biotechnology [Dallas, TX] sc-7392), rat anti-HA high sensitivity

(RRID:AB_390918, Roche #11867423001), mouse anti-Myc (RRID:AB_331783, Cell Signaling Technol-

ogy [Danvers, MA] #2276), HRP-conjugated goat anti-mouse IgG (RRID:AB_631736, Santa Cruz Bio-

technology sc-2005), and HRP-conjugated goat anti-rat IgG (RRID:AB_631755, Santa Cruz

Biotechnology sc-2032). Blots were developed using Clarity ECL Western Blotting Substrate (Bio-

Rad), and chemiluminescence was detected on a ChemiDoc Imaging System (Bio-Rad).

Protein purification
S. cerevisiae strain yRH101 (a gift from Stephen Bell, MIT) derived from ySC7 (Chen et al., 2007)

containing a 2 mm PGAL1-[protein]�10xHis plasmid (a gift from Bob Stroud, UCSF) was grown over-

night in SC–His media containing 2% raffinose, diluted the next day, and grown for an additional

night to early saturation. Protein expression was induced by adding an equal volume of Yeast-Pep-

tone media containing 2% galactose, and cells were grown for 5 hr at 30˚C. Cells were harvested by
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centrifugation at 3500 rpm for 6 min at 4˚C, and the cell pellet was washed with water before resus-

pending in Lysis Buffer (20 mM HEPES-KOH pH 7.4, 500 mM KCl, 20 mM imidazole; 2 mM bME and

cOmplete EDTA-free protease inhibitor cocktail [Roche] added just prior to use) at a ratio of 1 ml

per gram of cell pellet. The resulting cell slurry was dripped into liquid nitrogen to produce frozen

pellets, which were pulverized using a 6970EFM Freezer/Mill (SPEX SamplePrep) by three cycles of

12 Hz agitation for 1.67 min with 2 min cooling after each cycle. The resulting powder was briefly

thawed before adding Lysis Buffer (1 mL per 1 g of powder) supplemented with additional protease

inhibitors (292 mM Pepstatin, 8.4 mM Leupeptin, 1.23 mM Aprotinin, 1 mM Phenylmethylsulfonyl

fluoride [PMSF]). Cell debris was cleared by sequential centrifugation at 14000 rpm at 4˚C for 10 min

and then 30 min, followed by sequential filtration through 2.7 and 1.6 mm Whatman GD/X filters (GE

Healthcare Life Sciences, Marlborough, MA). His-tagged proteins were purified from lysate using Ni-

NTA Sepharose beads (Qiagen) as follows. Beads (~1 ml 50% slurry per 1 L yeast culture) were

washed with water and equilibrated in Lysis Buffer. Lysate was added to semi-dry beads and rotated

at 4˚C for 2 hr. Beads were collected by centrifugation at 800 rpm for 3 min, resuspended in an

equal volume of Lysis Buffer, loaded over a disposable Bio-Spin column (Bio-Rad), and washed once

with 10 ml Lysis Buffer. The column was then washed as follows: once with 10 ml Wash Buffer (20

mM HEPES-KOH pH 7.4, 500 mM KCl, 10% glycerol, 2 mM bME) containing 20 mM imidazole and 1

mM PMSF; once with 10 ml Wash Buffer containing 20 mM imidazole; and twice with 10 ml Wash

Buffer containing 50 mM imidazole. Proteins were sequentially eluted from the beads by gravity

rinses as follows: once with 250 ml Wash Buffer containing 250 mM imidazole; twice with 500 ml

Wash Buffer containing 250 mM imidazole; and twice with 500 ml Wash Buffer containing 500 mM

imidazole. Elution fractions were analyzed by SDS-PAGE and staining with Coomassie Brilliant Blue

R-250 to identify those containing the protein of interest, which were then pooled and concentrated

to ~500 ml before overnight dialysis into Rqc2p/Ltn1p Storage Buffer (50 mM HEPES-KOH pH 7.4,

300 mM KOAc, 5% glycerol, 2 mM DTT) or Rqc1p Storage Buffer (20 mM HEPES-KOH pH 7.4, 500

mM KOAc, 10% glycerol, 2 mM DTT). Dialyzed protein was passed through a 0.1 mm centrifugal fil-

ter (EMD Millipore [Hayward, CA] #UFC30VV00) before flash freezing in liquid nitrogen. Protein con-

centration was determined by both spectrophotometry using a Nanodrop 2000 (Thermo Fisher

Scientific) and Coomassie staining against BSA standards.
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