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Color is a perceptual stimulus that has a significant impact on improving human
emotion and memory. Studies have revealed that colored multimedia learning materials
(MLMs) have a positive effect on learner’s emotion and learning where it was assessed
by subjective/objective measurements. This study aimed to quantitatively assess the
influence of colored MLMs on emotion, cognitive processes during learning, and
long-term memory (LTM) retention using electroencephalography (EEG). The dataset
consisted of 45 healthy participants, and MLMs were designed in colored or achromatic
illustrations to elicit emotion and that to assess its impact on LTM retention after 30-min
and 1-month delay. The EEG signal analysis was first started to estimate the effective
connectivity network (ECN) using the phase slope index and expand it to characterize
the ECN pattern using graph theoretical analysis. EEG results showed that colored
MLMs had influences on theta and alpha networks, including (1) an increased frontal-
parietal connectivity (top–down processing), (2) a larger number of brain hubs, (3) a lower
clustering coefficient, and (4) a higher local efficiency, indicating that color influences
information processing in the brain, as reflected by ECN, together with a significant
improvement in learner’s emotion and memory performance. This is evidenced by a
more positive emotional valence and higher recall accuracy for groups who learned with
colored MLMs than that of achromatic MLMs. In conclusion, this paper demonstrated
how the EEG ECN parameters could help quantify the influences of colored MLMs on
emotion and cognitive processes during learning.

Keywords: achromatic, color, effective connectivity network (ECN), electroencephalography (EEG), emotion,
graph theory, long-term memory (LTM) retention

INTRODUCTION

Long-term memory (LTM) is the storage of information over an extended period in the brain. An
LTM problem can lead to difficulties in learning because it affects an individual’s ability to capture
new knowledge and experiences, which eventually limits oneself from learning from past mistakes
and causes poor planning, judgment or decision making. Therefore, LTM retention has been an
essential research topic since the 1880s due to its importance in extending the period of memory.
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Factors that will lead to poor learning and LTM retention are
(1) a limited amount of processing capacity in working memory
(WM), (2) a negative emotional state and (3) a detrimental
effect on intrinsic motivation (Baddeley, 1992; Pekrun, 1992).
For the problem of the limited amount of processing capacity
in WM, this can be addressed by effectively selecting and
encoding the captured information in WM. For this purpose,
Mayer (2003) proposed a method for learning using texts and
illustrations, which is called multimedia learning (ML). This
method works by concurrently storing and processing both
the visual (pictures) and verbal (texts) information at once
in the visuospatial sketchpad and phonological loop. However,
multimedia learning is still insufficient at improving LTM
retention and learning due to the negligence of emotion and
motivation in the method, which can negatively influence the
selective attention. Then, cognitive-affective theory of learning
with media (CATLM) was introduced to improve the design of
multimedia learning materials (MLMs) by incorporating both
emotion and motivation that facilitates learning by increasing
cognitive engagement (Moreno, 2006).

Based on such theory, researchers proposed an emotional
design using appealing colors (yellow, orange, pink, green, blue,
and purple) and round shapes (with anthropomorphisms) (Um
et al., 2012; Plass et al., 2014). The results showed that the
colored-design group has a positive emotion, increased cognitive
effort, and better learning outcome, compared to neutral design
(achromatic colors: grayscale, black and white; and rectangular
shapes), which indicates that emotion can be induced through
MLMs design. Another study reported similar results (Mayer and
Estrella, 2014), where colored (red and blue) materials induced
positive emotion and increased cognitive effort compared to
achromatic materials. This supports the Boarden-and-Build
theory of positive emotion (Fredrickson, 1998).

Color has aesthetic value, and it also influences cognition,
emotion, and behavior. Clarke and Costall (2008) found that
cool colors (green, blue, and violet) are associated with being
comfortable, relaxing, peaceful, and calming, that can reduce
stress and anxiety levels. On the other hand, warm colors (red,
yellow, and orange) are more arousing, which can stimulate
human feelings and activate people. Neutral colors have less
emotional content and, thus, less psychological impact. In a
learning context, it has been reported that warm colors used
in learning materials can create a learning environment that is
positive and motivating that can help learners not only to have
a positive perception toward the content but also to engage and
interact more with the learning materials (Plass et al., 2014). As
such, we followed Goldstein’s theory (Goldstein, 1942) and design
rule (Wang et al., 2008) by choosing warm colors (red and yellow)
to increase attention and elicit excitement and motivation, while
cool colors (green and blue) are used to produce comfort and
relaxation that facilitate memory storage for this study. Red
is able to induce strong feelings; both positive and negative.
However, if the intensity of the red color is over-stimulating, then
attention could be distracted, causing a decrease in performance
levels according to the Yerkes–Dodson Law (Broadhurst, 1957).
Therefore, we used red in smaller amounts compared to yellow
to keep increased arousal without exceeding the optimal level

of arousal (demonstrated by an arousal rating within the range
of 6-8).

At present, studies on the effect of colored MLMs on emotion
were assessed using (1) subjective measurement — self-rating
questionnaires (Um et al., 2012; Mayer and Estrella, 2014; Plass
et al., 2014); and (2) objective measurement — eye-tracking
(Park et al., 2015; Stark et al., 2018) and heart rate variability
(Le et al., 2018; Uzun and Yıldırım, 2018), but both techniques
have a lack of information regarding the brain activity during
task execution; how the brain reacts to colored vs. achromatic
MLMs, and perceives, processes, acquires, stores the information
is still unknown. Although the effectiveness of colored MLMs
on emotion and learning is accepted, none have assessed their
effects on LTM retention and cognitive process during learning
with neuroimaging techniques.

Several non-invasive techniques have been used in brain
science, cognition and emotion research such as EEG, fMRI, and
fNIRS to study cognitive (Antonenko et al., 2010) and emotional
processes (Alarcao and Fonseca, 2017) continuously. However,
fMRI and fNIRS are only suitable for examining hemodynamic
responses (indirect measurement) and, therefore, they are
not appropriate for high-frequency brain electrical activity
measurement (direct measurement). Among all, EEG is the most
widely used technique for brain research due to its distinct
advantage — the excellent temporal resolution. Therefore, EEG
is selected and used for assessing brain responses to the effects of
colored MLMs on emotion and LTM retention in this study.

Over the past few years, EEG has been used for identifying
the brain responses to colored stimuli of papers, lights, shapes,
and images. The responses are evaluated based on the changes in
(1) event-related potential, ERP (Cano et al., 2009; Palva et al.,
2011; Yeh et al., 2013; Münch et al., 2014; Rokszin et al., 2015),
(2) power spectral density, PSD (Yoto et al., 2007), and (3)
functional connectivity (Zanto et al., 2010). Those evaluations
had concluded the findings as follows: (1) blue and green lights
produce a greater amplitude of ERP at left frontal (i.e., left middle
frontal gyrus) than the red light, and thus it triggers the least
light adaptation and activates more brain regions. Eventually, the
interaction between visual information and brain response drives
the executive, attentional and emotional processing (Münch
et al., 2014). Another study (Yeh et al., 2013) reported that the
increased attention of a participant is observed at a shorter P100
peak latency of occipital and a greater amplitude of P300 at
frontal and parietal regions. Apart from color effect on attention,
researchers (Cano et al., 2009) have also found that the visual
color has an influence on emotional response as observed by
a greater amplitude of P300 at the frontal region for colored
images that convey positive emotion; (2) red color is able to
induce a higher level of perception, attention, excited feelings,
and less arousing effect than blue (Yoto et al., 2007) because
an increment of theta power at the midline parietal and an
increment of alpha at the left prefrontal cortex, left ventrolateral
prefrontal cortex (VLPFC), left temporal and midline frontal was
observed in the study. This contrasts with the outcome of the
light-based stimuli discussed earlier which may be due to light
radiance effect, as blue light has a great alerting effect (Cajochen,
2007); (3) An experimental study (Zanto et al., 2010) shows that
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color induces a long-range alpha phase synchronization between
regions of frontal and occipital and activates prefrontal regions.
Combining the observations above, EEG can be used as an
excellent technique to assess the influences of colored MLMs on
emotion and cognitive processes during learning.

It is well known that the regions of prefrontal, frontal,
temporal, posterior association (parietal and occipital), are
responsible for color processing, working memory, emotional
processing and LTM storage (Zeki and Marini, 1998; Zanto
et al., 2010). We hypothesized that colored MLMs (versus
achromatic MLMs) increased activation in the prefrontal and
frontal regions, as well as posterior association cortices with
top–down interactions — connectivity between these regions
representing improved working memory, emotional processing,
and LTM storage resulting from anticipatory control and
motivational factors. This paper is organized as follows: Section
“Materials and Methods” for data acquisition, analysis, and
statistical criteria. Section “Results” reports experimental results.
Sections “Discussions” and “Limitations and Future Directions”
discuss results as well as limitations and suggestions for future
work. Section “Conclusion” concludes the paper’s findings.

MATERIALS AND METHODS

Participants
The datasets comprised 45 healthy adults who were local
Malaysian students recruited from Universiti Teknologi
PETRONAS [18 females and 27 males; 18-24 years of age: mean
20.12 (±0.47)]. They were randomly assigned to one of the
three groups: (1) learning material with achromatic illustrations
(gray, black-and-white: GB&W); (2) learning material with
cool-colored illustrations (green and blue: CCI); and (3) learning
material with warm-colored illustrations (red and yellow: WCI).
Both genders were equally represented in all three groups (six
females and nine males each). All participants were right-
handed — thus avoiding hemispheric lateralization — and
physically and mentally healthy, without a history of head injury.
Only non-smokers and with normal or corrected-to-normal
vision (including normal color vision) were chosen. Before
arrival at the laboratory, participants were prescreened using
self-report questionnaires to ensure all inclusion criteria were
met. The prescreening included a prior domain knowledge
questionnaire (e.g., “I can explain what antibodies are.”) (Mayer,
2009; Plass et al., 2014), a short form Ishihara colorblind test
(ICBT) (Ishihara, 1960), a Visual-Aural-Read/write-Kinesthetic
(VARK) learning styles inventory (Fleming and Mills, 1992)
and demographic information (age, gender, education level).
Volunteers, who scored below eight-points for prior domain
knowledge questionnaire, full scores for ICBT, and had a
modality preference favoring V and R modes were invited to
participate. Overall, learners’ prior knowledge was low (GB&W:
M = 4.57, SD = 0.59; CCI: M = 4.57, SD = 0.40; WCI: M = 4.50,
SD = 0.54; where total score is 12). There is no significant
difference between groups in the prior knowledge test as
determined by one-way ANOVA [F(2,39) = 0.006, p = 0.994].
Participants were also instructed to refrain from consuming

caffeine for at least 8 h before experimental sessions, as both
caffeine and nicotine are the psychostimulants that impact
cognitive functions (attention and alertness) (Nehlig et al.,
1992; Warburton, 1992). The study protocol was approved
by the Medical Research Ethics Committee (MREC), UniKL
RCMP. All participants signed informed consent forms after
full disclosure. All were compensated monetarily for their time.
Three participants were excluded from the analysis due to low
recall accuracy (<40% correct rate, each from GB&W and CCI
groups) and low emotional valence (from WCI group), resulting
in 14 participants for each group.

Computer-Based Multimedia Learning
Material
Learning materials comprised 15 multimedia slides: an
introductory slide, 13 content slides, and a final slide to
recap overall content (adapted from Mayer et al., 2008; Mayer
and Estrella, 2014). Each slide showed an explanatory text of
60-120 words (total word count: 1043; time per slide: 38 ± 16 s)
describing the properties and characteristics of the virus and
bacteria; as well as schematics illustrated the life cycle of viral
infection and replication for understanding how viruses affect the
cells they infect. By taking into account the recommendation by
Mayer and Estrella (2014), EEG measurement was added to the
subjective measurement to examine the direct measures of color’s
effect on emotion and cognitive processing during learning.

Biological science was used for the content slides (learning
materials) that served as new knowledge for engineering students.
The spatial properties (slide layout: location of text and picture)
and typographies (text foreground and background, font size)
were designed to be identical for all the three groups, but the
visual illustrations of MLMs were displayed in either colored
or achromatic versions. Specifically, the color conditions of
MLMs were designed as follows: (1) achromatic colors served
as control group (Group 1: GB&W); (2) cool colors for
experimental condition #1 (Group 2: CCI); and (3) warm colors
for experimental condition #2 (Group 3: WCI). The text was
designed to be white on a black background to minimize the
risk of visual fatigue (eye strain) due to viewing a computer
screen for a long time (MacDonald, 1999) and it is the neutral
combination. Participants rated their emotional state using SAM
scale, which served as a manipulation check for the design
quality affected participants’ emotion (emotion elicitation) using
learning material. The screenshots of the mentioned MLMs
design were depicted in Figure 1.

Experimental Task
Participants were seated in a partially sound-attenuated air-
conditioned recording room and treated individually. All of them
were briefed on the experimental tasks which consisted of 7
task sessions: (1) Resting-state eyes open, (2) Pre-experiment
self-rating emotion (pre-SAM), (3) Learning task, (4) Post-
experiment self-rating emotion (post-SAM), (5) Distraction task,
(6) Recall test after 30-min, and (7) Recall test after 1-month. EEG
signals were recorded for all the seven sessions. Since the focus
of this study was to evaluate the color’s effect on emotion and
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FIGURE 1 | Experimental protocol and stimuli. The sequence of task sessions (top), the three versions of MLMs for the learning task (bottom) [achromatic-colored
illustrations (Group 1: GB&W); cool-colored illustrations (Group 2: CCI); and warm-colored illustrations (Group 3: WCI)], and a sample of test questions for the
memory recall tests.

cognitive process during learning, only resting-state eyes open
(session 1) and learning task (session 3) readings were analyzed
and presented. Figure 1 (see the previous section) illustrates
the experimental design. Details regarding each task session are
described below.

Session 1: Resting-State Eyes Open
During the resting-state eyes open (EO), participants were asked
to sit relaxed and quietly with hands on their thighs while looking
at a white cross on a black background presented in the center of
the computer screen to minimize eyeball movements.

Session 2: Pre-experiment Self-Rating Emotion
(Pre-SAM)
Before beginning the learning task, participants were asked to rate
their emotion using Self-Assessment Manikin (SAM) (Bradley
and Lang, 1994). SAM is a non-verbal, pictorial technique, which
directly measures levels of the emotional dimensions of valence
(V), arousal (A), and dominance (D). This assessment was rated
twice (before and after learning) for V, A, and D using a “9-
point Likert scale,” in which the score ranged from 1 to 9 at
the interval of 1 [V (1 = negative, 5 = neutral, 9 = positive), A
(1 = calm, 5 = neutral, 9 = excited), D (1 = low, 5 = neutral,
9 = high)]. The self-emotional rating performed before learning
served as a baseline of emotional state (pre-SAM) whereas rating
performed after learning was used to indicate the emotional state
while learning the materials (post-SAM). The changes in valence,
arousal, and dominance (1V, 1A, 1D) between pre-SAM and
post-SAM scores were assessed (see Section Statistical Analysis).

Session 3: Learning Task
During the learning task, participants were instructed to learn
and memorize the contents of learning materials without taking
notes and informed they would be tested to measure retention
of the learned contents. Note-taking was not allowed due to

these four reasons: (1) it requires deeper processing implies
semantic encoding that facilitates learning and increases recall
(encoding effect) (Bretzing and Kulhavy, 1979), (2) it interferes
with visual information processing where attention was divided
between the visual presentation of learning materials and his/her
hand movements (Ash and Carlton, 1953; see Kobayashi, 2005
for review), (3) requires more cognitive effort and time than
reading alone that depends on working memory to manage
comprehension and selection of information (Piolat et al., 2005),
and (4) brain controls hand movements that cause motion
artifacts, all of which are likely to influence EEG signals.

Session 4: Post-experiment Self-Rating Emotion
(Post-SAM)
Right after viewing the MLMs, participants were asked to rate
their emotional response using SAM again (identical to Session
2), to indicate how they felt while studying the MLM.

Session 5: Distraction Task
During the retention period of 30 min, participants performed a
mental arithmetic task that served as a distraction task to prevent
rehearsal of learned content, by counting backward from 1000 to
265 by sevens (993, 986, 979, . . ., 265). This was followed by a 5-
min break to ensure that the brain returned to its normal state for
the recall test.

Session 6: Recall Test After 30-min
A recall test was administered after 30 min had elapsed.
A recall test is commonly used to measure long-term retention
of learned information. The test consisted of 15 multiple-
choice questions (MCQs) covering the content of the MLMs
that required participants to recall specific information (factual
recall). Each test question had 4 alternatives with one correct
answer. Participants were asked to answer as quickly as possible
(but without time pressure) by pressing a key on the keyboard for
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FIGURE 2 | A sample of the multiple-choice questions (MCQs).

selecting the correct answer. Reaction times (RTs) and accuracy
(ACC) were recorded for behavioral data analysis. RT is defined
as the time from stimulus onset to key-press response; ACC is the
percentage of the correct answer. Means of RT and ACC were
computed for each subject and for each group. When the test
was completed, participants were instructed not to review any
of the subject material from the Internet or books within the 1-
month delay interval, and they allowed to leave. A sample of the
15-MCQs is illustrated in Figure 2.

Session 7: Recall Test After 1-Month
One month after the learning session, participants returned and
took a recall test. The same questions from session 6 were used
for assessing the retention of learned materials (LTM recall).

All stimuli were displayed using E-Prime 2.0 software
(Psychology Software Tools, Inc., Sharpsburg, PA, United States)
on a Dell laptop with a 14′′ screen (1024 × 768 pixels, 60 Hz
refresh rate), at a distance of∼30 cm from the seated participant.
E-Prime software was also used to record self-report emotional
experiences and behavioral responses.

EEG Acquisition and Pre-processing
Scalp EEG signals were acquired using an eegosports amplifier
(ANT Neuro, Enschede, Netherlands) with 31 gel-based
Ag/Ag-Cl electrodes mounted on an EEG head cap. All
electrodes were referenced to CPz and grounded at AFz
according to the manufacturer’s recommendation (eemagine
Medical Imaging Solutions GmbH, Berlin, Germany). The
readings of the electrode’s impedance were all maintained
at < 10 k� and sampled at 2048 Hz throughout recording
sessions. Figure 3 illustrates the topographical grouping of
electrodes, which are defined as: prefrontal cortex (PFC: Fp1,
Fp2), midline prefrontal cortex (mPFC: Fpz), ventrolateral
prefrontal cortex (VLPFC: F7, F8), dorsolateral prefrontal
cortex (DLPFC: F3, F4), frontal cortex (FC: FC5, FC1,
FC2, FC6), midline frontal cortex (mFC: Fz, Cz), temporal
cortex (TC: T7, T8, P7, P8), parietal cortex (PC: C3, C4,
CP5, CP1, CP2, CP6, P3, P4), midline parietal cortex (mPC:
Pz), occipital cortex (OC: O1, O2), and midline occipital
cortex (mOC: POz).

Raw EEG signals were pre-processed offline to remove
unwanted artifacts using BESA Research 6.0. To eliminate the

high-frequency physiological noise and low-frequency drifts,
a band-pass filter was used to extract the desired band
between the low- and high-cutoff frequency (0.5 and 48 Hz).
Artifacts like blinking, horizontal (HEOG) and vertical (VEOG)
eye movements and heartbeats were visually inspected and
automatically removed via spatial filtering based on artifact and
brain signal topographies using a preselection approach (Ille
et al., 2002) implemented in the BESA. Artifact selection steps
were involved by selecting a block epoch which contains an
artifact to be used to identify individual artifact topography.
This was followed by a search for further artifact occurrences
and, finally, the average of all detected artifacts (e.g., blinks)
were computed and marked artifact segment. The variance
at ≥95% that explained by the principal component analysis
(PCA) topography of the marked artifact segment is selected
and the data are automatically corrected. The same steps were
repeated for another kind of artifacts, such as HEOG and
VEOG. To evaluate the outcome of the artifact correction, the
relative root mean squared error (RRMSE) were computed to
check for the overall deviations between corrected values, X̂
and original measured values, X as expressed by, RRMSE =((

RMS
(

X − X̂
))

/RMS(X)
)
∗100% [similar approach used by

De Clercq et al. (2006)]. Data with a voltage amplitude exceeding
±100 µV were rejected manually. Finally, the corrected EEG
data were exported for power spectral analysis and effective
connectivity analysis using custom-made scripts and open-
source toolboxes in MATLAB (The MathWorks, Inc.). The
open-source toolboxes included (1) EEGLAB (Delorme and
Makeig, 2004) for topographical maps plotting, and (2) Brain
Connectivity Toolbox, BCT (Rubinov and Sporns, 2010) for
graph theoretical analysis.

Surface Laplacian Transformation
The volume conduction effects might be overcome by source
imaging algorithms such as exact low-resolution electromagnetic
tomography (eLORETA), weighted minimum-norm estimation
(wWNE), beamforming, etc. However, these methods have
limitations. Firstly, inaccurate source reconstruction can be
caused by using a fewer number of electrodes than the minimum
quantity (64 electrodes) required for such source analysis (Seeck
et al., 2017). Secondly, the literature (Mahjoory et al., 2017;
Cai et al., 2018; Miinalainen et al., 2019) reported that there
was no unique solution for the inverse problem as source
reconstruction algorithms require: (1) exact inverse and forward
models, (2) choices of anatomical template and head volume
conductor model (conductivities for major tissues), and (3) prior
assumptions of sources. On the other hand, Surface Laplacian
(SL) offers to estimate the current-source density (CSD) with
several advantages, including a head volume conductor model
and that the assumptions of sources are not required, reference-
free and only low-density electrodes (<64 electrodes) are needed
(Perrin et al., 1989; Kayser and Tenke, 2006). Considering
Occam’s razor principle, the SL is found suitable to be used for
CSD estimation, and thus applied to the corrected EEG signals
in our study, to improving topographical localization (i.e., a step
to reduce the spatial spread of activity) and minimizing volume
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FIGURE 3 | Electrode placement using the Extended International 10–20 system (10% system) covering prefrontal (red circles), dorsolateral prefrontal (purple
circles), ventrolateral prefrontal (orange circles), frontal (green circles), temporal (blue circles), parietal (yellow circles), and occipital (gray circles) cortices. Odd
numbers = left, even numbers = right, and z = zeros in the midline.

conduction effects (for a similar approach, see Lachaux et al.,
1999; Johnson et al., 2017).

EEG Frequency Decomposition
The corrected EEG signals were decomposed into frequency
bands of interest using Fast-Fourier Transform (FFT),
where the decomposed five frequency bands: Delta
(0.5–4 Hz), Theta (4–8 Hz), Alpha (8–13 Hz), Beta (13–
30 Hz), and Gamma (30–48 Hz) (Cochran et al., 1967).
A 50% overlap Hanning window was used to reduce
spectral leakage.

Effective Connectivity Network (ECN)
We used the phase slope index (PSI) (Nolte et al., 2008) to
estimate magnitude and direction of information flow between
the multivariate EEG signals (source code for implementation
of PSI is available at http://doc.ml.tu-berlin.de/causality/). PSI
was employed because it is insensitive to volume conduction
and it detects only non-zero phase delays that allow effective
connectivity network (ECN) estimation at sensor level (Nolte
et al., 2008; Mahjoory et al., 2017). Besides, the approximated
fixed time delay (τ) that corresponds to a linear phase shift (in
frequency domain) can be used to characterize the interacting
regions of the brain. One should be noted that the phase
slope of cross-spectra 8

(
f
)

is also a function of frequency,
which can be written as 8

(
f
)
= 2πf τ. The sign of the phase

slope is either positive or negative, which infers direction (e.g.,
electrodes i and j) — specifically, the causal direction from
yi to yj, if positive (i = sender and j = receiver). Otherwise,
from yj to yi, if negative. Mathematically, PSI is expressed as

9̃ij = =

(∑
f∈F

Coh
∗

ij (f) Cohij (f+ δf)

)

where Cohij
(
f
)
= Sij(f )/

√
Sii(f )Sjj(f ) is the complex coherency;

S is the cross-spectral matrix; δf is the frequency resolution (δf =
Fs/nFFT = 0.5Hz); = (.) is the imaginary part of coherency;
F is the set of frequencies over which the phase slope is
summed; 9̃ is the weighted average of the slope and vanishes
if the imaginary part of the coherency diminished, thus, it is
insensitive to mixtures of non-interacting sources (zero phase,
robust measure) (Nolte et al., 2004). Lastly, PSI values are
normalized by dividing its own value with standard deviation
which estimated by the Jackknife method (Nolte et al., 2008),

9 = 9̃/std
(
9̃
)

The purpose of normalization is to minimize the false positives of
effective connectivity (improved specificity). The normalized PSI
were stored in a 29× 29 skew-symmetric matrix which equivalent
to 406 possible pairwise associations [(N2

− N)/2, where N = 29
is the number of electrodes] with diagonal being zero, so that
only cross-correlation rather than auto-correlation between EEG
signals are estimated. A statistical threshold (|9| > 2) which
corresponds to 95% confidence interval of the PSI distribution
at p < 0.05 (two-tailed), was applied to the association matrix
(Nolte et al., 2008) so that all the values below the threshold
were set to zero and values above the threshold were retained
its original values. This thresholding is used to generate a
directed and weighted adjacency matrix for the following graph
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theoretical analysis. The steps of data analysis are depicted
in Figure 4.

Graph Theoretical Analysis
We charted the topological organization of ECN using graph
theory. A network/graph was defined as a set of nodes (i.e.,
electrodes) that represent interconnected brain regions by a set of
edges (i.e., entries of the adjacency matrices). Key graph metrics
describing the architecture of the network were computed
from the directed and weighted adjacency matrices using BCT
(Rubinov and Sporns, 2010), to include node degree (k),
clustering coefficient (CC), characteristic path length (λ), local
efficiency (LE), global efficiency (GE), betweenness centrality
(BC), and sparsity.

Node Degree
The degree of a node is defined as the number of edges connected
to that node. Since an adjacency matrix generated from PSI
values shows the direction of information flow, a node’s degree
is computed by dividing it into (1) in-degree (kin

i ) to denote
incoming flow strength; and (2) out-degree (kout

i ) to denote
outgoing flows strength; which are expressed as kin

i =
∑
j∈N

Aji

and kout
i =

∑
j∈N

Aij (where Aij does not necessarily equal Aji and

represents the entry of the adjacency matrix). A node with
high out-degree values indicates a region that could influence

others. Likewise, a node with high in-degree values indicates an
area influenced by other regions. Then, the total degree (TD)
provides a measure of a node’s hubness which can be computed by
TD =

∑
kin

i +
∑

kout
i .

Directionality Index
To show directionality of information flow, the difference
between out- and in-degree at each electrode was computed.
Mathematically, the directionality index (DI) is expressed as
DI =

∑
kout

i −
∑

kin
i . A positive DI indicates that the electrode

behaves like a source/sender — sending information, while
negative DI means a sink/receiver — receiving information.

Phase Slope Index: Left vs. Right Hemisphere of
Frontal-Parietal-Occipital
The mean absolute PSI were computed for different distances
between anterior and posterior electrode pairs in the left and
right hemispheres, respectively. The combinations were FP1/2–
F3/4, FP1/2–FC1/2, FP1/2–FC5/6, FP1/2–C3/4, FP1/2–CP1/2,
FP1/2–CP5/6, FP1/2–P3/4, and FP1/2–O1/2.

Measure of Segregation
The clustering coefficient (CC) measures network segregation;
i.e., the degree to which a network is organized into local
specialized regions (Watts and Strogatz, 1998). We averaged
all local clustering coefficients to yield the graph’s clustering

FIGURE 4 | Flowchart for the EEG data analysis pipeline to characterize patterns of effective connectivity network (ECN) based on graph theoretical analysis. See
Supplementary Material for results of power spectral density (PSD).
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coefficient ranging from 0 to 1. Mathematically, the graph’s
clustering coefficient can be written as

CC =
1
N

∑
i∈N

Ci =

1
N

∑
i∈N

ti(
kout

i + kin
i
) (

kout
i + kin

i − 1
)
− 2

∑
j∈N AijAij

where Ci is the local clustering coefficient; ti is the number of
triangles around each node; kin

i and kout
i is the in-degree and out-

degree of a node; and Aij, Aji is the entry of the adjacency matrix.
Local efficiency (LE) measures the efficiency of information

transmission within local clusters, indicating how efficient its
neighbors can communicate when a node is removed.

LE =
1

2N
(
∑
iN∑

j,h∈N,j 6=i
(
Aij + Aij

)
(Aih + Ahi)

[(
djh (Ni)

)−1
+
(
dhj (Ni)

)−1
]

(
kout

i + kin
i
) (

kout
i +kin

i − 1
)
− 2

∑
j∈N AijAij

)

where djh (Ni) is the length of the shortest path between j and h
that contains only neighbors of i.

High local efficiency supports parallel processing for the
effective integration of information (Bullmore and Sporns, 2009).

Measure of Integration
The shortest path length (PL) is the lowest number of edges
traveled between any given pair of nodes. The average PL for
all node pairs is called the characteristic path length (λ), and
it can be mathematically written as λ = 1

N
∑
i∈N

(
∑

j∈N,j6=i
PL/N-1).

The average inverse of the shortest path measures global
communication efficiency of a network, namely, global efficiency
(Latora and Marchiori, 2001), GE = 1

N
∑
i∈N

(
∑

j∈N,j 6=i
(PL)−1/N-1).

GE represents network integration or overall capacity for
parallel information transfer and rapid information exchanges
between distributed regions. High GE values indicate high
communication efficiency and fewer processing steps between
network nodes, and vice versa.

Measure of Centrality and Hub Identification
Betweenness centrality (BC) is the fraction of all the shortest
paths in the network that pass through the node. Nodes with high
BC values act as hubs with many ‘shortest’ paths. Removal of BC
nodes considerably changes network performance that is crucial
for communication efficiency. We compute this value as follows:
BCi =

1
(N−1)(N−2)

∑
h,j∈N, h 6=i,j,i6=j

sphj(i)
sphj

, where sphj is the number

of ‘shortest paths’ between node h to node j, sphj(i) is the number
of shortest paths between node h to node j that passes through
node R©; BCi was computed for all nodes i in the network.

We also classified the brain hub of the network according
to four nodal parameters: CC, PL, D, and BC. Generally, a hub
is characterized by a low CC, short PL, high D, and high BC.
Therefore, brain hubs can be identified by determining whether

a node fulfilled the score criteria: (1) in the top 20% with lowest
CC values; (2) in the top 20% with shortest PLs; (3) in the top
20% with highest Ds; and (4) in the top 20% with highest BC
values. Each node was scored between 0–4, as determined by the
total number of hub scores. An electrode with a hub score of 2 or
higher (HS ≥ 2) was considered a brain hub — the same criteria
set by Vandenberghe et al. (2013).

Network Sparsity
The directed and weighted brain network was obtained by
applying the same statistical threshold to the estimated ECN,
but this leads to a slight difference in sparsity. Eventually, the
network sparsity was computed by taking the ratio between the
total number of existing edges and the maximum number of
possible edges in a network [(N2

− N)/2 edges].

Correlation Between Behavioral and
Subjective Relevance of Graph Metrics
To assess the relationship between graph metrics of the
behavioral and subjective data resulting from color effects,
graph metrics were correlated (i) with changes in subjective
data (emotional valence and arousal) and (ii) with behavioral
data (accuracy and RTs). Firstly, the significant datasets were
selected. This was followed by correlation analysis between the
changes in subjective data and the brain network metrics by
electrodes at group level by computing the Pearson correlation
coefficients (r) at p < 0.05. The same analysis was repeated
for correlation between the behavioral data and the brain
network metrics.

Statistical Analysis
All data are presented as mean (±SD). Since the comparison of
mean differences involved three independent groups and more
than one dependent variables, one-way multivariate analysis of
variance (MANOVA) and Tukey’s HSD post hoc test for multiple
comparisons (p < 0.05) were conducted to determine significant
differences between groups. The same statistical analysis was
performed for behavioral data and graph metrics separately.

To assess color’s effect on subjective data, a paired t-test
(p < 0.05) was used to identify the significant differences between
pre-SAM and post-SAM (1V, 1A, 1D) at the group level. This
was followed by the comparisons between-groups using one-way
MANOVA and Tukey’s HSD post hoc test.

RESULTS

In this study, we used EEG to assess the effects of colored
MLMs on emotion, cognitive processes during learning and
LTM retention. In this section, we present the experiment
results in 4 subsections; in terms of the subjective data, the
behavioral data, the EEG-based effective connectivity indices and
the correlation analysis.

Subjective Data
Color evokes emotional states of valence (pleasure) and arousal.
As expected, WCI and CCI groups rated somewhat higher
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in valence and arousal than the GB&W group. Paired t-tests
of differences between pre- and post-SAM scores showed
significantly differences for valence [t(13) = −7.167, p < 0.001;
from a mean of 5.14 (±1.23) to 7.71 (±0.91)], and for arousal
[t(13) =−6.853, p < 0.001; from 4.64 (±1.15) to 6.43 (±1.02)] in
the WCI group. The CCI group showed a significant difference
for valence (P) only [t(13) = −5.692, p < 0.001; from a mean
of 5.07 (±1.26) to 7.43 (±1.01)]. No significant differences in
valence, arousal and dominance scores were noted for the GB&W
group (see Figure 5). One-way MANOVA analysis indicated that
a learner’s emotional state was significantly affected by color
[F(12, 68) = 9.437, p < 0.001; Wilk’s 3 = 0.141, η2

p = 0.625].
Colored illustrations had a statistically significant effect on
valence [F(2,39) = 30.149, p < 0.001;η2

p = 0.607] and on arousal
[F(2,39) = 11.813, p < 0.01; η2

p = 0.377]. Follow-up MANOVAs
with Tukey’s HSD post hoc showed significant differences in mean
valence scores between CCI and GB&W groups (p < 0.001);
and between WCI and GB&W groups (p < 0.001), but not
between CCI and WCI groups (p = 0.739). This indicates
that participants in CCI and WCI groups experienced a more
positive emotional state than the GB&W group. Mean arousal
ratings were statistically significant differences between CCI
and GB&W groups (p < 0.05), and between WCI and GB&W
groups (p < 0.001), but not between CCI and WCI groups
(p = 0.125). It is believed that no difference for arousal was
observed between the CCI and WCI due to the CCI group
being higher in arousal, on the post-SAM task. The side-by-
side color-coded boxplots of pre-SAM and post-SAM scores are
shown in Figure 5.

Behavioral Data
Behavioral data consists of reaction time (RT) and accuracy
(ACC). One-way MANOVA analysis showed that behavioral
performance significantly depended on visual color

FIGURE 5 | Mean SAM scores: (A) valence, (B) arousal, and (C) dominance
for GB&W, CCI, and WCI for an average of 14 participants per condition. Blue
boxes = pre-SAM scores and red boxes = post-SAM scores. Asterisks
indicate the significance level (∗∗p < 0.01 and ∗∗∗p < 0.001).

[F(8,72) = 3.772, p < 0.01; Wilk’s 3 = 0.497, η2
p = 0.295].

Specifically, colored illustrations significantly affect the recall
test’s (after 30 min) reaction time, RT1 [F(2,39) = 8.025, p < 0.01;
η2

p = 0.292]. However, color had no statistically significant
effect on accuracy for the recall test after 30-min, ACC1
[F(2,39) = 1.853, p = 0.17; η2

p = 0.087]. Significant effect on recall
test after 1-month, where ACC2 results were [F(2,39) = 6.111,
p < 0.001; η2

p = 0.239]; and RT2 results were [F(2,39) = 4.369,
p < 0.05; η2

p = 0.183]. A follow-up analysis by MANOVA with
Tukey’s HSD post hoc showed mean RT values for recall test
after 30-min results were statistically significant differences
between GB&W and WCI groups (p < 0.05), and between
CCI and WCI groups (p < 0.01), but not between GB&W and
CCI groups (p = 0.549). Mean accuracy scores for recall test
after 30-min were not significantly different between GB&W
and CCI (p = 0.167), GB&W and WCI groups (p = 0.889), or
between CCI and WCI groups (p = 0.357). However, delayed
memory recall test (after 1 month), mean RT2 results were
statistically significant differences between CCI and WCI groups
(p < 0.05); but not between GB&W and CCI (p = 0.543) or
GB&W and WCI groups (p = 0.165). Mean accuracy (ACC2)
scores were significant differences between GB&W and CCI
group (p < 0.05), and CCI and WCI groups (p < 0.05), but
not between GB&W and WCI groups (p = 0.994). Overall,
results showed higher ACC in both LTM tests (after 30-min and
1-month) are observed for CCI group than WCI and GB&W
groups, whereas WCI group responded faster than GB&W
and CCI during both LTM tests. Figure 6 illustrates mean
scores for accuracy (ACC) and reaction time (RT) for both
memory recall tests.

EEG-Based Effective Connectivity
Indices
Node Degree
The topographical maps of averaged total degree at each electrode
during resting-state eyes open and learning state are shown
in Figure 7.

As seen in Figure 7, the total degree of connectivity (TD)
increased in most frequency bands (except gamma band) during
the learning state compared to resting-state eyes open for all
three groups. In the alpha band, the increase of TD observed
at mPFC, right PFC, mFC, and bilateral PC, especially for WCI
group. In delta and theta bands, higher TD was found for WCI
and CCI groups than GB&W group at mPFC and bilateral PC.
The beta band showed increased TD in the (i) left PFC, mFC,
bilateral PC, mPC and mOC for GB&W group; (ii) mFC, right
DLPFC, right FC and PC for CCI group; and (iii) left PFC, mPFC,
mFC, bilateral FC and right PC for WCI group. In gamma band,
increased TD were observed in the (i) left PFC, mFC, mPC, and
mOC for GB&W group; (ii) left PC and mFC for CCI group; and
(iii) left DLPFC, left FC and mPC for WCI group.

Directionality Index
The results of the directionality index (DI) are shown in
Figure 8A. In the alpha band, long-range connectivity with
information flows from anterior to posterior cortices are
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FIGURE 6 | Behavioral data. (A) Mean accuracy, and (B) Mean reaction time for LTM tests administered after 30-min (left) and 1-month delay (right), respectively.
GB&W, CCI, and WCI for an average of 14 participants per condition. Asterisks indicate the significance level (∗p < 0.05 and ∗∗p < 0.01).

observed for WCI group. A similar trend is observed in the
theta band, but less sender node is obtained for the CCI
group than WCI group. For beta and gamma bands, several
observations identified what appeared to be non-systematic
activities, particularly, for the beta band. Sender nodes were
identified in the (i) left PFC, mFC, left PC, and mPC for GB&W
group; (ii) right VLPFC, FC, and PC for CCI group; and (iii)
mFC, right FC, and PC for WCI group. In gamma band, sender
nodes were appeared at (i) right VLPFC, mFC, and right PC for
GB&W group; (ii) right VLPFC and left FC for CCI group; and

(iii) mFC, bilateral FC and PC for WCI group. In delta band,
similar sender nodes were observed for all groups at bilateral
DLPFC and PC. The differences in directionality index between
groups were computed (see Figure 8B). Long-range connectivity
with information flows from anterior to posterior cortices was
observed for WCI compared to GB&W (WCI–GB&W) and
CCI (WCI–CCI) in theta and alpha bands. Specifically, in the
theta band, sender nodes are observed at bilateral DLPFC, left
VLPFC, bilateral FC, and mPC, and that receives at PC, and
OC, bilaterally. For the alpha band, sender nodes are observed
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FIGURE 7 | Topological maps of mean total degree (TD): (left) resting-state eyes open, and (right) learning for all three groups (GB&W, CCI, WCI) and frequencies
(delta, theta, alpha, beta, and gamma). The color bars of total degree are set to identical ranges per frequency band. Red colors denote high total degree nodes;
Blue colors denote low total degree nodes.

FIGURE 8 | Directionality index (DI). (left) Learning condition for all three groups (GB&W, CCI, WCI) and frequencies (delta, theta, alpha, beta, and gamma), and
(right) Differences between groups for each frequency band. Red colors represent sender nodes; Blue colors represent receiver nodes.
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at bilateral PFC, DLPFC, and FC, and that receives at mOC
and bilateral PC.

Phase Slope Index: Left vs. Right Hemisphere of
Frontal-Parietal-Occipital
In theta band, greater information flows were observed in
the left hemisphere (LH) than the right hemisphere (RH) at
frontal regions (FP1→FC5) for CCI group. The WCI group
showed greater information flows in the RH compared to the
LH, specifically at the regions of (1) frontal (FP2→F4 and
FP2→FC6), (2) frontal-parietal (FP2→CP6) and (3) parietal-
frontal (CP6→FP2). For the GB&W group, information flow
in RH is greater than LH at parietal-frontal (CP2→FP2 and
CP6→FP2).

In the alpha band, information flow in the RH is greater
than LH with long-range synchronization was observed between
anterior-posterior regions for both WCI and CCI groups while
CCI group had a greater magnitude of information flow in the
LH than RH within frontal regions (FP1→FC1 and FC5→FP1).
Besides that, a greater magnitude of information flow in the RH
than LH within areas of anterior (FC2→FP2) and posterior-
anterior regions (CP2→FP2) was observed for the GB&W group.

In the beta band, greater information flow between frontal-
parietal regions (FP2→CP2 and FP2→O2) in the RH while
the back-to-front flow was observed in the LH (F3→FP1,
C3→FP1, CP5→FP1) for WCI group. For CCI group, a greater
information flow in the LH compared to RH (FP1→FC1,
FP1→O1, and C3→FP1). Meanwhile, for the GB&W group, a
greater magnitude of information flow in the LH (FP1→O1),
which followed the back-to-front flow (F3→FP1, C3→FP1, and
CP1→FP1). Figure 9 shows the significant differences of mean
absolute PSI within hemispheres for electrode pairs.

Measure of Segregation
Results for network segregation using the graph’s clustering
coefficient (CC) and local efficiency (LE) are shown in Figure 10.
In theta and alpha bands, the CC values obtained show a
significant difference between groups. The mean of CC was
reduced in theta and alpha bands for WCI group compared to
CCI and GB&W groups, while LE increased with decreasing
clustering in the following order: [WCI > CCI > GB&W]. In
the beta band, CC value for CCI group is lower than WCI and
GB&W groups. In the delta band, clustering is increased for the
CCI group compared to WCI and GB&W groups. A decrease
of clustering with an increase of LE was also found in the
gamma but no significant difference was found. Similarly, no
statistically significant differences are observed for LE in for all
five-frequency bands (except LE in the alpha). Generally, LE is
relatively higher for WCI group than CCI and GB&W groups in
all bands, except delta, higher LE found in CCI group than WCI
and GB&W groups.

Measure of Integration
The mean of characteristic path length (λ) is decreased in the
delta, theta, alpha and beta bands for WCI group compared to
CCI and GB&W groups. In gamma band, the λ value is slightly
higher for the CCI group than WCI and GB&W groups. Besides

that, a higher global efficiency (GE) value was observed for the
WCI group than CCI and GB&W groups in the delta, alpha, beta,
and gamma bands. In theta band, GB&W group showed a higher
GE value than CCI and WCI groups. Figure 11 shows boxplots
summarizing the results for network integration using λ and GE.

Measure of Centrality and Hubs Identification
Several regions within frontal, parietal and occipital cortices have
a higher level of betweenness centrality (BC) in the theta and
gamma bands for GB&W group than CCI and WCI groups. In
delta band, all three groups exhibited higher levels of BC values
at mPFC, whereas a slight increase of BC values at mOC and right
PC is observed for the GB&W group. In the alpha band, several
areas within the mFC, PC and right TC have a higher level of BC
than other regions for WCI group compared to CCI and GB&W
groups. In gamma band, a slight increase of BC values at right
VLPFC, mFC, right PC and mOC were observed for the GB&W
group compared to CCI and WCI groups. Lowest BC nodes were
observed for WCI group. Figure 12 presents the betweenness
centrality (BC) values obtained at each electrode.

Besides, brain hubs of the network were also identified using
hub score, HS (see Section Measure of Centrality and Hub
Identification). Results showed that more nodes met the HS
criteria were revealed for the CCI group in theta and alpha
bands than WCI and GB&W groups. It can be seen in the
Supplementary Tables S1–S3, seven brain hubs were identified
in the CCI group in the theta band, which is followed by six brain
hubs in GB&W group and four brain hubs in WCI group. In the
alpha band, the sequence as follows: CCI (8 brain hubs) > WCI
(7 brain hubs) > GB&W (6 brain hubs). In the beta band, more
nodes met the HS criteria was found in the WCI than that of
CCI and GB&W groups [WCI (10 brain hubs) > CCI = GB&W
(7 brain hubs)].

Network Sparsity
There was no significant difference in mean sparsity of the brain
network between-groups during EO condition across the five
frequency bands, F(10,70) = 0.799, p = 0.630; Wilk’s 3 = 0.806,
η2

p = 0.102; and during L condition, F(10,70) = 0.240, p = 0.991;
Wilk’s 3 = 0.935,η2

p = 0.033, as determined by one-way
MANOVA, and thus no further follow-up tests were performed
as it has not achieved a statistically significant result. This showed
that the variations in sparsity impart a negligible effect on the
topological organization of the resulting brain networks and
the comparison of network metrics between groups is unbiased.
Furthermore, the values of network sparsity within the range of
0.05–0.5 (≡ 5–50%), indicating the complex network of human
brain (Achard and Bullmore, 2007; Bullmore and Sporns, 2012).
The mean sparsity of the brain networks of each frequency band
for EO and L conditions are summarized in Table 1.

Correlation Analysis Between Graph
Metrics and Behavioral/Subjective
Measures
We correlated graph metrics with changes in emotional valence
(1V) and arousal (1A), and behavioral performances (RT and
Accuracy). Specifically, CC and BC values for theta and alpha
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FIGURE 9 | Mean differences in absolute values of PSI within the left (LH) vs. right (RH) hemisphere for (A) theta, (B) alpha, and (C) beta bands, respectively. Positive
values: anterior→ posterior flows; Negative values: posterior→ anterior flows.

FIGURE 10 | Boxplots show network segregation for (A) graph’s clustering coefficient (CC), and (B) local efficiency (LE) for all three groups (GB&W, CCI, WCI) and
for five frequency bands (delta, theta, alpha, beta, and gamma). Asterisks indicate the significance level (∗p < 0.05, ∗∗p < 0.01, and ∗∗∗p < 0.001).

FIGURE 11 | Boxplots show network integration of (A) characteristic path length (λ), and (B) global efficiency (GE) of the brain network for all groups (GB&W, CCI,
WCI) and for five frequency bands (delta, theta, alpha, beta, and gamma).

bands; while local efficiency (LE) for the alpha band were selected,
because only these bands showed significant differences between
groups. On the other hand, the significant change in valence

for CCI and WCI groups, arousal for WCI group, reaction
time for WCI and accuracy for CCI were selected (represented
as 1VCCI, 1VWCI, 1AWCI, RT1, WCI, ACC2, CCI). Subscripts
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FIGURE 12 | Mean betweenness centrality (BC): (A) resting-state eyes open, and (B) learning for all three groups (GB&W, CCI, WCI) and for five frequency bands
(delta, theta, alpha, beta, and gamma). Red = highest BC value; blue = lowest BC value.

TABLE 1 | Mean sparsity of the brain networks during eyes open (EO) and
learning (L) conditions.

Frequency
band

Group EO condition L condition

Mean Standard
Deviation

Mean Standard
Deviation

Delta BW 0.229 0.061 0.196 0.065

CCI 0.184 0.087 0.198 0.090

WCI 0.197 0.104 0.222 0.128

Total 0.203 0.086 0.205 0.096

Theta BW 0.197 0.088 0.235 0.054

CCI 0.212 0.139 0.221 0.129

WCI 0.196 0.085 0.221 0.073

Total 0.202 0.104 0.226 0.089

Alpha BW 0.078 0.049 0.274 0.142

CCI 0.052 0.031 0.256 0.151

WCI 0.080 0.041 0.287 0.120

Total 0.070 0.042 0.272 0.135

Beta BW 0.221 0.109 0.300 0.181

CCI 0.186 0.066 0.274 0.148

WCI 0.241 0.145 0.303 0.145

Total 0.216 0.111 0.292 0.156

Gamma BW 0.083 0.078 0.101 0.089

CCI 0.077 0.064 0.074 0.048

WCI 0.126 0.128 0.094 0.048

Total 0.095 0.094 0.090 0.064

1 and 2 denote memory recall after 30-min and 1-month
delay, respectively.

For 1V, a significant negative correlation between BC and
1VCCI in the mPC was obtained in the theta band. For the alpha
band, CCI and WCI groups obtained opposing results: CC was
positively correlated with 1VCCI in the right PC, but negatively
correlated with 1VWCI in the left VLPFC, left TC, right PC, and
mOC. BC and LE relationships with 1V in the alpha band for
WCI and CCI groups revealed similar results, with BC positively
correlated with 1VCCI in the mFC (but negatively with right FC),
and with 1VWCI in the right FC. LE was positively correlated
with 1VCCI in the mPFC and left TC, and with 1VWCI in the
left PFC. For 1A, significant negative correlations were found
between CC in the theta and alpha bands with 1AWCI in left
DLPFC and TC and right PC. BC was negatively correlated with
1AWCI in the left PFC but positively correlated with 1AWCI
in the right PC in the theta band. BC was positively correlated
with 1AWCI in the right PC together with a positive correlation
between LE and 1AWCI in the left OC results in the alpha band.

Behaviorally, correlations were positive for both CC and BC
in the theta band for ACC2, CCI in the left FC and right DLPFC,
respectively. But negative for both CC and BC in the alpha
band for ACC2, CCI. Specifically, CC is negatively correlated
with ACC2, CCI in the right PC; BC is negatively correlated
with ACC2, CCI in the left FC and TC. As for RT, a negative
relationship between CC and RT1,WCI was observed for the theta
band in the mPFC; BC is positively correlated with RT1,WCI in
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TABLE 2 | Correlation analysis (significant findings only) between graph metrics & SAM (1VCCI, 1VWCI, 1AWCI) and behavioral tests (RT1,WCI, ACC2,CCI).

EEG bands Graph metrics 1VCCI 1VWCI 1AWCI ACC2,CCI RT1,WCI

Theta CC – – F3 FC5 FPz

(−0.73, 0.003) (0.56, 0.044) (−0.55, 0.043)

T7

(−0.62, 0.018)

P8

(−0.57, 0.033)

BC Pz – FP1 F4 –

(−0.71, 0.004) (−0.55, 0.042) (0.54, 0.044)

CP2

(0.544, 0.044)

Alpha CC P4 F7 FPz CP6 –

(0.60, 0.025) (−0.71, 0.005) (−0.60, 0.024) (−0.55, 0.042)

T7 F4

(−0.54, 0.047) (−0.59, 0.027)

P4 FC6

(−0.55, 0.042) (−0.64, 0.015)

POz P4

(−0.56, 0.039) (−0.69, 0.006)

P8 (−0.54, 0.048)

BC Fz FC6 P4 FC1 FC1

(0.54, 0.047) (0.63, 0.017) (0.67, 0.009) (−0.55, 0.040) (0.62, 0.018)

FC2 T7 CP5

(−0.64, 0.013) (−0.59, 0.027) (0.56, 0.039)

CP2 (0.68, 0.008)

Pz (0.54, 0.046)

LE FPz FP1 O1 – –

(0.67, 0.013) (0.55, 0.040) (0.55, 0.041)

T7

(0.59, 0.033)

Numerical inside bracket indicates (r, p) where r is the Pearson correlation coefficients and p is the p-values.

the left FC, bilateral PC and mPC in the alpha band. The results
of the correlation analysis are summarized in Table 2.

DISCUSSION

The experiment results showed that colored MLMs could induce
a positive emotional state on the learner, activate the brain
to focus and process information, and that improve learning
(higher accuracy). The following of this section discusses several
findings observed from experiments. Firstly, we noticed a
non-identical magnitude of information flow within the left
and right hemispheres, by which the information flows are
dependent on the use of color in MLM design. Secondly, the
directionality indices showed the long-range frontal-parietal
connectivity in theta and alpha bands, and it leads to top–
down processing for WCI and CCI groups, whereas, bottom–
up processing is observed for GB&W group due to the
reverse information flow obtained from parietal to frontal.
These findings suggested the top-down modulation of working
memory stimulated by color, which also appeared to enhance
anticipatory control over encoding and retention (Zanto et al.,
2010). Specifically, the PFC region appears to exert top-down

attentional control while also influencing information selection
in working memory for encoding; thus, engaging cognitive
control while learning (Muhle-Karbe et al., 2017). Furthermore,
selective attention facilitates the integration of sensory and
perceptual information to be stored in different brain areas (Chai
et al., 2017). This suggests that long-range connectivity between
frontal and multimodal association areas (theta-alpha range, 4–
13Hz) is likely associated with active monitoring and enhanced
performance (Zanto et al., 2011). Studies have reported that color
processing involves brain regions of association areas, visual,
frontal and prefrontal (DLPFC and VLPFC) cortices (Zeki and
Marini, 1998; Vandenbroucke et al., 2014). Overall, the measure
of the emotional and cognitive process during learning using EEG
in this study has quantitatively proved that the brain has a higher
response to the colored MLMs than achromatic MLMs.

Subjective Data
Participants who were exposed to WCI materials rated somewhat
higher emotional valence (more enjoyable) and arousal (more
excited/activated) than CCI and GB&W groups, whereas CCI
group reported high emotional valence (more pleasant and
relaxed) but with less arousal (calm). According to color
psychology, the feeling of people is stimulated by warm
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colors whereas cool colors induce a sense of relaxation
and calming effect (Elliot and Maier, 2014). Besides that,
color heightened motivation on the learner to continue
learning from the materials as the color might be perceived
as more vivid and interesting (Navratil et al., 2018). Our
experiment shows that colored MLMs are able to induce
positive emotion on participants while a similar finding
was reported by Um et al. (2007), Um et al. (2012),
Mayer and Estrella (2014), Le et al. (2018), Münchow
and Bannert (2018), Navratil et al. (2018), and Uzun and
Yıldırım (2018); which confirmed the effect of color on
emotional experiences. Positive emotion strengthens motivation,
attention and behavioral intentions that facilitate learning
and enhance memory (Pekrun, 1992) as hypothesized by the
Broaden-and-Build theory (Fredrickson, 1998). In addition,
psychophysiological and neuroscience studies of emotional
processing reported that pleasant states are associated with the
brain’s appetitive motivational (SEEKING) system that might
influence the degree of attentive engagement during perceptual
processing (Panksepp, 2005; Lang and Bradley, 2010).

Behavioral Data
Behaviorally, the CCI group had a higher accuracy rate
than GB&W and WCI groups, although no significant mean
differences of ACC1 were obtained. However, the 1-month recall
revealed a significant increase of mean accuracy (ACC2) for
the CCI group compared to WCI and GB&W groups. This
indicates that color induced a more substantial influence on
1-month recall (longer LTM retention) than that for 30-min
recall. This demonstrates that color has an effect on delayed
LTM instead of immediate LTM, which improves long-term
retention of learned information, presumably by increasing ones’
attention, emotional valence and arousal (Cano et al., 2009;
Dzulkifli and Mustafar, 2013).

In terms of reaction time, WCI group respond faster than
GB&W and CCI groups during the 30-min recall, and with a
significant difference between CCI and WCI groups. This might
be due to the fact that warm colors are more stimulating, leading
to faster responses (attention and arousal ↑, RT↓), whereas,
cool colors are more relaxing and calming that maintains
focus and concentration during learning (concentration ↑,
accuracy ↑). This suggests that warm colors could induce
higher levels of arousal, excitement, and attention to the learner
(Wexner, 1954) than the cool colors. However, the levels
achieved cannot be too high that could cause a performance
decrease according to the Yerkes-Dodson Law. Compared to
warm colors, cool colors elicit more significant feelings of
relaxation and calmness (Wexner, 1954), where learners will
be able to keep focused and concentrated while learning,
and will facilitate memory consolidation for LTM retention
(Nava et al., 2004).

Node Degree
As referred to Figure 7 in Section “Node Degree,” an increased
total degree was observed, indicating that brain regions are
organized and integrated globally when exposed to colored
MLMs compared to achromatic MLMs. The result showed that

high degree nodes at prefrontal, frontal and posterior association
cortices (temporal, parietal and occipital) in beta and lower-
frequency (0.5-13 Hz) bands. This finding suggests that memory
improvement with longer knowledge retention can be achieved
by increasing the connectivity between frontal and posterior
areas, as it was supported by Bassett and Mattar (2017). This
is explained by the dominant role of prefrontal and frontal
cortices during the processing of visuospatial information in
working memory (Johnson et al., 2018), which prioritizes sensory
input during learning (Muhle-Karbe et al., 2017) associated
with cognitive-emotional functions (Tyng et al., 2017) that
facilitate successful encoding and retrieval — with the presence
of color. Besides, multimodal association cortices are referred
to as higher-order association areas, including (i) the prefrontal
areas that have been linked with working memory as well as with
attentional, emotional and motivational processing and color
processing; and (ii) posterior association areas of temporal and
parietal are linked with declarative (semantic and conceptual)
knowledge and experiences and occipital is responsible for
visual information processing are crucial for learning and
memory (Mesulam, 1998). These support the idea of the color
evokes emotional experiences and modulates global connectivity
(Kinnison et al., 2012).

In the gamma band, high degree nodes were mostly found in
prefrontal and frontal cortices for GB&W group compared to
CCI group, where high degree regions were found in left PFC,
mFC, and mPC. This is likely due to increased working memory
(WM) load as WM load-related gamma band network identified
at prefrontal and parietal areas (Roux et al., 2012). For CCI and
WCI groups, it is apparent that the high degree nodes increased at
lower extent, which could be explained by the decreased working
memory load due to cognitive control of engagement (Muhle-
Karbe et al., 2017) resulting from the color effect that mediate
the manipulation of the contents of working memory to be
remembered as increased degree found at left DLPFC (Curtis and
D’Esposito, 2003). These findings substantiate the importance of
color in learning that might contribute to efficient information
processing (Wu et al., 2017).

Directionality Index
These results can be seen in Figure 8 (see Section Directionality
Index). Long-range anterior-posterior connectivity from
prefrontal and frontal regions to posterior cortical regions (theta
and alpha bands) suggest stronger interactions between the
executive network (DLPFC) and higher-order association areas,
elicited by warm colors for WCI group. The finding of increased
anterior-posterior connectivity in the theta band was more
significant for the WCI group but not observed in the alpha band
for CCI and GB&W groups. These results suggest that color
strongly influences the direction of information flow, which is
consistent with top–down processing by prefrontal and frontal
cortices to parietal, temporal and occipital regions when focused
on external stimuli for optimized learning. This finding also
agrees with reports by others (Zanto et al., 2011; Muhle-Karbe
et al., 2017) and is indirectly linked with top–down attentional
processes in theta and alpha activity, due to emotional responses
to color in DLPFC and VLPFC cortices that associated with
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working memory and emotional regulation processes (Buhle
et al., 2014). Moreover, a review (Klimesch, 2012) also reported
that theta and alpha are associated with top-down control
processes in two large storage systems (working memory and
long-term memory). Based on results obtained, it supports that
the blue color increases DLPFC and VLPFC activation, which
eventually improved the working memory performance. The
similar finding was reported by Alkozei et al. (2016), who stated
that blue light could induce a higher activation of DLPFC and
VLPFC than amber control light. Thus, it is suggested that the
measurement of EEG can be used to assess the influence of
colored MLMs on LTM retention and learning.

Left vs. Right Hemisphere of Phase
Slope Index and Color
The differences in the magnitude of information flows are
depicted in Figure 9, with right hemisphere (RH) predominance,
particularly for warm colors in anterior regions and anterior-
posterior flows for theta and beta bands with greater RH flows
from anterior-posterior regions in the alpha band. Cool colors
produced greater information flow in LH than RH at anterior
regions in theta and beta bands, whereas greater anterior-
posterior flows in RH in the alpha band. Larger anterior to
posterior flows are likely a valence-related effect from color
via top–down modulation of the prefrontal cortex and parietal
regions that enhance semantic processing, as well as working
memory and attentional processes as reported by Dolcos and
Denkova (2014). Greater information flows within anterior
regions in the left hemisphere for cool colors, likely representing
attention and positive emotional valence, as reported by Aftanas
and Golocheikine (2001), where alertness enhanced cognitive
performance (Alkozei et al., 2016). A different pattern was
observed for the GB&W group which greater information
flows in RH from posterior to anterior regions in theta and
alpha bands. This indicates that achromatic MLMs produced
emotional distractions that required bottom–up processing
(parietal to prefrontal cortex) to avoid unfavorable outcomes
(Dolcos and Denkova, 2014).

Measure of Segregation
Network segregation was characterized by the clustering
coefficient and local efficiency (see Figure 10). Significantly
reduced clustering was observed in theta and alpha bands
for WCI group compared to CCI and GB&W groups. This
possibly favors the global integration of information exchanges
(greater long-range connectivity) between different brain areas.
Decreased clustering coefficient in the alpha network also
supports greater cognitive effort on working memory to
optimize information processing suggested by Kitzbichler et al.
(2011) as well as the encoding, storage, and retrieval of
stored memories (Toppi et al., 2018). These findings show
a decline in functional segregation that was associated with
increased local efficiency (global network integrity) between
brain regions, i.e., with increased long-range anterior-posterior
connectivity (higher magnitude of information flows). High local
efficiency indicates a high fault tolerance to maintain effective

communication. When greater cognitive effort, brain network
becomes less clustered, and more long-range synchronization
provides “short-cuts” between cortical areas in alpha, beta and
gamma network (Kitzbichler et al., 2011). However, in our case,
we found a less clustered brain network in the theta, alpha,
beta and gamma bands for WCI and CCI groups compared
to GB&W. This could be because color evoked emotion that
emotional and motivational processing enhanced long-range
connectivity as previously reported (Aftanas and Golocheikine,
2001; Kinnison et al., 2012).

Measure of Integration
Results of network integration are shown in Figure 11. There
were no significant differences: neither decrease in characteristic
path length (λ) nor increase in global efficiency (GE) for all
three groups and all five EEG sub-bands, making it apparent
that color did not influence network integration. The λ decreases
with increase in GE for WCI and CCI groups in the delta, theta,
alpha and beta bands could be attributed to optimal information
processing globally (Toppi et al., 2018) due to fewer processing
steps as discussed in Section “Graph Theoretical Analysis:
Measure of Integration” and increased active maintenance of
working memory. As discussed earlier (Roux and Uhlhaas, 2014),
when one’s experience is more positively valenced (Koelstra
et al., 2012), the brain appears to enhance anticipation and
thus controls attention in support of stronger encoding and
maintenance of visual working memory (van Driel et al., 2017;
Toppi et al., 2018). Our results agreed with the use of color as
an emotional design element to channel instructional content
and optimize learning as observed by Um et al. (2012), Mayer
and Estrella (2014), Plass et al. (2014), Le et al. (2018), Stark
et al. (2018), Uzun and Yıldırım (2018). However, further
work is required to assess the color’s non-significant effect on
network integration.

Measure of Centrality and Hubs
Identification
Examination of betweenness centrality (BC) showed multimodal
association areas in prefrontal, posterior parietal and occipital
regions, with significantly higher levels of BC in theta and
beta bands for GB&W and CCI groups, compared to WCI.
We believe this is due to an increased working memory load
(achromatic and cool colors), which increases BC for more
efficient communication and for integrating different cognitive
processes (Dai et al., 2017). WCI group had the lowest number
of BC nodes, primarily involving the medial frontal (Cz)
in the alpha band, but with some nodal concentrations in
temporal and posterior parietal lobes. A decrease in frontal
BC nodes suggests these nodes did not accelerate information
exchange (WM demand ↓) for warm colors. However, increased
BC over temporal and posterior regions indicate participation
in information exchange acceleration between memory and
association networks in support of successful encoding and
retrieval (Dai et al., 2017).

Moreover, a greater number of hubs coincided with a higher
level of BC nodes, only for CCI group, potentially accessing a
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higher accuracy rate—specifically, left VLPFC (F7), left parietal
(P3), right temporal (P8) and occipital regions (POz and O2)
in theta networks. Although alpha band evinced more brain
hubs for the CCI group, with fewer nodes being pivotal nodes
(FC2, Cz and P3) were observed, compared to WCI and GB&W
groups. Thus, our analyses support the suggestion that successful
memory retrieval involves greater overall connectivity across
multiple cortical areas in the theta band. Nonetheless, ECN
appeared to be marked by specific brain hubs evoked by color
(Schedlbauer et al., 2014). Perceived color produces different
sensations because of light reflectance. Visual pathways begin at
the retina and extend to occipital regions, the fusiform gyrus, as
well as to the inferior temporal, parietal and prefrontal cortices
(Zeki and Marini, 1998). Color recruits temporal and parietal
cortices plus the dorsal attention network could improve learning
and increase retention of learned information, as observed in
the CCI group’s accuracy for both 30-min recall and 1-month
recall, compared to the WCI and GB&W groups. Moreover, in
the beta band, more brain hubs are found regions, including
right PFC, mFC, right DLPFC, bilaterally PF and left OC when
subjects learned from WCI materials. This could be explained by
warm colors that activate the brain and, thus, more connections
and processing of information and that leads to faster responses
during recall tests.

Correlation Analysis Between Graph
Metrics and Behavioral/Subjective
Measures
Colored content had the most considerable influence on theta
and alpha bands, suggesting that these bands correlate with
emotional valence, motivation, and attention that can be used
as psychophysiological indicators to assess changes in emotional
responses to learning materials (Aftanas and Golocheikine, 2001;
Koelstra et al., 2012; Shu et al., 2018). Results in Table 2 show
that color effects were reflected in graph metrics from ECN.
Warm colors increased emotional valence in association with
reduced local CC, increased BC and LE in the alpha band,
found at most regions of the frontal (PFC, VLPFC, and FC),
temporal and posterior association areas, suggesting that alpha
networks favor global integration over local segregation for
efficient information processing.

In terms of emotional arousal, increased arousal levels were
negatively correlated with reduced local CC in theta and alpha
bands and theta betweenness centrality, but with increased
betweenness centrality and local efficiency in the alpha band—
mostly in frontal and posterior parietal regions. This suggests
higher arousal. More interactions between frontal and posterior
parietal regions suggest that color initiates important top-
down processing. Behaviorally, increased accuracy was linked
to increased CC and betweenness centrality in the theta band;
but with decreased local CC and betweenness centrality in
the alpha band. Also, reduced reaction times correlated with
reduced BC in alpha band but with increased CC in the theta
band. Overall, declines in local CC values indicate increased
memory demand, as reported by Toppi et al. (2018). Thus,
EEG-based connectivity is key to describing the relationship

between users and technological tool designers. It highlights
emotional processes in response to color effects on memory
encoding and retrieval.

LIMITATIONS AND FUTURE DIRECTIONS

We provided evidence that color is associated with brain
connectivity by estimating ECN and by characterizing patterns
of ECN with graph metrics. Nonetheless, several limitations
indicate a need for further study. First, the current study has
only 45 subjects recruited; more subjects need to be recruited
in order to achieve generalization of the study. Second, using
only three-color schemes for experimental manipulation does
not reflect real-world technological tools that display a wide
range of color. More neuroimaging-based studies are needed for
better understanding of the color effects on brain connectivity,
emotional experiences and behavioral responses using more color
combinations. Third, color hue alone is insufficient for encoding
applications where serious consequences can result when color-
deficient users make incorrect selections. Our analysis covered
brain interregional interactions at the sensor-level with the use of
a robust measure of effective connectivity and surface Laplacian.
It is important to note that the surface Laplacian approach as
adopted in this study mitigated the volume conduction problem
without addressing it completely as mentioned in Section
“Surface Laplacian Transformation.” The actual measurement of
brain connectivity could only be achieved at the source-level. This
would require high-density EEG recording (min. electrodes≥ 64)
along with simultaneous fMRI scanning (He et al., 2019). In
addition, it is also important to compare the results of the whole
pipeline of source reconstruction and connectivity estimation
by using different combinations of forward and inverse models,
and connectivity measures due to limitation of — (1) source
reconstruction caused by residual signal leakage at source level
(Palva et al., 2018), and (2) estimation of connectivity caused by
source mixing (Mahjoory et al., 2017).

CONCLUSION

This paper reports the first investigation about effective
connectivity network (ECN) under different color-related
learning conditions. The work proposed the use of directional
connectivity and characterized network topologies (by graph
theory analysis) to assess the effect of color on emotional
experiences and memory performance. This study demonstrated
that colored multimedia learning materials induced positive
emotional experiences during learning and influenced the brain’s
information processing, as reflected by ECN based on EEG
signals. The positive emotion increased motivation to learn with
anticipatory, top–down information processing found in the
theta and alpha bands which leads to improved LTM retention
and recall. Overall, combining subjective and behavioral findings,
we believe that EEG observations on the influence of color on
emotion and cognitive process during learning could serve as a
foundation that improves the design of learning materials.
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