
Research Article
ModifiedHarrisHawksOptimizationAlgorithmwith Exploration
Factor and Random Walk Strategy

Meijia Song ,1 Heming Jia ,2 Laith Abualigah,3,4 Qingxin Liu,5 Zhixing Lin,1 Di Wu,6

and Maryam Altalhi7

1Network Center, Sanming University, Sanming 365004, China
2School of Information and Engineering, Sanming University, Sanming 365004, China
3Faculty of Computer Sciences and Informatics, Amman Arab University, Amman 11953, Jordan
4School of Computer Science, Universiti Sains Malaysia, Penang, Malaysia
5School of Computer Science and Technology, Hainan University, Haikou 570228, China
6School of Education and Music, Sanming University, Sanming 365004, China
7Department of Management Information System, College of Business Administration, Taif University, P.O. Box 11099,
Taif 21944, Saudi Arabia

Correspondence should be addressed to Heming Jia; jiaheminglucky99@126.com

Received 7 January 2022; Revised 13 March 2022; Accepted 7 April 2022; Published 30 April 2022

Academic Editor: Radu-Emil Precup

Copyright © 2022 Meijia Song et al. ,is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

One of the most popular population-based metaheuristic algorithms is Harris hawks optimization (HHO), which imitates the
hunting mechanisms of Harris hawks in nature. Although HHO can obtain optimal solutions for specific problems, it stagnates in
local optima solutions. In this paper, an improved Harris hawks optimization named ERHHO is proposed for solving global
optimization problems. Firstly, we introduce tent chaotic map in the initialization stage to improve the diversity of the ini-
tialization population. Secondly, an exploration factor is proposed to optimize parameters for improving the ability of exploration.
Finally, a randomwalk strategy is proposed to enhance the exploitation capability of HHO further and help search agent jump out
the local optimal. Results from systematic experiments conducted on 23 benchmark functions and the CEC2017 test functions
demonstrated that the proposed method can provide a more reliable solution than other well-known algorithms.

1. Introduction

In recent years, because of the low computing cost, sim-
plicity, flexibility, and gradient-free mechanisms [1] and
metaheuristic algorithms (MAs) [2–5] have attracted a rising
amount of interest. In most cases, MAs are motivated by the
ideas of evolution [6–8], human [9–12], animal behavior
[13–16], or physics [17–21]. Kennedy et al. [22] inspired by
the regularity of flock foraging behavior and proposed
particle swarm optimization (PSO) with the characteristics
of fast convergence speed and fewer parameters. Mirjalili
et al. [23] proposed an algorithm called grey wolf optimi-
zation (GWO) based on the grey wolves’ hierarchy system
and hunting strategies. ,e whale optimization algorithm
(WOA) [24] simulates a whale’s random search and

predation, bubble attack, and contraction surround be-
havior. ,e salp swarm algorithm (SSA) [25] is inspired by
the leader guiding followers’ behavior of salp swarm chains
to food. ,e sine cosine algorithm (SCA) [26] is proposed to
optimize the aircraft wing design problem by searching the
image inward or outward with the sine and cosine function,
which can deep mine the best position and finally achieves
the global optimum. Slime mould algorithm (SMA) [27] is
motivated mainly by changes in slime mould morphology
during foraging.

In the field ofMAs, the no free lunch (NFL) theorem [28]
illustrates that there is no one-size-fits-all solution to all
optimization challenges. ,erefore, many researchers show
great interest not only in proposing a new algorithm but also
in optimizing classical algorithms.

Hindawi
Computational Intelligence and Neuroscience
Volume 2022, Article ID 4673665, 23 pages
https://doi.org/10.1155/2022/4673665

mailto:jiaheminglucky99@126.com
https://orcid.org/0000-0001-5466-6885
https://orcid.org/0000-0002-4339-8464
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/4673665

Zheng et al. [29] propose an algorithm called improved
remora optimization algorithm (IROA) that improves the
remora optimization algorithm (ROA) by introducing an
autonomous foraging mechanism. ,is mechanism is based
on the way the remora finds food on its own. Abualigah et al.
[30] combine the arithmetic optimization algorithm (AOA)
with SCA’s operators for enhancing the local search ability of
AOA and verify the effectiveness by some experiments. Jia
et al. [31] come up with an algorithm called CMSRSSMA
with an improvement of SMA by embedding the composite
mutation strategy (CMS) and restart strategy (RS). ,e CMS
aims to enhance the population diversity, and the RS is
utilized to avoid the local optima. Liu et al. [32] present a
modified remora optimization algorithm (MROA) with
Brownian motion and lens opposition-based learning, and it
can be suitable for the multilevel thresholding image seg-
mentation application. Meanwhile, the new algorithm in-
troduces the nonlinear escaping energy parameters and
random-opposition-based learning strategies to make itself
more competitive. Almotairi and Abualigah [33] proposed a
method called HRSA, which hybrid the original reptile
search algorithm (RSA) and ROA by a novel transition
method, and applied it to solving data clustering problems.
Zamfirache et al. [34] apply a new algorithm hybrid policy
iteration (PI) and GWO algorithm to neural networks and
get good results in NN training and solving complex op-
timization problems. Pozna et al. [35] proposed a new al-
gorithm called PF-PSO that hybrid particle filter (PF) and
PSO algorithm and applied the new hybrid method to
optimize the position control of the integral-type serve
systems.

In 2019, Heidari et al. [36] proposed the HHO algorithm,
which is inspired by the Harris hawks’ predation behavior in
nature, including three stages of exploration, the transfor-
mation from exploration to exploitation, and exploitation.
HHO has the characteristics of simple principles, fewer
parameters, and strong local optimization ability. HHO has
been used in the aspect of image segmentation [37], neural
network [38], electric machine control [39], and other fields.
However, HHO has the weakness of limited optimization
accuracy, low convergence speed, and easily jumping into
local optimum like other MAs. ,erefore, many scholars
have improved the HHO algorithm from different per-
spectives. Ma et al. [40] used the Chan algorithm to calculate
the initial solution and replace an individual position to
reduce unnecessary exploration and improve the algorithm’s
convergence speed. Houssein et al. [41] introduced cross and
mutation cooperative gene operators and proposed the
HHOCM optimization algorithm based on opposition-
based learning, which enhanced the ability of exploration
and applied it to generate the initial population effectively.
Tang et al. [42] introduced the tent chaotic map, an elite
hierarchy system, nonlinear escape energy strategy, and
Gaussian random walk strategy to improve the convergence
speed and accuracy of the algorithm. Jia et al. [43] intro-
duced a mutation strategy and dynamic control parameter
for calculating escape energy in the exploration stage and
achieved good results by regulating different parameters.
,e above improvement strategy has improved the

performance of the HHO algorithm, but it still has signif-
icant room for improvement for the shortcomings of the
HHO algorithm.

We proposed the ERHHO algorithm to surmount some
weaknesses of the HHO algorithm. Based on different ex-
periments, the proposed algorithm was evaluated with some
classic algorithms such as SMA and SSA and some HHO
optimizer algorithms such as DHHO and CEHHO. And the
results show that the proposed algorithm can perform better
than the competitive algorithms and enhance the ability to
jump out of the local optimum with minor changes. In
particular, this paper made the following main
contributions:

(i) Introduced tent chaotic map to improve the quality
of initialized population location

(ii) Proposed the strategy called exploration factor in
improving the ability of exploration

(iii) Proposed the random walk strategy to promote the
convergence speed and accuracy

(iv) ,e simulation experiments are tested on 23 stan-
dard test functions

(v) ,e real-world problems tests are based on
CEC2017 test functions and five classical engi-
neering problems

,e remainder of this document is structured as fol-
lows. A quick summary of HHO is given in Section 2.
Section 3 describes the tent chaotic map, exploration factor,
random walk strategy, and ERHHO algorithm. ,e results
and discussion of the proposed algorithm are given in
Section 4, which mainly applies to benchmark functions,
and real problems include CEC2017 and engineering de-
sign problems. Section 5 contains the conclusions and
prospects.

Figure 1: Different phases of HHO [36].

2 Computational Intelligence and Neuroscience

2. Harris Hawks Algorithm

,e HHO algorithm is motivated by different attack strat-
egies of hawks exploring and attacking their prey. HHO is a
population-based optimization technology that consists of
three stages: exploration, the transformation of exploration,
and exploitation. ,e different phases of HHO are shown in
Figure 1.

2.1. Exploration Stage. At this stage, hawks perch in random
places based on other members or rabbit locations, which are
modeled as follows:

X(t + 1) �
Xrand(t) − r1 Xrand(t) − 2r2X(t)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌, q≥ 0.5,

Xrabbit(t) − Xm(t)(􏼁 − r3 LB + r4(UB − LB)(􏼁, q< 0.5,

⎧⎪⎨

⎪⎩

(1)

Xm(t) �
1
N

􏽘

N

i�1
Xi(t), (2)

where X(t + 1) represents the new position of hawks in the
next iteration, Xrabbit(t) is the position of prey, and X(t) is
the position of hawks. ,e modulus means the absolute
value of the elements. r1, r2, r3, r4, and q are random numbers
in the interval (0, 1). UB and LB are the upper and lower
bounds of variables. Xrand(t) is the position of a random
hawk population. Xm(t) is the average location of the
current population of hawks.

2.2. Transformation of Exploration and Exploitation. ,e
escape energy of the prey is a major factor in the transition
stage, which is evaluated with the following equations:

E1 � 2 1 −
t

T
􏼒 􏼓, (3)

E � E0E1, (4)

where t is the current iteration; E0 is the initial energy of a
prey, varying randomly between −1 and 1; and T is the
maximum number of iterations.

2.3. Exploitation Stage. At this point, the hawks assault the
prey using four chasing strategies and the prey’s escape
behavior. Escaping energy (E) and the potential of escape (r)
are required for a successful capture.

When r≥ 0.5 and |E|≥ 0.5, a soft besiege was conducted
by hawks in the following equations, which means the prey
has enough energy but gets a failed try for escaping:

X(t + 1) � ΔX(t) − E JXrabbit(t) − X(t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌, (5)

ΔX(t) � Xrabbit(t) − X(t), (6)

where ΔX(t) is the contrast between the position of hawks at
iteration t and the current position of prey and Xrabbit(t)

represents the leap strength that changes randomly at each
iteration. r5 is a random number between 0 and 1.

Hawks applies a hard besiege to prey with low escaping
energy and fails to escape, which is indicated by r≥ 0.5 and
|E|< 0.5, modeled as follows:

X(t + 1) � Xrabbit(t) − E|ΔX(t)|. (7)

When r< 0.5 and |E|≥ 0.5, hawks hunt through a
smarter soft encirclement called soft besiege with progres-
sive rapid dives, modeled as follows:

Y � Xrabbit0v − E JXrabbit(t) − X(t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌, (8)

Z � Y + S × LF(D), (9)

where D is the problem’s dimension, S denotes a random
vector of size 1 × D, and LFmeans the Levy flight function as
defined in equations.

LF(d) � 0.01 ×
u × σ
|v|

1/β , (10)

σ �
Γ(1 + β) × sin πβ/2
Γ(1 + β/2) × β × 2β−1/2􏼠 􏼡

1/β

, (11)

where u, v are random normal distribution vector with the
size of 1× d, β is a constant and bound to a value of 1.5, and Γ
is a standard Gamma function. Updating the hawk’s posi-
tions can be modeled by

X(t + 1) �
Y if F(Z)<F(X(t)),

Z if F(Z)<F(X(t)).
􏼨 (12)

When the prey’s energy is depleted, a hard besiege is
established (r< 0.5 and |E|< 0.5). ,e calculation of Y and Z
is modeled as equations (13) and (14). ,e updating method
is as follows:

Y � Xrabbit(t) − E JXrabbit(t) − Xm(t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌, (13)

Z � Y + S × LF(D), (14)

X(t + 1) �
Y if F(Y)<F(X(t)),

Z if F(Z)<F(X(t)).
􏼨 (15)

3. Proposed Algorithm

3.1. Tent ChaoticMap. For the past few years, many scholars
have proved that chaotic maps [44, 45] are capable of im-
proving the search process of a population-based meta-
heuristic algorithm. In general, chaotic maps are usually
introduced into one or several processes such as initial
population, exploration, or exploitation stage. ,e images of
the 10 most commonly used chaotic maps are shown in
Figure 2.

One of the main purposes of this paper is to enhance the
diversity of the initialization population.,e initialization of
location has a certain influence on the diversity of the
population and the stability of the algorithm. HHO algo-
rithm can only guarantee the randomness of the population
position at the initialization stage, but randomness does not

Computational Intelligence and Neuroscience 3

mean uniformity. ,e chaotic sequence has certain ergo-
dicity and high randomness. Chaotic mapping can generate
random numbers with a uniform distribution between 0 and
1. We tested the listed 10 chaotic maps and verified that tent
chaotic map is appropriate to our modified algorithm. ,e
characteristics and randomness of this map can effectively
improve the performance by transforming the initial posi-
tion of hawks. ,e mathematical description is shown in the
following equation:

Xi+1 �

Xi

a
, if Xi < a,

1 − Xi

1 − a
, if Xi ≥ a.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(16)

We enhance the diversity of the initialization population
by modifying the initial positions through equation (16),
where Xi+1 represents the new position of hawks after
chaotic mapping, Xi is the current position of hawks, and a
is set to 0.7.

3.2. Exploration Factor. In the exploration stage, the HHO
algorithm updating positions is mainly calculated by
equations (1) and (2), where r1 and r3 are random values in
the range of (0, 1). Although the settings could lead to the
randomness of each step in the global search, the variability
is lacking.

In this phase, the original HHO algorithm simulates the
situation that the hawks can track and detect the prey with
their powerful eyes, but occasionally, the prey cannot be seen
easily, and the hawks detect a prey maybe after several hours.
According to these, we think we should adjust the param-
eters to be more flexible.

We can consider the parameters of r1 and r3 as the step
length; when the values are bigger, the hawks move faster
and vice versa. ,ere are two possibilities for a hawk finding
a prey, one is an immediate detection, and another is a long-
time search. For the first situation, we should consider the

randomness of the step length. And, for the second situation,
the whole variant trend of the step length should decrease.
Because the possibility for a hawk finding a prey increases as
time goes by, the hawks should explore a wider range with a
bigger step at first, and ameticulous search should be applied
in the late iterations. ,us, we update r1 and r3 by explo-
ration factor modeled as follows:

ef � b × rand −
b

2
􏼠 􏼡 × cos

π
2

×
t

T
􏼒 􏼓

2
􏼠 􏼡. (17)

,en equation (1) is updated as follows:

X(t + 1) �
Xrand(t) − ef Xrand(t) − 2r2X(t)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌, q≥ 0.5,

Xrabbit(t) − Xm(t)(􏼁 − ef LB + r4(UB − LB)(􏼁, q< 0.5,

⎧⎨

⎩

(18)

where b is set to 2 that can achieve a pleasing effect through
experimental tests. (b∗ rand − b/2) is introduced to gain the
randomness of step length by generating random numbers
in the interval of (−b/2, b/2). ,e cos function is introduced

0 20 40 60
xi

0 20 40 60
xi

0 20 40 60
xi

0 20 40 60
xi

10 20 4030 50
xi

0 20 40 60
xi

0 20 40 60
xi

0 20 40 60
xi

0 20 40 60
xi

0 20 40 60
xi

1

0.8

0.6

0.4

A
m

pl
itu

de

0.2

0

1

0.8

0.6

0.4

A
m

pl
itu

de

0.2

0

1

0.8

0.6

0.4

A
m

pl
itu

de

0.2

0

1

0.8

0.6

0.4

A
m

pl
itu

de

0.2

0

1

0.8

0.6

0.4

A
m

pl
itu

de

0.2

0

1

0.8

0.6

0.4

A
m

pl
itu

de

0.2

0

1

0.8

0.6

0.4

A
m

pl
itu

de

0.2

0

1

0.8

0.6

0.4

A
m

pl
itu

de

0.2

0

1

0.8

0.6

0.4

A
m

pl
itu

de

0.2

0

0.8
0.9

0.7
0.6
0.5
0.4
0.3A

m
pl

itu
de

0.2
0.1

Chebyshev map Circle map Gauss/mouse Map Iterative Map Logistic Map

Piecewise map Sine map Singer Map Bernoulli Map Tent Map

Figure 2: Ten commonly used chaotic maps.

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
0 50 100 200 250 300 350 400 450 500150

Iteration#

Figure 3: Cos function convergence curve.

4 Computational Intelligence and Neuroscience

to form a nonlinear convergence from 1 to 0 with iterations
(see Figure 3).

In a word, the exploration factor expands the range of
step length from (0, 1) to (−b/2, b/2) at first and helps the
exploration process gradually change from an extensive
range to a small range as the number of iterations increases
(see Figure 4). Finally, the exploration factor preserved the
randomness of step length.

3.3. RandomWalk Strategy. In the exploitation stage of the
HHO algorithm, Harris hawks update its position through
four pursuit strategies. Although it increases the possibility
of exploration, entering the next iteration without inter-
ference can easily lead to the algorithm falling into the local
optimum. To ameliorate this problem, some common
strategies are applied to the methods, such as the Gaussian
random walk strategy [42], Levy flight function, and
Brownian motion [16, 46]. ,ese strategies possess the traits
of stabilizing in a range of values with high probability and
drastic changing values with low probability. And all these
strategies improve the methods by generating a deviation.

In this paper, we think that in the early iterations, the
deviation should be bigger so that we can get more chances
to jump out of local optima. In the late iterations, a smaller
deviation can help find the optimal result better. So we
designed the step of random walk gradually taper with it-
erations. According to these, the random walk strategy was
proposed, which is activated by identical fitness values in
iterations. In other words, when the value of fitness is equal
to its last iteration, we activate the random walk strategy.
,is strategy can deviate the position of a hawk according to
a varying parameter. ,e value of the parameter depends on
(c × rand() − c/2) × cos(π/2 × (t/T) and decreases with
iterations. ,e strategy is modeled as follows:

Xm(i) � X(i) + c × rand −
c

2
􏼒 􏼓 × cos

π
2

×
t

T
􏼒 􏼓

2
􏼠 􏼡 × X(i) − Xrabbit(􏼁.

(19)

When c� 6, we can obtain a better performance through
the experimental test.Xm(i) is the new position after applying
the random walk strategy. We retain the better result to enter
the next iteration by greedy strategy modeled as follows:

X(t + 1) �
Xm(t + 1), f Xm(t + 1)(􏼁<f(X()(t + 1)),

X(t + 1), f Xm(t + 1)(􏼁≥f(X)((t + 1)).
􏼨

(20)

3.4. <e Details of ERHHO. HHO possesses strong local
exploitation ability but insufficient global exploration. ,e
switch from exploration to exploitation is based on the prey’s
escaping energy. ,e population diversity is insufficient in
the early iterations, reflecting the exploration period and the
slow convergence speed. ,e energy of prey drops as the
number of iterations grows, and the algorithm enters the
period of local exploitation. Four different hunting tech-
niques are applied based on the prey’s energy and the
likelihood of escaping.

,erefore, the tent chaotic map was introduced to en-
hance the population diversity; then, we optimized critical
parameters in the exploration phase with the exploration
factor. As a component of the exploitation phase, a random
walk strategy was introduced to enhance the ability to jump
out of local optima. ,e convergence speed and accuracy are
improved through all of these approaches, and the program’s
overall optimization performance is effectively enhanced.
,is new Harris hawks optimization algorithm is called
ERHHO. Figure 5 depicts the summary flowchart, and
Algorithm 1 represents the pseudocode for ERHHO.

3.5. Computational Complexity Analysis. Initialization, po-
sition updating, and fitness evaluation are the three essential
components of ERHHO. Positions are generated with a
computational complexity of O(N∗D), whereN denotes the
number of populations and D represents the dimensions of
the problem. It takes O(N) to evaluate the fitness solution.
We employ a random walk strategy to prevent the algorithm
from entering local optima, and the computational com-
plexity is O(2×N×D×T). Hence, the proposed ERHHO
algorithm has a total computational complexity of
O(2×N×D×T).

4. Experimental Results and Discussion

In this part, we validate the performance of ERHHO on 23
benchmark functions [47] by comparing it with some state-
of-art metaheuristics algorithms: SMA, WOA, SSA, SCA,
and HHO, and HHO-based optimization algorithm:
DHHO/M and HHOCM. Meanwhile, we use the Wilcoxon
signed-rank test to acknowledge the differences between
ERHHO and the comparative algorithms. Furthermore, we
test ERHHO with HHO-related algorithms: HHO, DHHO/
M, HHOCM, and CEHHO on CEC2017 test functions to
testify the real-world applications. And also the five engi-
neering design issues are applied with the same algorithms as
in benchmark functions’ tests.

1

0.8

0.6

0.4

0.2

0

-0.2

-0.4

-0.6

-0.8

-1
0 50 100 150 200 250 300 350 400 450 500

Iteration#

Figure 4: Curve of exploration factor.

Computational Intelligence and Neuroscience 5

4.1. Benchmark Functions and Parameter Settings. Many
scholars employ benchmark functions. Details of the uni-
modal, multimodal, and fixed-dimension multimodal

benchmark functions are shown in Table 1. ,e unimodal
benchmark functions (F1–F7) have only one extreme point;
it can be effectively testified to the exploitation ability of

Start

Update the position of hawks
by Equations 2, 17 and 18Yes

Define the parameters of HHO

Generate randomly a population of hawks

Update the positions of hawks by Equation 16

Update the escaping energy
by Equations 3 and 4

No

Update the position of hawks
by Equations 5 and 6Yes

Update the position of hawks
by Equation 7Yes

No

Update the position of hawks
by Equations 8-12Yes

No

Update the position of hawks
by Equations 13-15Yes

No

No

Update the position of hawks
by Equations 19 and 20

Yes

Evaluate the fitness function for
each solution

No

Yes

t=
t+

1

No

End

Return the best solution Xbestt<T

f(Xt
i)==f(Xt–1)i

r < 0.5 & |E| < 0.5

r ≥ 0.5 & |E| < 0.5

r ≥ 0.5 & |E| ≥ 0.5

|E| ≥ 1

r < 0.5 & |E| ≥ 0.5

Figure 5: Flowchart of ERHHO.

6 Computational Intelligence and Neuroscience

(1) Set the initial values of the population size N and the maximum number of iterations T
(2) Initialize positions of the population X
(3) For each hawk Xi, update the position by equation (16) %tent chaotic map
(4) While t≤T
(5) Check if the position goes out of the search space boundary and return it
(6) Calculate the fitness of each search agent Xi
(7) Update Xbest
(8) for i� 1 to N
(9) Calculate the escaping energy (E) by equations (3) and (4)
(10) if |E|≥ 1 then %phase of exploration
(11) Update the position of Xt

i by equations (2), (17), and (18) %exploration factor
(12) if |E|< 1 then %phase of exploitation
(13) if r≥ 0.5 and |E|≥ 0.5 then %soft besiege
(14) Update the position of Xt

i by equations (5) and (6)
(15) else if r≥ 0.5 and |E|< 0.5 then %hard besiege
(16) Update the position of Xt

i by equation (7)
(17) else if r< 0.5 and |E|≥ 0.5 then %soft besiege with progressive rapid dives
(18) Update the position of Xt

i by equations (8)–(12)
(19) else if r< 0.5 and |E|< 0.5 then %hard besiege with progressive rapid dives
(20) Update the position of Xt

i by equations (13)–(15)
(21) if f(Xt

i) �� f(Xt−1
i)) then %random walk strategy

(22) Update the position of Xt
walk i by equation (19)

(23) if f(Xt
walk i)< f(X

t
i) then %greedy strategy

(24) Update the position of Xt
i by equation (20)

(25) End for
(26) t� t+ 1
(27) End while
(28) Return Xbest

ALGORITHM 1: Pseudocode of ERHHO.

Table 1: Benchmark function properties (Dim indicates dimension).

Function Dim Range Fmin

Unimodal benchmark functions

F1 30 [−100, 100] 0
F2 30 [−10, 10] 0
F3 30 [−100, 100] 0
F4 30 [−100, 100] 0
F5 30 [−30, 30] 0
F6 30 [−100, 100] 0
F7 30 [−1.28, 1.28] 0

Multimodal benchmark functions

F8 30 [−500, 500] 418.9829× dim
F9 30 [−5.12, 5.12]
F10 30 [−32, 32] 0
F11 30 [−600, 600] 0
F12 30 [−50, 50] 0
F13 30 [−50, 50] 0

Fixed-dimension multimodal benchmark functions

F14 2 [−65, 65] 0.998
F15 4 [−5, 5] 0.00030
F16 2 [−5, 5] −1.0316
F17 2 [−5, 5] 0.398
F18 2 [−2, 2] 3
F19 3 [−1, 2] −3.86
F20 6 [0, 1] −3.32
F21 4 [0, 10] −10.1532
F22 4 [0, 10] −10.4028
F23 4 [0, 10] −10.5363

Computational Intelligence and Neuroscience 7

ERHHO. And the global search capacity of ERHHO can be
tested by the multimodal benchmark functions (F8–F23)
with many local optima.

To make the experimental findings more representative,
the ERHHO is compared with algorithms of SMA [27],
WOA [24], SSA [25], SCA [26], and HHO [36], DHHO/M
[43], and HHOCM [41]. Table 2 shows the parameter set-
tings for each algorithm. All the parameters are set according
to the original articles except b and c (the analysis of b and c
are listed in Section 4.2). ,e maximum iteration (T) was set
to 500; the population size (N) was set to 30; and the di-
mension size (D) was set to 30 in all tests. We calculate
average results and standard deviations with 30 independent
runs and bold the best values.

4.2. Sensitivity Analysis of b and c onERHHO. ,e parameter
settings of comparative algorithms are in accordance with
the original articles, as well as the values of β and a of
ERHHO are according to the original HHO algorithm. ,e
new parameters are b and c, which can significantly impact
the performance of ERHHO. ,us, setting the appropriate
parameters for better results is necessary.,e aims of b and c
are to find a suitable search range. According to equation
(17), the original range is between 0 and 1; for expanding the
scope, b is considered as 2, 4, and 6; and c is considered as 2,
4, and 6. To find the fit b-c value pair, we tested 9 situations
by using 23 benchmark functions. We calculate the mean
results of each function with 30 independent runs, and the
results are listed in Table 3.,e lowest values are highlighted
in bold.We count the number of bold fonts in each function,
and the ERHHO algorithm can get the best performance
with b� 2 and c� 6. ,e parameter values will be used for
further experimental tests.

4.3. Analysis of Benchmark Functions

4.3.1. Numerical Analysis. For the unimodal benchmark
functions (F1–F7), ERHHO can obtain the best result except
for F6 as shown in Table 4. Especially, for F1–F4, ERHHO
can obtain the theoretical optimum. And the result of
ERHHO ranks only second to SSA for F6. ,e aim of
unimodal benchmark functions is to measure the exploi-
tation ability. From the experimental tests of F1–F7, we can
prove that the proposed algorithm possesses a strong local
search ability.

For the multimodal functions (F8–F23), ERHHO gets
the best mean values except for F9 and the best stand de-
viations except for F14 and F20. ,e goal of multimodal
functions is to evaluate the exploration capability. From the
test of F8–F23, we can verify that the global ability of
ERHHO is excellent.

In conclusion, the ERHHO algorithm outperforms the
other compared algorithms in unimodal functions, which
due to the random walk strategy, the algorithm’s capacity to
jump out of the local optimum can be effectively boosted.
For the multimodal benchmark functions, the performance
of proposed ERHHO is competitive as well. ,e reason for
the excellent performance of ERHHO in the exploration
phase is mainly due to the exploration factor. ,e explo-
ration factor can expand the scope of exploration that is why
ERHHO can find the result faster and more accurately. We
tried the experiment of adding the exploration factor only to
the original HHO, and the results of some multimodel test
functions were better than before. Especially, for F21–F23,
the result was improved remarkably and close to the the-
oretical values (see Table 5).

4.3.2. Convergence Analysis. Figure 6 depicts the results of
analyzing the proposed algorithm’s convergence in various
functions (F3, F5, F7–F10, F12–F15, and F19–F23). For
unimodal functions (F3, F5, and F7), the differences in
convergence curves between ERHHO and HHO can be
observed visually from F5, which represents higher accuracy
values after several step-like descents. ,at is, because when
the hawks get trapped, ERHHO activates the random walk
strategy, which can help the hawks fly deviate from the trap
and lead to a new position with more possibilities. ,ese
three functions can reflect that ERHHO possesses a faster
convergence speed and a higher accuracy than HHO and the
other competitive algorithms in unimodal functions.

,e conclusion also holds in multimodal functions.
Many of the figures show the ERRHO can get the optimal
values directly after several iterations such as F8–F10,
F14–F15, and F19–F23 that is because of the strong ex-
ploration ability of ERHHO whose global search scope is
twice as wide as before in the early period, so the ERHHO
algorithm can converge very fast. For F12, the ERHHO and
HHO get a similar trend before iteration 100, but after that,
ERHHO dive suddenly and get the best accuracy from all
competitors. ,e reason is the coordination of local strategy
and global search ability. ,e local strategy has the char-
acteristic of a large deviation in the early stage and a small
deviation in the later period. ,e cooperation helps the
ERHHO jump out of the local optima and find better fitness
values by a wide search scope. ,e situation is reflected in
F13 as well because the functions of F12 and F13 have similar
graphical features (many close local optimal points).

It can be seen that no matter for unimodal functions or
multimodal functions, the proposed algorithm provides a
better convergence pattern in almost all functions.

4.4. Wilcoxon Signed-Rank Test. ,e Wilcoxon signed-rank
(WSR) test is used to show that the results are statistically

Table 2: Parameter settings for the comparative algorithms.

Algorithm Parameters
ERHHO β� 1.5, a� 0.7, b� 2, c� 6
SMA [27] z� 0.03
WOA [24] a1 � [2, 0], a2 � [−2, 1], b� 1
SSA [25] c1 ∈ [0, 1], c2 ∈ [0, 1]
SCA [26] a� 2
HHO [36] β� 1.5
DHHO/M [43] a� 2.5, F� 0.5
HHOCM [41] β� 1.5

8 Computational Intelligence and Neuroscience

Ta
bl

e
3:

Pa
ra
m
et
er
s
se
ns
iti
vi
ty

an
al
ys
is.

Fu
nc
tio

n
b

�
2

b
�
2

b
�
2

b
�
4

b
�
4

b
�
4

b
�
6

b
�
6

b
�
6

c�
2

c�
4

c�
6

c�
2

c�
4

c�
6

c�
2

c�
4

c�
6

F1
0.
00

00
E
+
00

0.
00

00
E
+
00

0.
00

00
E
+
00

0.
00

00
E
+
00

0.
00

00
E
+
00

0.
00

00
E
+
00

0.
00

00
E
+
00

0.
00

00
E
+
00

0.
00

00
E
+
00

F2
0.
00

00
E
+
00

0.
00

00
E
+
00

0.
00

00
E
+
00

0.
00

00
E
+
00

0.
00

00
E
+
00

0.
00

00
E
+
00

0.
00

00
E
+
00

0.
00

00
E
+
00

0.
00

00
E
+
00

F3
0.
00

00
E
+
00

0.
00

00
E
+
00

0.
00

00
E
+
00

0.
00

00
E
+
00

0.
00

00
E
+
00

0.
00

00
E
+
00

0.
00

00
E
+
00

0.
00

00
E
+
00

0.
00

00
E
+
00

F4
0.
00

00
E
+
00

0.
00

00
E
+
00

0.
00

00
E
+
00

0.
00

00
E
+
00

0.
00

00
E
+
00

0.
00

00
E
+
00

0.
00

00
E
+
00

0.
00

00
E
+
00

0.
00

00
E
+
00

F5
4.
10
86
E

−
04

2.
32
93
E

−
04

9.
97

57
E
−
05

4.
49
25
E

−
04

2.
47
95
E

−
04

1.
65
12
E

−
04

1.
56
39
E

−
03

3.
38
76
E

−
04

4.
15
22
E

−
04

F6
9.
17
37
E

−
05

3.
89
10
E

−
05

1.
48

26
E
−
05

8.
57
54
E

−
05

5.
23
38
E

−
05

4.
62
20
E

−
05

1.
73
27
E

−
04

1.
17
01
E

−
04

3.
88
93
E

−
05

F7
5.
73

38
E
−
05

8.
44
63
E

−
05

7.
14
16
E

−
05

6.
35
48
E

−
05

7.
97
39
E

−
05

7.
39
38
E

−
05

7.
34
75
E

−
05

6.
77
15
E

−
05

6.
31
04
E

−
05

F8
−1

.2
56

9E
+
04

−1
.2
56

9E
+
04

−1
.2
56

9E
+
04

−1
.2
56

9E
+
04

−1
.2
56

9E
+
04

−1
.2
56

9E
+
04

−1
.2
56

9E
+
04

−1
.2
56

9E
+
04

−1
.2
56

9E
+
04

F9
0.
00

00
E
+
00

0.
00

00
E
+
00

0.
00

00
E
+
00

0.
00

00
E
+
00

0.
00

00
E
+
00

0.
00

00
E
+
00

0.
00

00
E
+
00

0.
00

00
E
+
00

0.
00

00
E
+
00

F1
0

8.
88
18

E
−
16

8.
88
18

E
−
16

8.
88
18

E
−
16

8.
88
18

E
−
16

8.
88
18

E
−
16

8.
88
18

E
−
16

8.
88
18

E
−
16

8.
88
18

E
−
16

8.
88
18

E
−
16

F1
1

0.
00

00
E
+
00

0.
00

00
E
+
00

0.
00

00
E
+
00

0.
00

00
E
+
00

0.
00

00
E
+
00

0.
00

00
E
+
00

0.
00

00
E
+
00

0.
00

00
E
+
00

0.
00

00
E
+
00

F1
2

1.
90
85
E

−
06

6.
31
02
E

−
07

2.
90

78
E
−
07

4.
80
68
E

−
06

1.
88
62
E

−
06

1.
83
22
E

−
06

6.
50
51
E

−
06

2.
01
96
E

−
06

2.
27
76
E

−
06

F1
3

2.
63
64
E

−
05

8.
33
01
E

−
06

4.
85

25
E
−
06

5.
02
82
E

−
05

1.
79
97
E

−
05

1.
83
99
E

−
05

4.
80
97
E

−
05

4.
71
90
E

−
05

2.
87
79
E

−
05

F1
4

9.
98

00
E
−
01

9.
98

00
E
−
01

9.
98

00
E
−
01

9.
98

00
E
−
01

1.
13
03
E
+
00

1.
03
11
E
+
00

9.
98

00
E
−
01

1.
35
99
E
+
00

9.
98

00
E
−
01

F1
5

3.
22
34
E

−
04

3.
43
56
E

−
04

3.
39
24
E

−
04

3.
60
62
E

−
04

3.
42
11
E

−
04

3.
07

70
E
−
04

3.
21
45
E

−
04

3.
10
80
E

−
04

3.
69
77
E

−
04

F1
6

−1
.0
31
6E

+
00

−1
.0
31
6E

+
00

−1
.0
31
6E

+
00

−1
.0
31
6E

+
00

−1
.0
31
6E

+
00

−1
.0
31
6E

+
00

−1
.0
31
6E

+
00

−1
.0
31
6E

+
00

−1
.0
31
6E

+
00

F1
7

3.
97

89
E
−
01

3.
97

89
E
−
01

3.
97

89
E
−
01

3.
97

89
E
−
01

3.
97

89
E
−
01

3.
97

89
E
−
01

3.
97

89
E
−
01

3.
97

89
E
−
01

3.
97

89
E
−
01

F1
8

3.
00

00
E
+
00

3.
00

00
E
+
00

3.
00

00
E
+
00

3.
00

00
E
+
00

3.
00

00
E
+
00

3.
00

00
E
+
00

3.
00

00
E
+
00

3.
00

00
E
+
00

3.
00

00
E
+
00

F1
9

−3
.8
62

8E
+
00

−3
.8
62

8E
+
00

−3
.8
62

8E
+
00

−3
.8
62

8E
+
00

−3
.8
62

8E
+
00

−3
.8
62

8E
+
00

−3
.8
62

8E
+
00

−3
.8
62

8E
+
00

−3
.8
62

8E
+
00

F2
0

−
3.
22
68
E
+
00

−
3.
25
58
E
+
00

−
3.
26
89
E
+
00

−
3.
19
38
E
+
00

−
3.
25
62
E
+
00

−
3.
27
35
E
+
00

−
3.
20
15
E
+
00

−3
.2
81
6E

+
00

−
3.
27
41
E
+
00

F2
1

−
1.
01
52
E
+
01

−1
.0
15

3E
+
01

−1
.0
15

3E
+
01

−
1.
01
52
E
+
01

−1
.0
15

3E
+
01

−1
.0
15

3E
+
01

−1
.0
15

3E
+
01

−1
.0
15

3E
+
01

−1
.0
15

3E
+
01

F2
2

−
1.
04
02
E
+
01

−1
.0
40

3E
+
01

−1
.0
40

3E
+
01

−
1.
04
02
E
+
01

−1
.0
40

3E
+
01

−1
.0
40

3E
+
01

−
1.
04
02
E
+
01

−1
.0
40

3E
+
01

−1
.0
40

3E
+
01

F2
3

−
1.
05
36
E
+
01

−1
.0
53

6E
+
01

−1
.0
53

6E
+
01

−
1.
05
36
E
+
01

−1
.0
53

6E
+
01

−1
.0
53

6E
+
01

−
1.
05
35
E
+
01

−1
.0
53

6E
+
01

−1
.0
53

6E
+
01

Su
m

14
16

20
13

14
16

14
16

16
,

e
be
st

re
su
lts

ar
e
m
ar
ke
d
in

bo
ld
.

Computational Intelligence and Neuroscience 9

Ta
bl

e
4:

Re
su
lts

of
al
go
ri
th
m
s
on

23
be
nc
hm

ar
k
fu
nc
tio

ns
.

Fu
nc
tio

n
ER

H
H
O

SM
A

W
O
A

SS
A

SC
A

H
H
O

D
H
H
O
/M

H
H
O
C
M

F1
M
ea
n

0.
00

00
E
+
00

5.
48
41
e−

32
2

7.
85
86
E

−
74

4.
55
72
E

−
07

1.
56
50
E
+
01

2.
42
46
E

−
96

1.
96
72
E

−
95

0.
00

00
E
+
00

St
d

0.
00

00
E
+
00

0.
00

00
E
+
00

2.
16
80
E

−
73

8.
09
01
E

−
07

2.
19
10
E
+
01

1.
30
93
E

−
95

6.
74
32
E

−
95

0.
00

00
E
+
00

F2
M
ea
n

0.
00

00
E
+
00

1.
97
35
E

−
15
0

4.
76
83
E

−
51

2.
42
03
E
+
00

2.
48
94
E

−
02

2.
93
18
E

−
51

1.
31
76
E

−
48

1.
22
25
E

−
20
3

St
d

0.
00

00
E
+
00

1.
08
09
E

−
14
9

2.
09
69
E

−
50

1.
70
85
E
+
00

3.
55
92
E

−
02

1.
11
52
E

−
50

6.
06
71
E

−
48

0.
00

00
E
+
00

F3
M
ea
n

0.
00

00
E
+
00

2.
07
92
E

−
28
1

4.
49
88
E
+
04

1.
44
07
E
+
03

9.
37
75
E
+
03

8.
43
62
E

−
73

7.
67
35
E

−
70

0.
00

00
E
+
00

St
d

0.
00

00
E
+
00

0.
00

00
E
+
00

1.
25
99
E
+
04

9.
70
94
E
+
02

5.
80
48
E
+
03

4.
60
60
E

−
72

4.
20
27
E

−
69

0.
00

00
E
+
00

F4
M
ea
n

0.
00

00
E
+
00

2.
11
29
E

−
13
7

3.
81
43
E
+
01

1.
15
09
E
+
01

3.
29
26
E
+
01

5.
41
54
E

−
49

3.
95
50
E

−
43

4.
55
25
E

−
19
7

St
d

0.
00

00
E
+
00

1.
15
73
E

−
13
6

2.
72
76
E
+
01

3.
78
52
E
+
00

1.
30
70
E
+
01

1.
47
03
E

−
48

2.
16
42
E

−
42

0.
00

00
E
+
00

F5
M
ea
n

8.
98

83
E
−
05

8.
36
66
E
+
00

2.
79
25
E
+
01

2.
76
09
E
+
02

4.
39
40
E
+
04

1.
01
42
E

−
02

6.
70
40
E

−
03

3.
14
38
E

−
02

St
d

1.
94

52
E
−
04

1.
16
85
E
+
01

4.
59
46
E

−
01

3.
66
19
E
+
02

6.
40
24
E
+
04

1.
25
54
E

−
02

9.
57
98
E

−
03

5.
01
91
E

−
02

F6
M
ea
n

1.
64
55
E

−
05

5.
29
44
E

−
03

4.
44
46
E

−
01

2.
07

47
E
−
07

1.
97
95
E
+
01

1.
51
27
E

−
04

7.
38
76
E

−
05

3.
12
54
E

−
04

St
d

2.
52
16
E

−
05

4.
15
71
E

−
03

2.
81
01
E

−
01

4.
66

45
E
−
07

1.
82
92
E
+
01

1.
74
02
E

−
04

1.
08
86
E

−
04

3.
82
62
E

−
04

F7
M
ea
n

7.
65

95
E
−
05

2.
10
94
E

−
04

2.
05
69
E

−
03

1.
65
31
E

−
01

9.
76
07
E

−
02

1.
37
07
E

−
04

1.
57
54
E

−
04

1.
61
84
E

−
04

St
d

5.
89
14

E
−
05

1.
77
24
E

−
04

2.
08
34
E

−
03

7.
41
93
E

−
02

7.
98
45
E

−
02

1.
06
26
E

−
04

1.
44
48
E

−
04

1.
75
91
E

−
04

F8
M
ea
n

−1
.2
56

9E
+
04

−1
.2
56

9E
+
04

−
1.
01
81
E
+
04

−
7.
48
77
E
+
03

−
3.
81
09
E
+
03

−1
.2
56

9E
+
04

−
1.
24
69
E
+
04

−
1.
25
54
E
+
04

St
d

5.
04

70
E
−
02

3.
50
03
E

−
01

1.
65
35
E
+
03

6.
32
31
E
+
02

3.
42
49
E
+
02

8.
95
55
E

−
01

5.
43
33
E
+
02

5.
49
94
E
+
01

F9
M
ea
n

0.
00

00
E
+
00

0.
00

00
E
+
00

3.
78
96
E−

15
4.
94
83
E
+
01

4.
63
72
E
+
01

0.
00

00
E
+
00

0.
00

00
E
+
00

0.
00

00
E
+
00

St
d

0.
00

00
E
+
00

0.
00

00
E
+
00

2.
07
56
E−

14
1.
32
77
E
+
01

3.
40
53
E
+
01

0.
00

00
E
+
00

0.
00

00
E
+
00

0.
00

00
E
+
00

F1
0

M
ea
n

8.
88
18

E
−
16

8.
88
18

E
−
16

5.
38
83
E

−
15

2.
71
47
E
+
00

1.
21
92
E
+
01

8.
88
18

E
−
16

8.
88
18

E
−
16

8.
88
18

E
−
16

St
d

0.
00

00
E
+
00

0.
00

00
E
+
00

2.
07
23
E

−
15

9.
86
79
E

−
01

9.
48
08
E
+
00

0.
00

00
E
+
00

0.
00

00
E
+
00

0.
00

00
E
+
00

F1
1

M
ea
n

0.
00

00
E
+
00

0.
00

00
E
+
00

1.
66
96
E

−
02

1.
77
11
E

−
02

9.
72
36
E

−
01

0.
00

00
E
+
00

0.
00

00
E
+
00

0.
00

00
E
+
00

St
d

0.
00

00
E
+
00

0.
00

00
E
+
00

5.
40
84
E

−
02

1.
41
71
E

−
02

3.
54
76
E

−
01

0.
00

00
E
+
00

0.
00

00
E
+
00

0.
00

00
E
+
00

F1
2

M
ea
n

3.
14

35
E
−
07

4.
90
64
E

−
03

2.
11
50
E

−
02

6.
61
86
E
+
00

2.
48
54
E
+
04

1.
39
45
E

−
05

8.
52
84
E

−
06

1.
56
84
E

−
05

St
d

5.
08
19

E
−
07

5.
81
90
E

−
03

1.
35
49
E

−
02

2.
80
00
E
+
00

8.
62
51
E
+
04

2.
09
91
E

−
05

1.
00
43
E

−
05

2.
27
46
E

−
05

F1
3

M
ea
n

7.
22

42
E
−
06

7.
22
77
E

−
03

5.
01
05
E

−
01

1.
17
88
E
+
01

1.
14
16
E
+
05

7.
48
01
E

−
05

9.
51
50
E

−
05

2.
76
12
E

−
04

St
d

9.
73

89
E
−
06

6.
62
67
E

−
03

1.
84
95
E

−
01

1.
28
56
E
+
01

2.
86
77
E
+
05

8.
44
03
E

−
05

1.
09
66
E

−
04

3.
95
97
E

−
04

F1
4

M
ea
n

9.
98

00
E
−
01

9.
98

00
E
−
01

2.
73
53
E
+
00

1.
16
37
E
+
00

1.
72
23
E
+
00

1.
75
49
E
+
00

1.
29
49
E
+
00

1.
16
34
E
+
00

St
d

7.
40
84
E

−
11

5.
61
56

E
−
13

2.
86
39
E
+
00

3.
76
78
E−

01
1.
88
68
E
+
00

1.
69
21
E
+
00

9.
39
94
E

−
01

5.
26
56
E

−
01

F1
5

M
ea
n

3.
12
10

E
−
04

5.
67
03
E

−
04

6.
98
56
E

−
04

2.
18
17
E

−
03

1.
06
10
E

−
03

3.
86
87
E

−
04

4.
58
21
E

−
04

5.
61
25
E

−
04

St
d

2.
14

52
E
−
05

3.
09
81
E

−
04

4.
77
71
E

−
04

4.
95
06
E

−
03

4.
19
95
E

−
04

2.
84
44
E

−
04

3.
00
67
E

−
04

4.
29
13
E

−
04

F1
6

M
ea
n

−1
.0
31
6E

+
00

−1
.0
31
6E

+
00

−1
.0
31
6E

+
00

1.
03
16

E
+
00

−1
.0
31
6E

+
00

−1
.0
31
6E

+
00

−1
.0
31
6E

+
00

−1
.0
31
6E

+
00

St
d

4.
80

85
E
−
16

2.
46
15
E

−
09

1.
24
42
E

−
09

3.
34
23
E

−
14

5.
20
63
E

−
05

4.
25
16
E

−
09

5.
75
28
E

−
11

3.
87
34
E

−
09

F1
7

M
ea
n

3.
97

89
E
−
01

3.
97

89
E
−
01

3.
97

89
E
−
01

3.
97

89
E
−
01

3.
99
98
E−

01
3.
97

89
E
−
01

3.
97

89
E
−
01

3.
97

89
E
−
01

St
d

1.
15

71
E
−
15

2.
04
33
E

−
07

8.
40
94
E

−
06

1.
82
81
E

−
14

2.
14
27
E

−
03

7.
68
34
E

−
06

3.
99
21
E

−
06

1.
65
21
E

−
06

F1
8

M
ea
n

3.
00

00
E
+
00

3.
00

00
E
+
00

3.
00

00
E
+
00

3.
00

00
E
+
00

3.
00
01
E
+
00

3.
00

00
E
+
00

3.
00

00
E
+
00

3.
00

00
E
+
00

St
d

1.
11

06
E
−
14

1.
83
31
E

−
10

3.
84
95
E

−
05

3.
08
11
E

−
13

1.
36
07
E

−
04

3.
31
43
E

−
07

7.
52
72
E

−
08

1.
54
83
E

−
08

F1
9

M
ea
n

−
3.
86
28
E
+
00

−
3.
86
28
E
+
00

−
3.
85
32
E
+
00

−
3.
86
28
E
+
00

−
3.
85
43
E
+
00

−
3.
85
99
E
+
00

−3
.8
60

8E
+
00

−
3.
86
26
E
+
00

St
d

8.
09

72
E
−
15

3.
31
88
E−

07
1.
16
08
E−

02
7.
28
61
E−

11
2.
55
28
E−

03
4.
25
15
E−

03
3.
08
62
E−

03
5.
15
50
E−

04

F2
0

M
ea
n

−3
.2
69

2E
+
00

−
3.
26
21
E
+
00

−
3.
24
74
E
+
00

−
3.
21
78
E
+
00

−
2.
93
63
E
+
00

−
3.
09
85
E
+
00

−
3.
11
12
E
+
00

−
3.
26
15
E
+
00

St
d

6.
16
18
E

−
02

6.
08
67
E

−
02

9.
75
61
E

−
02

4.
78

60
E−

02
2.
62
67
E

−
01

1.
18
44
E

−
01

8.
39
31
E

−
02

6.
78
41
E

−
02

10 Computational Intelligence and Neuroscience

Ta
bl

e
4:

C
on

tin
ue
d.

Fu
nc
tio

n
ER

H
H
O

SM
A

W
O
A

SS
A

SC
A

H
H
O

D
H
H
O
/M

H
H
O
C
M

F2
1

M
ea
n

−1
.0
15

3E
+
01

−1
.0
15

3E
+
01

−
8.
71
54
E
+
00

−
7.
06
13
E
+
00

−
2.
19
79
E
+
00

−
5.
05
16
E
+
00

−
1.
00
32
E
+
01

−
5.
05
50
E
+
00

St
d

3.
05

28
E
−
05

3.
22
80
E

−
04

2.
27
51
E
+
00

3.
45
92
E
+
00

1.
73
74
E
+
00

3.
14
44
E

−
03

1.
26
14
E

−
01

2.
68
79
E

−
04

F2
2

M
ea
n

−1
.0
40

3E
+
01

−1
.0
40

3E
+
01

−
8.
86
19
E
+
00

−
8.
48
85
E
+
00

−
2.
78
76
E
+
00

−
5.
00
47
E
+
00

−
1.
02
12
E
+
01

−
5.
08
76
E
+
00

St
d

1.
15

86
E
−
07

2.
08
72
E

−
04

2.
62
62
E
+
00

3.
03
06
E
+
00

1.
76
62
E
+
00

4.
28
78
E

−
01

1.
86
93
E

−
01

1.
06
44
E

−
04

F2
3

M
ea
n

−1
.0
53

6E
+
01

−1
.0
53

6E
+
01

−
7.
80
12
E
+
00

−
8.
60
30
E
+
00

−
4.
24
32
E
+
00

−
5.
47
60
E
+
00

−
1.
04
04
E
+
01

−
5.
12
83
E
+
00

St
d

4.
55

69
E−

07
3.
66
54
E

−
04

3.
02
92
E
+
00

3.
07
71
E
+
00

1.
72
63
E
+
00

1.
33
67
E
+
00

1.
54
17
E

−
01

1.
77
86
E

−
04

,
e
be
st

re
su
lts

ar
e
m
ar
ke
d
as

bo
ld

fo
nt
s.
Fo

r
th
e
un

im
od

al
be
nc
hm

ar
k
fu
nc
tio

ns
(F
1–

F7
),
ER

H
H
O

ca
n
ob

ta
in

th
e
be
st

re
su
lt
ex
ce
pt

fo
r
F6

.

Computational Intelligence and Neuroscience 11

significant. By WSR, we can determine whether two sets of
values are significantly different. A p value is lower than 0.05
suggests that the method is considerably better than the
compared algorithms.,eWilcoxon signed-rank test results
for each benchmark function are shown in Table 6. As can be
observed, ERHHO outperforms almost all of the other al-
gorithms to varying degrees.

4.5.<e Performance of ERHHO on the CEC2017. To further
evaluate, one of the most challenging test functions is called
CEC2017 [48], which includes 30 test functions with uni-
modal, multimodal, hybrid, and composition types (see
Table 7). In this experiment, we set dim� 10 for all functions.

HHO algorithm performs poorly on complicated
problems such as CEC2017 but focuses on tackling simple,
traditional, high-dimensional issues. We compared the
proposed algorithm with HHO or optimizer based on HHO
is more rational. We tested ERHHO on CEC2017 test
functions (excluding F2, which is unstable) and compared it
with HHO, DHHO/M, HHOCM, and CEHHO [42]. Each
function was put to the test 30 times with 1,000 iterations,
and the dimensions of all functions were set to 10.

,e results of CEC2017 test functions are listed in Ta-
ble 8, which utilize Friedman’s mean rank, and the best
values are provided in bold. According to Table 8, the
proposed algorithm performed well in F1 and got the second
rank in F3. We can say, the performance of ERHHO is
similar to HHOCM and better than other algorithms for
unimodal functions. For multimodal functions, ERHHO has
a slight advantage over HHOCM and CEHHO but out-
performs others. But, for hybrid and composition functions,
ERHHO shows a huge lead over the other algorithms. We
evaluate the algorithms group by different types of uni-
modal, multimodal, hybrid, and composition (see Figure 7).
From Figure 7, ERHHO got the same Friedman rank value
as HHOCM on the type of unimodal and multimodal but
obviously outperformed other algorithms. For the type of
hybrid and composition, ERHHO got the optimal ranking in
all competitive algorithms.

4.6. Experiments on Engineering Design Problems. We ana-
lyze the performance of ERHHO on five classic engineering
design issues in this section. We perform all the experiments
by setting the population (N) to 30 and the maximum it-
eration (T) to 500.,e proposed algorithms are compared to
algorithms: SMA, WOA, SSA, SCA, HHO, DHHO/M, and

HHOCM.,e parameter settings are identical to those listed
in Table 2.

4.6.1. Tension/Compression Spring Design Problem. ,is
challenge [49] aims to find the optimum variables of wire
diameter (d), average coil diameter (D), and the number of
active coils (N) by the optimization algorithms for obtaining
the minimum weight of the tension or compress spring
under four constraints. ,e tension/compression spring
structure is shown in Figure 8. ,e conditions and for-
mulations are as follows:

Consider

x
→

� x1 x2 x3 x4􏼂 􏼃 � [dDN]. (21)

Minimize

f(x
→

) � x3 + 2(􏼁x2x
2
1. (22)

Subject to

g1(x
→

) � 1 −
x
3
2x3

71785x
4
1
≤ 0,

g2(x
→

) �
4x

2
2 − x1x2

12566 x2x
3
1 − x

4
1􏼐 􏼑

+
1

5108x
2
1
≤ 0,

g3(x
→

) � 1 −
140.45x1

x
2
2x3
≤ 0,

g4(x
→

) �
x1 + x2

1.5
− 1≤ 0.

(23)

Variable range

0.05≤ x1 ≤ 2.00,

0.25≤ x2 ≤ 1.30,

2.00≤ x3 ≤ 15.00.

(24)

Table 9 shows the results of ERHHO and compared
algorithms for solving this problem, and we can see that the
ERHHO algorithm obtained the best performance among all
competitors.

4.6.2. Pressure Vessel Design Problem. ,e problem’s pri-
mary goal is to obtain set values of the shell (Ts), the
thickness of the head (Th), the inner radius (R), and the
length of the cylindrical section (L) by the optimization

Table 5: Results of HHO (hybrid exploration factor) on F21–F23.

Function HHO HHO+ exploration factor

F21 Mean −5.3410E+ 00 −1.0147E+ 01
Std 1.1097E+ 00 7.5648E− 03

F22 Mean −5.2560E+ 00 −1.0394E+ 01
Std 9.5700E− 01 1.4686E− 02

F23 Mean −5.3039E+ 00 −1.0530E+ 01
Std 9.8154E− 01 6.1909E− 03

,e best results are marked in bold.

12 Computational Intelligence and Neuroscience

50 100 150
Iteration#

200 250 300 350 400 450 500

16

14

12

10

8

6

4

2

0

Be
st

sc
or

e o
bt

ai
ne

d
so

 fa
r

×104

HHOCM
DHHO/M
HHO
SCA

SSA
WOA
SMA
ERHHO

(a)

50 100 150
Iteration#

200 250 300 350 400 450 500

Be
st

sc
or

e o
bt

ai
ne

d
so

 fa
r

108

106

104

100

102

10–2

10–4

10–6

HHOCM
DHHO/M
HHO
SCA

SSA
WOA
SMA
ERHHO

(b)

50 100 150
Iteration#

200 250 300 350 400 450 500

Be
st

sc
or

e o
bt

ai
ne

d
so

 fa
r

102

101

100

10–1

10–2

10–3

10–4

10–5

10–6

HHOCM
DHHO/M
HHO
SCA

SSA
WOA
SMA
ERHHO

(c)

50 100 150
Iteration#

200 250 300 350 400 450 500

Be
st

sc
or

e o
bt

ai
ne

d
so

 fa
r

0

–2000

–4000

–6000

–8000

–10000

–12000

HHOCM
DHHO/M
HHO
SCA

SSA
WOA
SMA
ERHHO

(d)

50 100 150
Iteration#

200 250 300 350 400 450 500

Be
st

sc
or

e o
bt

ai
ne

d
so

 fa
r

450
400
350
300
250
200
150
100

50
0

HHOCM
DHHO/M
HHO
SCA

SSA
WOA
SMA
ERHHO

(e)

50 100 150
Iteration#

200 250 300 350 400 450 500

Be
st

sc
or

e o
bt

ai
ne

d
so

 fa
r

100

10–5

10–10

10–15

HHOCM
DHHO/M
HHO
SCA

SSA
WOA
SMA
ERHHO

(f)

50 100 150
Iteration#

200 250 300 350 400 450 500

Be
st

sc
or

e o
bt

ai
ne

d
so

 fa
r

108

106

104

100
102

10–2

10–4

10–6

HHOCM
DHHO/M
HHO
SCA

SSA
WOA
SMA
ERHHO

(g)

50 100 150
Iteration#

200 250 300 350 400 450 500

Be
st

sc
or

e o
bt

ai
ne

d
so

 fa
r

100

105

10–5

HHOCM
DHHO/M
HHO
SCA

SSA
WOA
SMA
ERHHO

(h)

50 100 150
Iteration#

200 250 300 350 400 450 500

Be
st

sc
or

e o
bt

ai
ne

d
so

 fa
r

102

100

101

HHOCM
DHHO/M
HHO
SCA

SSA
WOA
SMA
ERHHO

(i)

50 100 150
Iteration#

200 250 300 350 400 450 500

Be
st

sc
or

e o
bt

ai
ne

d
so

 fa
r 100

10–1

10–2

10–3

HHOCM
DHHO/M
HHO
SCA

SSA
WOA
SMA
ERHHO

(j)

50 100 150
Iteration#

200 250 300 350 400 450 500

Be
st

sc
or

e o
bt

ai
ne

d
so

 fa
r

0

–0.5

–1

–1.5

–2

–2.5

–3

–3.5

HHOCM
DHHO/M
HHO
SCA

SSA
WOA
SMA
ERHHO

(k)

50 100 150
Iteration#

200 250 300 350 400 450 500

Be
st

sc
or

e o
bt

ai
ne

d
so

 fa
r

0

–0.5

–1

–1.5

–2

–2.5

–3

HHOCM
DHHO/M
HHO
SCA

SSA
WOA
SMA
ERHHO

(l)

Figure 6: Continued.

Computational Intelligence and Neuroscience 13

algorithms for reducing the cost of cylindrical pressure
vessels [51] while meeting the pressure requirements. ,e
structure of the pressure vessel is shown in Figure 9. ,e
mathematical formula is represented as follows:

Consider

x
→

� x1x2x3x4􏼂 􏼃 � TsThRL􏼂 􏼃. (25)

Minimize

f(x
→

) � 0.6224x1x3x4 + 1.7781x2x
2
3 + 3.1661x

2
1x4 + 19.84x

2
1x3.

(26)

Subject to

g1(x
→

) � −x1 + 0.0193x3 ≤ 0,

g2(x
→

) � −x3 + 0.00954x3 ≤ 0,

g3(x
→

) � −πx
2
3x4 −

4
3
πx

3
3 + 1296000≤ 0,

g4(x
→

) � x4 − 240≤ 0.

(27)

Variable range

50 100 150
Iteration#

200 250 300 350 400 450 500

Be
st

sc
or

e o
bt

ai
ne

d
so

 fa
r

0
–1
–2
–3
–4
–5
–6
–7
–8
–9

–10

HHOCM
DHHO/M
HHO
SCA

SSA
WOA
SMA
ERHHO

(m)

50 100 150
Iteration#

200 250 300 350 400 450 500

Be
st

sc
or

e o
bt

ai
ne

d
so

 fa
r

0
–1
–2
–3
–4
–5
–6
–7
–8
–9

–10

HHOCM
DHHO/M
HHO
SCA

SSA
WOA
SMA
ERHHO

(n)

50 100 150
Iteration#

200 250 300 350 400 450 500

Be
st

sc
or

e o
bt

ai
ne

d
so

 fa
r

0
–1
–2
–3
–4
–5
–6
–7
–8
–9

–10

HHOCM
DHHO/M
HHO
SCA

SSA
WOA
SMA
ERHHO

(o)

Figure 6: Convergence curves of 23 benchmark functions: (a) F3, (b) F5, (c) F7, (d) F8, (e) F9, (f) F10, (g) F12, (h) F13, (i) F14, (j) F15, (k)
F19, (l) F20, (m) F21, (n) F22, and (o) F23.

Table 6: ,e results of the Wilcoxon signed test.

Function
ERHHO vs.

SMA WOA SSA SCA HHO DHHO/M HHOCM
F1 NaN 6.8662E− 07 6.8662E− 07 6.8662E− 07 6.8662E− 07 6.8662E− 07 NaN
F2 6.8662E− 07 6.8662E− 07 6.8662E− 07 6.8662E− 07 6.8662E− 07 6.8662E− 07 6.8662E− 07
F3 7.9725E − 02 6.8662E− 07 6.8662E− 07 6.8662E− 07 6.8662E− 07 6.8662E− 07 NaN
F4 6.8662E− 07 6.8662E− 07 6.8662E− 07 6.8662E− 07 6.8662E− 07 6.8662E− 07 6.8662E− 07
F5 4.1432E− 06 3.3918E− 06 3.3918E− 06 3.3918E− 06 3.6093E− 04 3.3568E− 05 7.4772E− 06
F6 3.3918E− 06 3.3918E− 06 3.3918E− 06 3.3918E− 06 5.3383E − 01 1.5846E− 01 7.9403E− 03
F7 4.2111E− 02 3.3918E− 06 3.3918E− 06 3.3918E− 06 1.0574E − 01 1.4397E− 02 6.1898E− 03
F8 1.9352E− 05 3.3918E− 06 3.3918E− 06 3.3918E− 06 9.6615E− 05 1.1457E− 04 5.4521E− 03
F9 NaN 3.5065E − 01 6.8662E− 07 6.8662E− 07 NaN NaN NaN
F10 NaN 2.1523E− 05 6.8662E− 07 6.8662E− 07 NaN NaN NaN
F11 NaN 3.5065E − 01 6.8662E− 07 6.8662E− 07 NaN NaN NaN
F12 3.3918E− 06 3.3918E− 06 3.3918E− 06 3.3918E− 06 7.0162E− 03 4.2111E− 02 2.8226E− 03
F13 3.3918E− 06 3.3918E− 06 3.3918E− 06 3.3918E− 06 1.0992E− 05 1.0500E− 03 2.2289E− 04
F14 5.2468E− 03 3.0947E− 05 2.7876E − 01 3.0659E− 06 6.3415E− 05 5.3134E− 05 3.5402E− 03
F15 3.3918E− 06 4.1432E− 06 5.0527E− 06 3.3918E− 06 1.0992E− 05 1.1457E− 04 4.0200E− 05
F16 1.2604E− 06 1.2604E− 06 1.2604E− 06 1.2604E− 06 1.2604E− 06 1.5660E− 06 1.2604E− 06
F17 2.2038E− 06 2.2038E− 06 3.4080E− 04 2.2038E− 06 4.9642E− 06 1.9074E− 05 2.4387E− 06
F18 5.0162E− 06 3.3664E− 06 1.0918E− 05 3.3664E− 06 3.3664E− 06 3.9725E− 05 3.3664E− 06
F19 3.2092E− 06 3.2092E− 06 5.5823E− 04 3.2092E− 06 3.2092E− 06 3.2092E− 06 3.2092E− 06
F20 2.4549E − 01 5.6145E − 01 1.0122E− 02 3.3918E− 06 4.7948E− 03 2.4626E− 03 8.6823E − 01
F21 1.6053E− 05 3.3918E− 06 7.7155E− 01 3.3918E− 06 3.3918E− 06 3.3918E− 06 3.3918E− 06
F22 7.4772E− 06 3.3918E− 06 1.2486E − 01 3.3918E− 06 3.3918E− 06 3.3918E− 06 3.3918E− 06
F23 4.8063E− 05 3.3918E− 06 5.7371E− 05 3.3918E− 06 3.3918E− 06 4.1432E− 06 3.3918E− 06
(W|L|T) (17|2|4) (20|3|0) (20|3|0) (23|0|0) (18|2|3) (19|1|3) (17|1|5)
,e best results are marked in bold.

14 Computational Intelligence and Neuroscience

Table 7: Properties and summary of the CEC2017.

Type No. Functions Global
min Domain

Unimodal function
F1 Shifted and rotated bent cigar function 100 [−100, 100]
F2 Shifted and rotated sum of different power function 200 [−100, 100]
F3 Shifted and rotated Zakharov’s function 300 [−100, 100]

Multimodal
functions

F4 Shifted and rotated Rosenbrock’s function 400 [−100, 100]
F5 Shifted and rotated Rastrigin’s function 500 [−100, 100]
F6 Shifted and rotated expanded Schaffer’s function 600 [−100, 100]
F7 Shifted and rotated Lunacek Bi_Rastrigin function 700 [−100, 100]
F8 Shifted and rotated noncontinuous Rastrigin’s function 800 [−100, 100]
F9 Shifted and rotated Levy function 900 [−100, 100]
F10 Shifted and rotated Schwefel’s function 1,000 [−100, 100]

Hybrid functions

F11 Hybrid function of Zakharov, Rosenbrock, and Rastrigin 1,100 [−100, 100]
F12 Hybrid function of high conditioned elliptic, modified Schwefel, and bent cigar 1,200 [−100, 100]
F13 Hybrid function of bent cigar, Rosenbrock, and Lunacek bi-Rastrigin 1,300 [−100, 100]
F14 Hybrid function of elliptic, Ackley, Schaffer and Rastrigin 1,400 [−100, 100]
F15 Hybrid function of bent cigar, HGBat, Rastrigin, and Rosenbrock 1,500 [−100, 100]
F16 Hybrid function of expanded Schaffer, HGBat, Rosenbrock, and modified Schwefel 1,600 [−100, 100]

F17 Hybrid function of Katsuura, Ackley, expanded Griewank plus Rosenbrock, modified
Schwefel, and Rastrigin 1,700 [−100, 100]

F18 Hybrid function of high conditioned elliptic, Ackley, Rastrigin, HGBat, and Discus 1,800 [−100, 100]

F19 Hybrid function of bent cigar, Rastrigin, expanded Griewank plus Rosenbrock,
Weierstrass, and expanded Schaffer 1,900 [−100, 100]

F20 Hybrid function of HappyCat, Katsuura, Ackley, Rastrigin, modified Schwefel, and
Schaffer 2,000 [−100, 100]

Composition
functions

F21 Composition function of Rosenbrock, high conditioned elliptic, and Rastrigin 2,100 [−100, 100]
F22 Composition function of Rastrigin’s, Griewank, and modified Schwefel 2,200 [−100, 100]
F23 Composition function of Rosenbrock, Ackley, modified Schwefel, and Rastrigin 2,300 [−100, 100]
F24 Composition function of Ackley, high conditioned elliptic, Griewank, and Rastrigin 2,400 [−100, 100]
F25 Composition function of Rastrigin, HappyCat, Ackley, Discus, and Rosenbrock 2,500 [−100, 100]

F26 Composition function of expanded Schaffer, modified Schwefel, Griewank, Rosenbrock,
and Rastrigin 2,600 [−100, 100]

F27 Composition function of HGBat, Rastrigin, modified Schwefel, bent cigar, high
conditioned elliptic, and expanded Schaffer 2,700 [−100, 100]

F28 Composition function of Ackley, Griewank, Discus, Rosenbrock, HappyCat, and
expanded Schaffer 2,800 [−100, 100]

F29 Composition function of shifted and rotated Rastrigin, expanded Schaffer, and Lunacek
Bi_Rastrigin 2,900 [−100, 100]

F30 F30 composition function of shifted and rotated Rastrigin, noncontinuous Rastrigin, and
Levy function 3,000 [−100, 100]

Table 8: ,e results of CEC2017 test functions.

Type No. ERHHO HHO DHHO/M HHOCM CEHHO

Unimodal function

F1
Mean 1.2052E + 04 3.6019E+ 05 4.2939E+ 05 2.0170E+ 04 1.0067E+ 06
Std 2.2216E + 04 1.7863E+ 05 3.0607E+ 05 2.4823E+ 04 1.0026E+ 06
Rank 1 3 4 2 5

F3
Mean 3.0063E+ 02 3.0180E+ 02 3.0231E+ 02 3.0019E + 02 3.1873E+ 02
Std 4.6904E− 01 1.0312E+ 00 2.0173E+ 00 9.7727E − 02 1.6569E+ 01
Rank 2 3 4 1 5

Computational Intelligence and Neuroscience 15

Table 8: Continued.

Type No. ERHHO HHO DHHO/M HHOCM CEHHO

Multimodal functions

F4
Mean 4.1270E+ 02 4.1578E+ 02 4.1392E+ 02 4.0689E + 02 4.1280E+ 02
Std 2.1283E+ 01 2.5703E+ 01 2.1889E+ 01 1.1731E + 01 1.9551E+ 01
Rank 2 5 4 1 3

F5
Mean 5.4272E + 02 5.4457E+ 02 5.4797E+ 02 5.4413E+ 02 5.4567E+ 02
Std 1.7715E + 01 1.2083E+ 01 1.3398E+ 01 1.5229E+ 01 1.8236E+ 01
Rank 1 3 5 2 4

F6
Mean 6.2997E + 02 6.3151E+ 02 6.3265E+ 02 6.3046E+ 02 6.3753E+ 02
Std 9.6724E + 00 1.2635E+ 01 1.1154E+ 01 1.0670E+ 01 1.2120E+ 01
Rank 1 3 4 2 5

F7
Mean 7.8617E+ 02 7.8076E+ 02 7.7761E+ 02 7.7481E + 02 7.8152E+ 02
Std 1.8646E+ 01 1.6252E+ 01 1.7448E+ 01 2.0940E + 01 2.2054E+ 01
Rank 5 3 2 1 4

F8
Mean 8.3287E+ 02 8.2779E+ 02 8.2843E+ 02 8.2989E+ 02 8.2428E+ 02
Std 6.4227E+ 00 8.0354E+ 00 7.6805E+ 00 8.9310E+ 00 7.6576E+ 00
Rank 5 2 3 4 1

F9
Mean 1.3612E+ 03 1.4738E+ 03 1.3986E+ 03 1.4321E+ 03 1.3168E+ 03
Std 3.0596E+ 02 2.0219E+ 02 2.0034E+ 02 2.5386E+ 02 1.9220E+ 02
Rank 2 5 3 4 1

F10
Mean 1.9272E + 03 1.9801E+ 03 2.0096E+ 03 2.0094E+ 03 2.0899E+ 03
Std 2.6782E + 02 3.0179E+ 02 2.8965E+ 02 2.9359E+ 02 3.1406E+ 02
Rank 1 2 4 3 5

Hybrid functions

F11
Mean 1.1567E + 03 1.1797E+ 03 1.1939E+ 03 1.1647E+ 03 1.1809E+ 03
Std 4.3639E + 01 8.0529E+ 01 9.0864E+ 01 5.1621E+ 01 6.2806E+ 01
Rank 1 3 5 2 4

F12
Mean 2.5268E + 04 2.3910E+ 06 2.6341E+ 06 2.5694E+ 06 2.8299E+ 06
Std 3.7776E + 04 2.0613E+ 06 2.9949E+ 06 2.8868E+ 06 3.1678E+ 06
Rank 1 2 4 3 5

F13
Mean 2.6880E + 03 1.7767E+ 04 2.0431E+ 04 1.2350E+ 04 1.4179E+ 04
Std 2.2783E + 03 1.1560E+ 04 1.1932E+ 04 9.9645E+ 03 8.7188E+ 03
Rank 1 4 5 2 3

F14
Mean 1.4865E + 03 1.5791E+ 03 1.5321E+ 03 1.5857E+ 03 1.5634E+ 03
Std 2.4693E + 01 2.0948E+ 02 3.4605E+ 01 1.9928E+ 02 8.5603E+ 01
Rank 1 4 2 5 3

F15
Mean 1.5942E + 03 4.0799E+ 03 4.2891E+ 03 4.6614E+ 03 6.3234E+ 03
Std 5.7397E + 01 1.7066E+ 03 2.0041E+ 03 1.7606E+ 03 2.8184E+ 03
Rank 1 2 3 4 5

F16
Mean 1.9278E+ 03 1.8955E+ 03 1.8830E + 03 1.9312E+ 03 1.8949E+ 03
Std 1.2443E+ 02 1.5078E+ 02 1.3381E+ 02 1.5608E+ 02 1.4804E+ 02
Rank 4 3 1 5 2

F17
Mean 1.7674E+ 03 1.7769E+ 03 1.7841E+ 03 1.7664E + 03 1.7967E+ 03
Std 2.4383E+ 01 2.8229E+ 01 6.0168E+ 01 2.1723E + 01 3.8642E+ 01
Rank 2 3 4 1 5

F18
Mean 3.8251E + 03 1.3844E+ 04 1.6139E+ 04 1.7430E+ 04 1.5003E+ 04
Std 3.7128E + 03 1.1177E+ 04 1.1613E+ 04 1.0382E+ 04 1.2422E+ 04
Rank 1 2 4 5 3

F19
Mean 4.7207E + 03 1.1593E+ 04 1.2784E+ 04 1.2917E+ 04 1.5813E+ 04
Std 5.0189E + 03 1.1274E+ 04 1.1131E+ 04 1.1182E+ 04 1.3094E+ 04
Rank 1 2 3 4 5

F20
Mean 2.1509E + 03 2.1761E+ 03 2.1553E+ 03 2.1520E+ 03 2.1662E+ 03
Std 6.1600E + 01 6.3993E+ 01 6.5874E+ 01 7.4938E+ 01 6.8566E+ 01
Rank 1 5 3 2 4

16 Computational Intelligence and Neuroscience

0≤x1 ≤ 99,

0≤x2 ≤ 99,

10≤x3 ≤ 200,

10≤x4 ≤ 200.

(28)

We can see from Table 10 that ERHHO was able to find
the optimal solution at the lowest cost compared to other
competitor algorithms.

4.6.3. <e <ree-Bar Truss Design Problem. ,e three-bar
truss design problem arises from civil engineering [52, 53].

Table 8: Continued.

Type No. ERHHO HHO DHHO/M HHOCM CEHHO

Composition functions

F21
Mean 2.3271E+ 03 2.3298E+ 03 2.3117E+ 03 2.3291E+ 03 2.3016E+ 03
Std 5.1674E+ 01 5.1905E+ 01 6.1347E+ 01 6.0511E+ 01 6.3126E+ 01
Rank 3 5 2 4 1

F22
Mean 2.3123E + 03 2.3776E+ 03 2.3159E+ 03 2.3580E+ 03 2.3759E+ 03
Std 6.4041E + 00 3.4445E+ 02 6.1462E+ 00 2.7117E+ 02 2.4397E+ 02
Rank 1 5 2 3 4

F23
Mean 2.6610E+ 03 2.6651E+ 03 2.6565E + 03 2.6833E+ 03 2.6664E+ 03
Std 2.3793E+ 01 2.7693E+ 01 2.6149E+ 01 2.5521E+ 01 3.0349E+ 01
Rank 2 3 1 5 4

F24
Mean 2.7871E+ 03 2.7876E+ 03 2.7977E+ 03 2.8124E+ 03 2.7837E+ 03
Std 9.6226E+ 01 1.0482E+ 02 7.3836E+ 01 9.2546E+ 01 8.1668E+ 01
Rank 2 3 4 5 1

F25
Mean 2.9141E+ 03 2.9389E+ 03 2.9331E+ 03 2.9168E+ 03 2.9448E+ 03
Std 6.4027E + 01 3.7666E+ 01 2.4771E+ 01 8.8852E+ 01 3.4255E+ 01
Rank 1 4 3 2 5

F26
Mean 3.4378E+ 03 3.3932E+ 03 3.4342E+ 03 3.4730E+ 03 3.7968E+ 03
Std 6.6555E+ 02 5.4030E+ 02 5.9523E+ 02 4.9775E+ 02 5.8494E+ 02
Rank 3 1 2 4 5

F27
Mean 3.1341E+ 03 3.1412E+ 03 3.1451E+ 03 3.1499E+ 03 3.1616E+ 03
Std 3.8294E + 01 4.5307E+ 01 4.3369E+ 01 3.2091E+ 01 4.6269E+ 01
Rank 1 2 3 4 5

F28
Mean 3.3287E + 03 3.4277E+ 03 3.3626E+ 03 3.3302E+ 03 3.3703E+ 03
Std 1.7005E + 02 1.7236E+ 02 1.6371E+ 02 1.0408E+ 02 1.6007E+ 02
Rank 1 5 3 2 4

F29
Mean 3.3221E + 03 3.3466E+ 03 3.3369E+ 03 3.3284E+ 03 3.3642E+ 03
Std 7.8055E + 01 1.0081E+ 02 9.4273E+ 01 8.6562E+ 01 1.0507E+ 02
Rank 1 4 3 2 5

F30
Mean 6.4195E + 05 8.8875E+ 05 1.2359E+ 06 7.2195E+ 05 2.2614E+ 06
Std 7.2364E + 05 1.0667E+ 06 1.3062E+ 06 1.1924E+ 06 5.0252E+ 06
Rank 1 3 4 2 5

Friedman mean rank 1.7241 3.2414 3.2414 2.9655 3.8276
Rank 1 3 3 2 5

,e best results are marked in bold.

0

1

2

3

4

5

6

Unimodal
function

Multimodal
functions

Hybrid
functions

Composition
functions

ERHHO
HHO
DHHO/M

HHOCM
CEHHO

Figure 7: Friedman mean ranking for each type of CEC2017 test functions.

Computational Intelligence and Neuroscience 17

,is problem aims to minimize the weight in truss design
with stress, deflection, and buckling constraints. ,ere are
two parameters, A1 and A2, involved in this design problem,
and we should find the best value of A1 and A2 by the
optimization algorithm for achieving the goal above. ,e
design is shown in Figure 10. ,e model of the problem is
depicted as follows:

Consider

x
→

� x1 x2􏼂 􏼃 � A1 A2􏼂 􏼃. (29)

Minimize

f(x
→

) � 2
�
2

√
x1 + x2(􏼁 × l. (30)

Subject to

g1(x
→

) �

�
2

√
x1 + x2�

2
√

x
2
1 + 2x1x2

P − σ ≤ 0,

g2(x
→

) �
x2�

2
√

x
2
1 + 2x1x2

P − σ ≤ 0,

g3(x
→

) �
1

�
2

√
x2 + x1

P − σ ≤ 0.

(31)

Variable range

0≤ x1, x2 ≤ 1. (32)

,e results for the three-bar truss design problem are
listed in Table 11. As we can see, the ERHHO algorithm can
achieve the best performance as well as the SSA algorithm in
solving this problem.

d

D

Figure 8: Tension spring design problem [50].

Table 9: Results for tension/compression spring design problem.

Algorithm
Optimum variables

Optimum weight
d D N

ERHHO 0.054919 0.50031 5.2144 0.010886
SMA 0.056026 0.532 4.6974 0.011184
WOA 0.056172 0.53628 4.6338 0.011225
SSA 0.05 0.340474 11.3674 0.011378
SCA 0.051349 0.39299 8.7762 0.011166
HHO 0.057482 0.57567 4.1079 0.011618
DHHO/M 0.05624 0.53828 4.6045 0.011244
HHOCM 0.055303 0.51118 5.0275 0.010987
,e best results are marked in bold.

Th
R

Ts

L
2R

Figure 9: Pressure vessel design problem [50].

18 Computational Intelligence and Neuroscience

4.6.4. Cantilever Beam Design. Cantilever beam design is
one problem in which hollow square cross-section param-
eters (x1–x5) are optimized [54] by optimization algorithms
to obtain the cantilever beam’s minimum weight. ,is
problems’ architecture is depicted in Figure 11. ,e math-
ematical equations are described as follows:

Consider

x
→

� x1x2x3x4x5􏼂 􏼃. (33)

Minimize

f(x
→

) � 0.6224 x1 + x2 + x3 + x4 + x5(􏼁. (34)

Subject to

g(x
→

) �
60
x
3
1

+
27
x
3
2

+
19
x
3
3

+
7
x
3
4

+
1
x
3
5

− 1≤ 0. (35)

Variable range

0.01≤x1, x2, x3, x4, x5 ≤ 100. (36)

Table 12 summarized the findings, from which we can
see that ERHHO was capable of finding the optimal solution
and obtained total weight is minimized.

4.6.5. Speed Reducer Problem. ,e speed reducer problem
[55] aims to minimize the reducer’s weight by optimizing

Table 10: Results for pressure vessel design problem.

Algorithm
Optimum variables

Optimum cost
Ts Th R L

ERHHO 0.8128337 0.414164 44.19005 152.3373 5,907.41
SMA 0.8498743 0.4168857 45.62804 137.3114 5,953.6101
WOA 0.7379761 0.5032129 40.31962 200 6,100.539
SSA 0.8724656 0.4266437 46.7582 126.3416 6,004.6857
SCA 0.6869396 0.3790506 40.36443 200 6,078.1605
HHO 0.8971188 0.4377937 47.79634 116.8499 6,055.0952
DHHO 0.8516057 0.3951695 44.15988 152.6637 5,997.743
HHOCM 0.850937 0.4147511 45.41652 139.4434 5,947.2608
,e best results are marked in bold.

D D

D

A1

A1=A3

A2

A3

Figure 10: ,ree-bar truss design problem [50].

Table 11: Results for the three-bar truss design problem.

Algorithm
Optimum variables

Optimum cost
x1 x2

ERHHO 0.78842 0.40811 263.8523
SMA 0.79893 0.37727 264.1663
WOA 0.80697 0.35801 264.0902
SSA 0.7884 0.40816 263.8523
SCA 0.80167 0.37081 264.052
HHO 0.79595 0.38721 263.893
DHHO 0.78073 0.43031 263.897
HHOCM 0.79599 0.38709 263.8935
,e best results are marked in bold.

Computational Intelligence and Neuroscience 19

seven variables x1–x7 through the optimization algorithms.
,e structure of this problem is depicted in Figure 12. ,e
formulas and constraints are written as follows:

Minimize

f(x
→

) � 0.7854x1x
2
2 3.3333x

2
3 + 14.9334x3 − 43.0934􏼐 􏼑,

− 1.508x1 x
2
6 + x

2
7􏼐 􏼑 + 7.4777 x

3
6 + x

3
7􏼐 􏼑.

(37)

X1

X2

X3

X4
X5

Figure 11: Cantilever beam design [55].

Table 12: Results for the cantilever beam design problem.

Algorithm
Optimum variables

Optimum weight
x1 x2 x3 x4 x5

ERHHO 6.0509 5.2639 4.514 3.4605 2.1878 1.3402
SMA 5.984 5.3074 4.5136 3.4321 2.248 1.3407
WOA 6.5083 6.1653 4.679 3.1335 1.6882 1.3837
SSA 5.9772 5.3966 4.4619 3.4675 2.1753 1.3403
SCA 5.6445 5.9607 5.0894 3.0544 2.2917 1.3753
HHO 6.0578 5.6231 4.2325 3.4302 2.2035 1.3445
DHHO/M 5.6908 5.647 4.7009 3.3578 2.1859 1.3467
HHOCM 6.0932 5.2465 4.633 3.3748 2.1476 1.3413
,e best results are marked in bold.

X7

X5 X2 X1 X3 X4

X6

Figure 12: Speed reducer problem [55].

20 Computational Intelligence and Neuroscience

Subject to

g1(x
→

) �
27

x1x
2
2x3

− 1≤ 0,

g2(x
→

) �
397.5

x1x
2
2x

2
3

− 1≤ 0,

g3(x
→

) �
1.93x

3
4

x2x3x
4
6

− 1≤ 0,

g4(x
→

) �
1.93x

3
5

x2x3x
4
7

− 1≤ 0,

g5(x
→

) �

����������������������

745x4/x2x3(􏼁
2

+ 16.9 × 106
􏽱

110.0x
3
6

− 1≤ 0,

g6(x
→

) �

�����������������������

745x4/x2x3(􏼁
2

+ 157.5 × 106
􏽱

85.0x
3
6

− 1≤ 0,

g7(x
→

) �
x2x3

40
− 1≤ 0,

g8(x
→

) �
5x2

x1
− 1≤ 0,

g9(x
→

) �
x1

12x2
− 1≤ 0,

g10(x
→

) �
1.5x6 + 1.9

x4
− 1≤ 0,

g11(x
→

) �
1.1x7 + 1.9

x5
− 1≤ 0.

(38)

Variable range

2.6≤x1 ≤ 3.6,

0.7≤x2 ≤ 0.8,

17≤x3 ≤ 28,

7.3≤x4 ≤ 8.3,

7.8≤x5 ≤ 8.3,

2.9≤x6 ≤ 3.9,

5.0≤x7 ≤ 5.5.

(39)

Table 13 shows the test results that demonstrate the
proposed algorithm’s effectiveness in obtaining the optimal
values for solving this problem.

5. Conclusion

In this paper, an improved HHO algorithm named ERHHO
is proposed to overcome the shortcoming of the basic HHO
algorithm. ,e ERHHO algorithm starts with initializing
population positions, where we introduced the tent chaotic
map to improve the diversity. And then three phases: ex-
ploration, transaction from exploration to exploitation, and
exploitation, are performed. We proposed an exploration
factor to update the formula to expand the global search
range at the exploration phase. And, at the phase of ex-
ploitation, we proposed a random walk strategy after four
hunting strategies to effectively improve the ability to find
more accurate results. Twenty-three standard benchmark
functions evaluate the proposed algorithm’s ability in the
stage of exploration and exploitation. ,e results verified
that the proposed ERHHO algorithm can yield very effective
outcomes and get almost the best results compared to the
other algorithms. ,en the Wilcoxon signed-rank test is
used to demonstrate the significant differences between
ERHHO and other competing algorithms. ,e algorithm’s
superiority is further demonstrated by testing on five en-
gineering design problems and CEC2017 test functions for
real problems. Furthermore, some challenges in the real
world can be solved by using ERHHO properly, such as
feature selection, multithreshold image segmentation,
convolution neural network, and so on. For further verifi-
cation, another inquiry will be performed on whether this
hybrid method can improve the performance of other op-
timization algorithms.

Table 13: Results for the speed reducer design problem.

Algorithm
Optimum variables

Optimum weight
x1 x2 x3 x4 x5 x6 x7

ERHHO 3.4976 0.7 17 7.3 7.8 3.35006 5.28553 2,995.4374
SMA 3.49767 0.7 17 7.3 7.8 3.35007 5.28554 2,995.4379
WOA 3.49441 0.7 17 8.10001 7.97957 3.35128 5.32567 3,033.2286
SSA 3.49762 0.7 17 7.37353 8.14154 3.35019 5.28555 3,003.6298
SCA 3.6 0.7 17 7.6079 7.98083 3.39127 5.30003 3,061.4356
HHO 3.52699 0.7 17 7.3 7.80055 3.3504 5.28416 3,007.2009
DHHO 3.49737 0.7 17 8.04541 7.8 3.35194 5.28554 3,002.6565
HHOCM 3.49777 0.7 17 7.48788 7.99086 3.35156 5.28524 3,001.7286
,e best results are marked in bold.

Computational Intelligence and Neuroscience 21

Data Availability

,e data used to support the findings of this study are
available from the corresponding author upon request.

Conflicts of Interest

,e authors declare that they have no conflicts of interest.

Acknowledgments

,is research was funded by ,e Fujian Provincial Natural
Science Foundation of China Project (2021J011128), the
Open Project of Fujian e-commerce Engineering Center
(KBX2109), the Project of Education and Research for
Young and Middle-aged Teachers in Fujian Provincial Ed-
ucation Department (JAT211002, JAT200618, and
JAT200627/B202018), the Project of National College Stu-
dents Innovation and Entrepreneurship Program
(202111311022X, 202111311014), Guiding Project of Science
and Technology Plan of Sanming City (2021-S-8), the Project
of Funding Support for (20YG14), Science Research and
Development Fund of Sanming University (B202009), Open
Research Fund of Key Laboratory of Agricultural Internet of
,ings in Fujian Province (ZD2101), and the Innovative
Research Project for Graduate Student of Hainan Province
(Qhys2021-190). ,is study was financially supported via a
funding grant by Deanship of Scientific Research, Taif
University Researchers Supporting Project number
(TURSP-2020/300), Taif University, Taif, Saudi Arabia,
National Ministry of Education Letter (2021) No.13, ,e
Second Batch of Artificial Intelligence Boosting Teacher
Team Construction pilot Project (Sanming University).

References

[1] E. H. Houssein, M. R. Saad, F. A. Hashim, H. Shaban, and
M. Hassaballah, “Lévy flight distribution: a new metaheuristic
algorithm for solving engineering optimization problems,”
Engineering Applications of Artificial Intelligence, vol. 94,
Article ID 103731, 2020.

[2] L. Abualigah and A. Diabat, “Advances in sine cosine algo-
rithm: a comprehensive survey,” Artificial Intelligence Review,
vol. 54, no. 4, pp. 2567–2608, 2021.

[3] L. Abualigah and A. Diabat, “A comprehensive survey of the
Grasshopper optimization algorithm: results, variants, and
applications,” Neural Computing & Applications, vol. 32,
no. 19, pp. 15533–15556, 2020.

[4] D. Wu, H. Jia, L. Abualigah et al., “Enhance teaching-
learning-based optimization for tsallis-entropy-based feature
selection classification approach,” Processes, vol. 10, no. 2,
p. 360, 2022.

[5] L. Abualigah, M. A. Elaziz, P. Sumari, Z. W. Geem, and
A. H. Gandomig, “Reptile search algorithm (RSA): a nature-
inspired meta-heuristic optimizer,” Expert Systems with Ap-
plications, vol. 191, Article ID 116158, 2021.

[6] G. Corriveau, R. Guilbault, A. Tahan, and R. Sabourin,
“Bayesian network as an adaptive parameter setting approach
for genetic algorithms,” Complex & Intelligent Systems, vol. 2,
no. 1, pp. 1–22, 2016.

[7] R. Storn and K. Price, “Differential evolution-a simple and
efficient heuristic for global optimization over continuous

spaces,” Journal of Global Optimization, vol. 11, no. 4,
pp. 341–359, 1997.

[8] X. Xin Yao, Y. Yong Liu, and G. Guangming Lin, “Evolu-
tionary programming made faster,” IEEE Transactions on
Evolutionary Computation, vol. 3, no. 2, pp. 82–102, 1999.

[9] R. V. Rao, V. J. Savsani, and D. P. Vakharia, “Teaching-
learning-based optimization: a novel method for constrained
mechanical design optimization problems,” Computer-Aided
Design, vol. 43, no. 3, pp. 303–315, 2011.

[10] S. Satapathy and A. Naik, “Social group optimization (SGO): a
new population evolutionary optimization technique,”
Complex & Intelligent Systems, vol. 2, no. 3, pp. 173–203, 2016.

[11] M. A. Al-Betar, “–Hill climbing: an exploratory local
search,” Neural Computing and Applications, vol. 28, no. 1,
pp. 153–168, 2017.

[12] F. Mart́ınez-Álvarez, G. Asencio-Cortés, J. F. Torres,
D. Aviles, R. Chacon, and A. Troncoso, “Coronavirus opti-
mization algorithm: a bioinspired metaheuristic based on the
COVID-19 propagation model,” Big Data, vol. 8, no. 4,
pp. 308–322, 2020.

[13] G. Chen and J. Yu, “Particle swarm optimization algorithm,”
Information and Control, vol. 34, no. 3, pp. 318–324, 2005.

[14] G. Dhiman and V. Kumar, “Emperor penguin optimizer: a
bio-inspired algorithm for engineering problems,” Knowl-
edge-Based Systems, vol. 159, pp. 20–50, 2018.

[15] L. Abualigah, D. Yousri, M. Ewees, M. A. A. Al-qaness, and
A. H. Gandomi, “Aquila optimizer: a novel meta-heuristic
optimization Algorithm,” Computers & Industrial Engineer-
ing, vol. 157, Article ID 107250, 2021.

[16] A. Faramarzi, M. Heidarinejad, S. Mirjalili, and
A. H. Gandomi, “Marine predators algorithm: a nature-in-
spired metaheuristic,” Expert Systems with Applications,
vol. 152, Article ID 113377, 2020.

[17] S. Mirjalili, S. M. Mirjalili, and A. Hatamlou, “Multi-verse
optimizer: a nature-inspired algorithm for global optimiza-
tion,” Neural Computing & Applications, vol. 27, no. 2,
pp. 495–513, 2016.

[18] E. Rashedi, H. Nezamabadi-Pour, and S. Saryazdi, “GSA: a
gravitational search algorithm,” Information Sciences, vol. 179,
no. 13, pp. 2232–2248, 2009.

[19] A. Kaveh and A. Dadras, “A novel meta-heuristic optimi-
zation algorithm: thermal exchange optimization,” Advances
in Engineering Software, vol. 110, pp. 69–84, 2017.

[20] F. Asef, V. Majidnezhad, M.-R. Feizi-Derakhshi, and S. Parsa,
“Heat transfer relation-based optimization algorithm
(HTOA),” Soft Computing, vol. 25, no. 13, pp. 8129–8158,
2021.

[21] J. Dréo, A. Pétrowski, P. Siarry, and E. Taillard,Metaheuristics
for Hard Optimization: Methods and Case Studies, Springer
Science & Business Media, Berlin, Germany, 2006.

[22] J. Kennedy and R. Eberhart, “Particle swarm optimization,”
Proceedings - IEEE International Conference on Neural Net-
works, vol. 4, pp. 1942–1948, 1995.

[23] S. Mirjalili, S. M. Mirjalili, and A. Lewis, “Grey wolf opti-
mizer,” Advances in Engineering Software, vol. 69, pp. 46–61,
2014.

[24] S. Mirjalili and A. Lewis, “,e whale optimization algorithm,”
Advances in Engineering Software, vol. 95, pp. 51–67, 2016.

[25] S. Mirjalili, A. H. Gandomi, S. Z. Mirjalili, S. Saremi, H. Faris,
and S. M. Mirjalili, “Salp swarm algorithm: a bio-inspired
optimizer for engineering design problems,” Advances in
Engineering Software, vol. 114, pp. 163–191, 2017.

22 Computational Intelligence and Neuroscience

[26] S. Mirjalili, “SCA: a sine cosine algorithm for solving opti-
mization problems,” Knowledge-Based Systems, vol. 96,
pp. 120–133, 2016.

[27] S. Li, H. Chen, M.Wang, A. A. Heidari, and S. Mirjalili, “Slime
mould algorithm: a new method for stochastic optimization,”
Future Generation Computer Systems, vol. 111, pp. 300–323,
2020.

[28] D. H. Wolpert and W. G. Macready, “No free lunch theorems
for optimization,” IEEE Transactions on Evolutionary Com-
putation, vol. 1, no. 1, pp. 67–82, 1997.

[29] R. Zheng, H. Jia, H. Abualigah, S. Wang, and D. Wu, “An
improved remora optimization algorithm with autonomous
foraging mechanism for global optimization problems,”
Mathematical Biosciences and Engineering, vol. 19, no. 4,
pp. 3994–4037, 2022.

[30] L. Abualigah, A. A. Ewees, and M. A. A. Al-qaness, “Boosting
arithmetic optimization algorithm by sine cosine algorithm
and levy flight distribution for solving engineering optimi-
zation problems,” Neural Computing and Applications, 2022.

[31] H. Jia, W. Zhang, R. Zheng, S. Wang, X. Leng, and N. Cao,
“Ensemble mutation slime mould algorithm with restart
mechanism for feature selection,” International Journal of
Intelligent Systems, vol. 37, no. 3, pp. 2335–2370, 2021.

[32] Q. Liu, N. Li, H. Jia, Q. Qi, and L. Abualigah, “Modified
remora optimization algorithm for global optimization and
multilevel thresholding image segmentation,” Mathematics,
vol. 10, no. 7, p. 1014, 2022.

[33] K. H. Almotairi and L. Abualigah, “Hybrid reptile search
algorithm and remora optimization algorithm for optimiza-
tion tasks and data clustering,” Symmetry, vol. 14, no. 3, p. 458,
2022.

[34] I. A. Zamfirache, R.-E. Precup, R.-C. Roman, and E.M. Petriu,
“Policy iteration reinforcement learning-based control using a
grey wolf optimizer algorithm,” Information Sciences, vol. 585,
pp. 162–175, 2022.

[35] C. Pozna, R.-E. Precup, E. Horvath, and E. M. Petriu, “Hybrid
Particle filter-particle swarm optimization algorithm and
application to fuzzy controlled servo systems,” IEEE Trans-
actions on Fuzzy Systems, vol. 1, 2022.

[36] A. A. Heidari, S. Mirjalili, H. Faris, I. Aljarah, M. Mafarja, and
H. Chen, “Harris hawks optimization: algorithm and appli-
cations,” Future Generation Computer Systems, vol. 97,
pp. 849–872, 2019.

[37] H. Jia, X. Peng, L. Kang, Y. Li, Z. Jiang, and K. Sun, “Pulse
coupled neural network based on Harris hawks optimization
algorithm for image segmentation,” Multimedia Tools and
Applications, vol. 79, no. 37-38, pp. 28369–28392, 2020.

[38] C. Fan, Y. Zhou, and Z. Tang, “Neighborhood centroid op-
posite-based learning Harris hawks optimization for training
neural networks,” Evolutionary Intelligence, vol. 14, no. 4,
pp. 1847–1867, 2021.

[39] G. Saravanan, A. Ibrahim, D. Kumar, V. S. Chandrika, and
U. Vanitha, “Iot based speed control of bldc motor with
Harris hawks optimization controller,” International Journal
of Grid and Distributed Computing, vol. 13, no. 1, pp. 1902–
1915, 2020.

[40] Y. Ma, Z. Shi, K. Zhao, C. Gong, and L. Shan, “TDOA lo-
calization based on improved Harris hawk optimization al-
gorithm,” Computer Engineering, vol. 46, no. 12, pp. 179–184,
2020.

[41] E. H. Houssein, N. Neggaz, M. E. Hosney, W. M. Mohamed,
and M. Hassaballah, “Enhanced Harris hawks optimization
with genetic operators for selection chemical descriptors and

compounds activities,” Neural Computing & Applications,
vol. 33, no. 20, pp. 13601–13618, 2021.

[42] A. Tang, T. Han, D. Xu, and L. Xie, “Chaotic elite harris hawk
optimization algorithm,” Journal of Computer Applications,
vol. 41, no. 8, p. 2265, 2021.

[43] H. Jia, C. Lang, D. Oliva, W. Song, and X. Peng, “Dynamic
Harris hawks optimization with mutation mechanism for
satellite image segmentation,” Remote Sensing, vol. 11, no. 12,
p. 1421, 2019.

[44] S. Mirjalili and A. H. Gandomi, “Chaotic gravitational con-
stants for the gravitational search algorithm,” Applied Soft
Computing, vol. 53, pp. 407–419, 2017.

[45] D. Dhawale, V. K. Kamboj, and P. Anand, “An improved
chaotic harris hawks optimizer for solving numerical and
engineering optimization problems,” Engineering with
Computers, 2021.

[46] A. Tang, T. Han, D. Xu, and L. Xie, “A chaos sparrow search
algorithm based on hierarchy and brownian motion,” Journal
of Air Force Engineering University (Nature Science Edition),
vol. 22, no. 3, pp. 96–103, 2021.

[47] D. Wu, S. Wang, Q. Liu, L. Abualigah, and H. Jia, “An im-
proved teaching-learning-based optimization algorithm with
reinforcement learning strategy for solving optimization
problems,” Computational Intelligence and Neuroscience,
vol. 2022, Article ID 1535957, 11 pages, 2022.

[48] N. H. Awad, M. Z. Ali, and P. N. Suganthan, “Ensemble
sinusoidal differential covariance matrix adaptation with
Euclidean neighborhood for solving CEC2017 benchmark
problems,” in Proceedings of the IEEE Congress on Evolu-
tionary Computation (CEC) IEEE, pp. 372–379, Donostia,
Spain, June 2017.

[49] S. Wang, H. Jia, Q. Liu, and R. Zheng, “An improved hybrid
aquila optimizer and harris hawks optimization for global
optimization,” Mathematical Biosciences and Engineering,
vol. 18, no. 6, pp. 7076–7109, 2021.

[50] R. Zheng, H. Jia, L. Abualigah, Q. Liu, and S. Wang, “Deep
ensemble of slime mold algorithm and arithmetic optimi-
zation algorithm for global optimization,” Processes, vol. 9,
no. 10, p. 1774, 2021.

[51] H. Jia, X. Peng, and C. Lang, “Remora optimization algo-
rithm,” Expert Systems with Applications, vol. 185, Article ID
115665, 2021.

[52] S. Gupta, K. Deep, A. A. Heidari, H. Moayedi, and M. Wang,
“Opposition-based learning Harris hawks optimization with
advanced transition rules: principles and analysis,” Expert
Systems with Applications, vol. 158, Article ID 113510, 2020.

[53] S. Wang, H. Jia, L. Abualigah, Q. Liu, and R. Zheng, “An
improved hybrid aquila optimizer and Harris hawks algo-
rithm for solving industrial engineering optimization prob-
lems,” Processes, vol. 9, no. 9, p. 1551, 2021.

[54] L. Abualigah, A. Diabat, S. Mirjalili, M. Abd Elaziz, and
A. H. Gandomi, “,e arithmetic optimization algorithm,”
Computer Methods in Applied Mechanics and Engineering,
vol. 376, Article ID 113609, 2021.

[55] S. Wang, Q. Liu, Y. Liu et al., “A hybrid SSA and SMA with
mutation opposition–based learning for constrained engi-
neering problems,” Computational Intelligence and Neuro-
science, vol. 2021, Article ID 6379469, 9 pages, 2021.

Computational Intelligence and Neuroscience 23

