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Abstract: Background: The Hirao reaction discovered ca. 35 years ago is an important P–C 

coupling protocol between dialkyl phosphites and aryl halides in the presence of Pd(PPh3)4 as the 

catalyst and a base to provide aryl phosphonates. Then, the reaction was extended to other P-

reagents, such as secondary phosphine oxides and H-phosphinates and to other aryl and hetaryl 
derivatives to afford also phosphinic esters and tertiary phosphine oxides. Instead of the Pd(PPh3)4 

catalyst, Pd(OAc)2 and Ni-salts were also applied as catalyst precursors together with a number of 

mono- and bidentate P-ligands. 

Objective: In our review, we undertook to summarize the target reaction with a special stress on the 

developments attained in the last 6 years, hence this paper is an update of our earlier reviews in a similar topic. 

Conclusions: “Greener” syntheses aimed at utilizing phase transfer catalytic and microwave-assisted 
approaches, even under “P-ligand-free. or even solvent-free conditions are the up-to date versions of the 

classical Hirao reaction. The mechanism of the reaction is also in the focus these days. 

Keywords: Hirao reaction, P-C coupling, Pd-catalyst, phosphonates, phosphinates, phosphine oxides, green synthesis. 

1. THE TRADITIONAL HIRAO REACTION 

The Hirao reaction that is, a P-C coupling to furnish 
phosphonates or phosphine oxides, was reviewed 7 years ago by us 
[1, 2]. The purpose of this survey was to give an update on the 
newer developments. Of course, the most important precedents 
have also been summarized. 

1.1. Palladium(0)-catalyzed Hirao Reactions 

Hirao et al. described the first P-C coupling reaction between 
vinyl- or aryl halides and dialkyl phosphites in the presence of 
tetrakis(triphenylphosphine)palladium as the catalyst, applying 
organic bases in toluene as the medium, or without the use of any 
solvent (Scheme 1) [3-5]. 

RO
P
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HRO
+ Y X

90-110 °C, 12 min-64 h
Pd(PPh3)4 (5 mol%)

base

toluene or solvent-free 1

3-98%
R = Et, iPr, Bu
Y = Ph, 4-MeOC6H4, 4-HOC6H4, 4-H2NC6H4, 4-MeC6H4, 2-MeC6H4,
       2-HOCH2C6H4, 4-ClC6H4, 4-BrC6H4, 2-BrC6H4, 2-MeO(O)CC6H4,
       4-MeNH(O)CC6H4, 2-HO(O)CC6H4, 4-Me(O)CC6H4, 4-NCC6H4,
       4-O2NC6H4, 1-naphtyl, 3-piridyl, allyl, 1-cyclohexenyl, styryl,
       1-phenylvinyl
X = I, Br
base: Et3N, Bu3N, pyridine
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Scheme 1. 
Then, the Pd(PPh3)4-catalyzed Hirao reaction was extended to a 

number of cases. Beside dialkyl phosphites [6-22], H-phosphinates  
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[23-28] and secondary phosphine oxides [29-31] were also reacted 
with aryl- and vinyl halides, or sulfonates [31-36]. The most com-
monly used bases were triethylamine and N, N-diisopropyl-
ethylamine, but N-methyl morpholine was also used [24, 34]. The 
solvent may be toluene and THF [35], or dipolar aprotic solvents, 
e.g. acetonitrile [34, 37], DMF [33, 38] or DMSO [38]. The P-C 
coupling reaction of optically active H-phosphinates and 
alkylarylphosphine oxides proceeded with the complete retention of 
configuration [39-43]. 

1.2. P-C Coupling in the Presence of Metal Salts and Ligands 

1.2.1. The use of Pd(II) Sources and P-ligands 
The use of palladium-precursors (e.g. Pd(OAc)2, PdCl2 or even 

Pd(dba)2) in combination with mono- and bidentate P-ligands is 
more user-friendly than applying the sensitive and rather expensive 
Pd(PPh3)4. In this case, the active catalyst is formed in situ by 
reduction of the Pd(II) to Pd(0). 

The generally accepted catalytic cycle of the Hirao reaction 
[44] is similar to the mechanism of the well-known Pd-catalyzed  
C-C couplings [45], as it follows the classic three steps (Scheme 2): 
the oxidative addition of the aryl (or vinyl) halide to the Pd0Ln to 
form an “Ar-PdIILn-X” complex (A). The next step is the ligand 
exchange, when the Y2P(O)H reagent enters the catalytic cycle and 
replaces the X- anion in the Pd(II) complex. Finally, the reductive 
elimination from species B leads to the desired product (2), while 
the active Pd(0) catalyst is regenerated. 

Investigation of the reaction mechanism revealed that, the 
trivalent tautomeric form (Y2POH) of the Y2P(O)H reagent is 
involved in the change of ligands step [46, 47]. It should also be 
noted that the presence of PPh3 and added anions may make the 
ligand substitution and the whole catalytic cycle more complex 
[48]. 

Arylphosphonates (3), important building blocks of biologically 
active compounds [51, 55, 56], flame retardants [54] or catalyst 
ligands [66, 67] may be easily synthetized by the Hirao reaction of 
dialkyl phosphites with aryl halides or triflates (Scheme 3, Table 1).  
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Scheme 3.  

Several arylphosphonates were prepared in the presence of 
Pd(OAc)2 and the simplest P-ligand, PPh3 [49-57]. The addition of 
tetra-n-butylammoniumchloride, -bromide or -acetate as anionic 
additives could enhance the coupling reactions, when Pd(OAc)2 
was used as the catalyst precursor and PPh3 as the ligand [44].  
KOAc and NaOAc were also applied as ionic additives in the Hirao 
reaction [58-62]. In the presence of Pd(OAc)2 or Pd(dba)2 as the Pd 
precursor, dppf [58-65], dppb [58, 66-70], dppp [58] and BINAP 
[58] could also be used as ligands. Pd(dppf)2Cl2 was also a suitable 
catalyst to promote the coupling reaction of dialkyl phosphites [71, 
72]. 

Using H-phosphinates as the reactant, both bromoarenes and 
less reactive chloroarenes were suitable substrates in the cross-
coupling (Scheme 4) [47, 48, 73-75]. The reactions were performed 
using Pd(OAc)2 as the catalyst precursor and different ligands 

(PPh3, Xantphos, dppb, dppf, dppe, dppp, BINAP, DBFphos, PS-
nixantphos), along with bases (iPr2NEt, pyridine, propylene oxide). 
The best results were obtained applying Xantphos [47, 48, 73], 
dppb [74] or dppf [75] as the P-ligand, and N,N-diisopro-
pylethylamine as the base. Employing a solvent/co-solvent system 
was beneficial, as it may support the tautomerization of the 
P-reagent, and thus the ligand-exchange step of the catalytic cycle. 
The Hirao reaction of (R)-menthyl(hydroxymethyl)-H-phosphinate 
(R1 = menthyl, R2 = CH2OH) took place with the retention of the 
configuration at P [73]. 
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P
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reflux
Pd(OAc)2
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R1 = Et, Bu, menthyl
R2 = Octyl, Cy, (CH2)4Ph, CMe(OEt)2, CH2OH
Ar = Ph, substituted phenyl, 1-naphtyl, 2-pyridyl, 2-pyrimidyl, 2-Cl-pyrazinyl
X = I, Br, Cl, OTf
P-ligand: PPh3, Xantphos, dppb, dppf, dppe, dppp, BINAP, DBFphos, 
               PS-nixantphos
base: iPr2NEt, pyridine, propylene oxide
solvent: toluene, DMF, MeCN, EtOH, tPentOH, DME
co-solvent: ethylene glycol, polyethylene glycol, DME, BuOH,
                  1,3-diphenylurea, methylcellulose, diglyme
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Scheme 4.  
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Scheme 2. 

Table 1. The synthesis of arylphosphonates using Pd(II) precursors and P-ligands. 

Pd-precursor P-Ligand Base Solvent Reaction Conditions Ref. 

Et3N, Cy2MeN, iPr2EtN EtOH reflux, 16-68 h [49-56] 
Pd(OAc)2 PPh3 

Cs2CO3 toluene 110 °C, 18 h [57] 

Pd(OAc)2 
PPh3, dppf, dppb, 

dppp, BINAP 

Et3N, iPr2NEt 

THF, MeCN, DMF, DMSO, 

1,4-dioxane, toluene 
60-110 °C, 1.5-72 h [44, 58-66] 

Pd(OAc)2, Pd(dba)2 dppb iPr2NEt, Et3N DMSO, toluene 25-100 °C, 12-72 h [66-70] 

Pd(dppf)Cl2 
iPr2NEt, Et3N MeCN, toluene 82-90 °C, 15-24 h [71,72] 
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An important and widely investigated Pd-catalyzed Hirao 
reaction is the coupling of aromatic species and secondary 
phosphine oxides, as valuable tertiary phosphines that can be 
applied as ligands in transition metal complexes can be formed by 
the reduction of the resulting phosphine oxides. It became clear that 
the Pd(OAc)2 - bidendate ligand (dppp or dppb) system has a high 
tolerance for functional groups (Scheme 5) [76-81]. During the 
preparation of various P-containing ligands, the phosphorylation  
of 2-bromobenzaldehyde [76],  2-(2-bromophenoxy)tetrahydro- 
2H-pyran [77] and 2’-iodo-6,6’-dimethoxy-N,N-dimethyl-[1,1’-
biphenyl]-2-amine [78] with diarylphosphine oxides took place in 
moderate to good yields (37-92%). The selective substitution of the 
iodide group of 3-bromoiodobenzene could be achieved in rather a 
good yield (65%) [79]. The cross-coupling of sterically hindered 
dibromo-3-spirobis(indene) [80] and a dinoflate bis carbazole 

derivative [81] with diphenylphosphine oxide took also place with 
high selectivity. 

BINAP (2,2′-bis(diphenylphosphino)-1,1′-binaphthyl) can be 
considered as the most powerful, and one of the most commonly 
used bidentate chiral ligands in asymmetric catalysis [82]. In the 
synthesis of BINAP derivatives (6), the reaction of axial chiral 
triflates and diaryl or dialkyl phosphine oxides is most often carried 
out applying Pd(OAc)2 as the Pd precursor and iPr2NEt [83-102, 
104-107] or Na2CO3 [103] as the base in DMSO (Scheme 6). Both 
the (R) and (S) binaphyl structures could be functionalized in 
different ways. In the case of binaphthyl bistriflates, the selective 
phosphorylation of only one triflate unit was possible [83-93]. 
Hence, the bis-phosphonylation could not be realized, and a 
“bypass” procedure had to be developed for the preparation of 

R
P
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HR
+
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dppp or dppb
 iPr2NEt

DMSO
Ar X
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Scheme 5.  
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        P(4-MeOC6H5)2 [102]
Y2 = H [83-96,100-102], 4,4'-di(SiMe3) [97], 
        6,6'-di(C8H17) [98], 6,6'-di(C8F17) [99], 
        7,7'-di(OCH2CH=CH2) [103]
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bisphosphines: after the mono-phosphonylation, the resulting 
phosphine oxide was reduced with a silane and then the second 
cross-coupling took place [100-103]. Heterocyclic analogs of 
BINAP as potential catalysts of new enantioselective approaches, 
such as biaryl isoquinolines (called Quinazolinaps) [104, 105], 1-
aryl-3,4-dihydroisoquinolines (DHIQs) [106] and a new class of 
naphthyl-indole heterobiaryl skeletons [107] were also developed. 

Synthesis of the representatives of other, even more complex 
aromatic tertiary phosphine oxides (7) is shown in Scheme 7 [108-
127]. The coupling reaction of sterically hindered substrates means 
a real challenge and usually requires long reaction times. Despite 
the difficulties, selective mono- [108, 120-122], double [108, 111, 
113, 125-127] and quadruple [125-127] phosphorylations could be 
achieved. 

Beside Pd(OAc)2, tris(dibenzylideneacetone)dipalladium(0) is 
also a suitable catalyst for P-C coupling reactions to afford tertiary 
phosphine oxides. A general method was developed for the reaction 
of aryl iodides and dialkyl-, alkylaryl- or diarylphosphine oxides in 

the presence of Pd2(dba)3 and Xantphos using triethylamine as the 
base (Scheme 8) [128].  

R1

P
O

HR2
+

24 °C, 2 h
Pd2(dba)3
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Et3N

1,4-dioxane
8

56-97%

Ar I

R1

R2 Me

Me

Cy

Bn

Ph

Ph

Cy

CH2CF3

Ph

Me
tBu

Me

Np

Ph

Cy

CH2CF3

Ar = Ph, 4-MeOC6H4, 3-MeOC6H4, 4-BocHNC6H4, 3,4-diMeC6H3,
        4-MeC6H4, 3-BrC6H4, 4-PhC6H4, 4-H(O)CC6H4, 
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O
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Scheme 8. 
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Scheme 11. 

(2-Bromophenyl)diphenylphosphine oxide (9) could be 
synthetized in a yield of 65% from 2-bromoiodobenzene by 
applying Pd2(dba)3 as the catalyst, and dppp as the P-ligand in 
toluene (Scheme 9) [129]. 

A series of intermediates for P-ligands were synthesized by the 
reaction of aryl triflates and diaryl phosphine oxides using 
Pd2(dba)3 (Scheme 10) [130-136]. The selective transformation of 
the triflate group of 2-bromophenyl trifluoromethanesulfonate 
[130], 2-bromo-4-methoxyphenyl trifluoromethanesulphonate [131] 
and 1-bromonaphthalen-2-yl trifluoromethanesulfonates [132-134] 
could be achieved in the presence of a dppp ligand and Hünig-base 

in toluene. (1-(Naphtho[2,3-b]furan-9-yl)naphthalen-2-yl)diaryl-
phosphine oxides were obtained by similar cross-coupling reactions 
employing dppb as the ligand and DMSO as the solvent [135]. A 
double P-C coupling of 5,5'-diamino-(1,1’-biphenyl)-2,2'-diyl 
bis(trifluoromethanesulfonate) with diphenylphosphine oxide via N-
Boc-protection and acidic cleavage resulted in the corresponding 
product in a 20% overall yield [136]. 

Finally, methods are summarized that apply other substrates 
other than aryl halides or triflates. Fu et al. reported a convenient 
method for the coupling reaction of aryl tosylates or mesylates and 
dialkyl phosphites or ethyl phenyl-H-phosphinate. The best results 
were obtained using Pd(OAc)2 as the catalyst with CM-Phos as the 
ligand and DIPEA as the base (Scheme 11) [137]. 

Chinese researchers described the Pd-catalyzed reactions of 
dialkyl phosphites and aryl imidazolyl sulfonates (Scheme 12) [138]. 
The reaction has a high tolerance of functional groups, although it 
cannot be regarded as an atom-efficient approach. 
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Scheme 13. 

Arylboronic acids were reacted with diphenylphosphine oxide, 
ethyl phenyl-H-phosphinate or diethyl phosphite. The best results 
were obtained applying the Pd(OAc)2-dppb system as the catalyst 
(Scheme 13) [139]. 

The desulfitative cross-coupling reaction of sodium 
benzenesulfinate and dialkyl phosphites was performed in the 
presence of silver carbonate as the oxidant, and tetrabutyl-
ammonium chloride (TBAC) as an additive (Scheme 14) [140]. The 
role of Ag2CO3 has not been clarified. 
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Y = OMe, Ph
Ar =  4-MeOC6H4, 4-Me(O)CHNC6H4, 4-MeC6H4, 4-MeO(O)CC6H4,
         4-Me(O)CC6H4, 3-Me(O)CC6H4, 4-F3CC6H4, 4-NCC6H4,
         3-NCC6H4, 2-NCC6H4, naphthyl, hetaryl
X = Br, Cl
L = (PPh3)2, dppp
base: K3PO4, K2CO3, tBuONa 
solvent: 1,4-dioxane, DMF

2

28-97%

Y
P

O

HY
+ Ar X

50-120 °C, 6-24 h
NiCl2L

base

solvent

Y
P

O

ArY

 

Scheme 15. 

1.2.2. Nickel(II)-catalyzed Hirao Reactions 
Beside the widely-used Pd catalysts, the cheaper Ni-precursors 

in combination with P- and N-ligands may also be used. However, 
this field is much less investigated. There are a few examples 
utilizing a Ni(II) precursor - ligand system. During the arylation of 

dimethyl phosphite and diphenylphosphine oxide, NiCl2 was 
combined with P-ligands (PPh3 or dppp) (Scheme 15) [141, 142]. 

The reaction of aryl boronic acids and >P(O)H reagents was 
performed in the presence of Ni(II) salts and N-ligands (Scheme 16) 
[143]. 

100 °C, 24 h
Ni precursor / L

base

solvent

Y = Ph, 4-MeOC6H4, 4-Me2NC6H4, 4-MeC6H4, 4-FC6H4, Pent, OEt
Ar = Ph, 4-MeOC6H4, 4-F3COC6H4, 4-MeC6H4, 2-MeC6H4, 4-FC6H4,
        4-ClC6H4, 4-PhC6H4, 4-MeO(O)CC6H4, 4-Me(O)CC6H4, 
        4-F3CC6H4, 2-naphthyl
Ni precursor: NiBr2, NiCl2, Ni(OAc)2, Ni(acac)2

L: pyridine, byp, tetramethylethylenediamine, 1,10-phenantroline
base: K2CO3, Cs2CO3, pyridine, Et3N
solvent: dichloroethane, 1,4-dioxane, toluene, DMF

2

50-97%

+ Ar B(OH)2

Y
P

O

ArY

Y
P

O

HY

 

Scheme 16. 

The coupling of aryl halides, mesylates and tosylates with 
>P(O)H species using Ni(II)-precursors and dppp or N-ligands and 
zinc dust led to the formation of triarylphosphine oxides, aryl-
phosphonates and aryl-phosphinates (Scheme 17) [144, 145]. 
According to the authors, the zinc powder was required for the 
reduction of Ni(II) to Ni(0). 

70-150 °C, 15-48 h
Ni salt

L
Zn (1-2 eq.)

Ar = Ph, 4-MeOC6H4, 3-MeOC6H4, 4-HOC6H4, 4-H2NC6H4,
        3-H2NC6H4, 2-H2NC6H4, 4-MeC6H4, 3-MeC6H4, 2-MeC6H4,
        4-PhC6H4, 4-MeO(O)CC6H4, 4-Me(O)CC6H4, 
        1,3-benzodioxol-5-yl, naphthyl
X = I, Br, OMs, OTs
Ni salt: NiCl2, Ni(OAc)2, Ni(NO3)2

L: dppf, pyridine, byp, dibenzylethylenediamine, dianilinoethane,
    tetramethylethylenediamine
solvent: DMF, H2O

solvent
+ Ar X

10

29-97%

Y1

Y2

OEt

OEt

OEt

Ph

Y1
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O

HY2
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O

ArY2
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4-MeC6H4

4-MeOC6H4

4-MeOC6H4
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4-F3CC6H4
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Scheme 17. 

1.2.3. Environmental-friendly Approaches  
Over the past few years, “green” techniques including phase 

transfer catalysis (PTC) and microwave (MW) irradiation came into 
fashion. 

The PTC-promoted Hirao reaction employing triethylbenzyl-
ammonium chloride (TEBAC) was developed by Beletskaya et al. 
(Scheme 18) [146-149]. The reaction of diethyl phosphite and 
bromoarenes performed in the presence of Pd(OAc)2 gave better 
results using tris(2-furyl)phosphine as the P-ligand, as compared to 
the case applying triphenylphosphine [146, 147]. 6-Aryl-6H-
dibenzo[c,e][1,2]oxaphosphorine 2-oxides were prepared by both 
Pd- and Ni-catalyzed PTC-assisted coupling reactions [148]. It is 
noteworthy that the solid-liquid phase coupling of “phosphorylated” 
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monosaccharides could also be performed under PTC conditions 
[149]. 

Ar = Ph, 4-MeOC6H4, 4-MeC6H4, 4-ClC6H4, 4-EtO(O)CC6H4, 
        4-HO(O)CC6H4, 4-NCC6H4, anthracenyl
X = I, Br
Pd(II) or Ni(II) salt: Pd(OAc)2, PdCl2, NiCl2
ligand: PPh3, P(2-furyl)3

solvent: MeCN, 1,4-dioxane

10

50-86%

+ Ar X

60-100°C, 6-64 h
Pd(II) or Ni(II) salt

ligand
TEBAC
K2CO3

solvent

O

Y1

Y2

EtO

EtO

monosaccharide

EtO, BuO, Ph, cHexO, etc.

Y1

P
O

HY2

Y1

P
O

ArY2

 

Scheme 18. 

The use of the MW technique in organic chemistry has spread. 
In this way, the yields and selectivity could be improved, the 
needless excess of reagents could be eliminated, and the catalytic-
systems could be simplified [150]. In 1997, a Pd(PPh3)2Cl2-
catalyzed P-C coupling reaction performed in a Teflon autoclave 
placed in a kitchen MW oven was reported [151]. Ten years later, 
Stawinski et al. developed a general MW-assisted method for the  
P-C coupling of dialkyl phosphites and substituted aryl, hetaryl and 
vinyl reagents in the presence of Pd(PPh3)4 as the catalyst, Cs2CO3 
as the base, and THF as the solvent using a dedicated MW oven 
(Scheme 19) [152]. 

X+

MW
120 °C, 10 min

Pd(PPh3)4

Cs2CO3

1

72-96%

R = Me, Et, iPr, Bn
Y = Ph, 4-MeOC6H4, 4-O2NC6H4, naphthyl, phenanthryl,
      pyridyl, vinyl, 1-methylvinyl, 2-methylvinyl
X = I, Br, OTf

THF
Y

RO
P

O

HRO

RO
P

O

YRO

 
Scheme 19. 

Later on, the reaction of a wide range of substrates was carried 
out under MW irradiation. For example, the coupling of aryl 
boronic acids or aryltrifluoroborates and dialkyl phosphites was 
performed employing Pd salts as the catalyst precursor and dmphen 
as the ligand (Scheme 20) [153]. 

Water-soluble tertiary phosphine oxides were prepared by the 
Pd/C catalyzed coupling reaction of halobenzoic acids and 
diphenylphosphine oxide in water (Scheme 21) [154]. 

2. NOVEL DEVELOPMENTS ON THE HIRAO REACTION 

Extensions and novel advances on the Hirao reaction attained in 
the last four years are presented in this chapter. 

MW
100-120 °C, 20-30 min

Pd salt
 dmphen

p-benzoquinone

R = Me, Et
Ar = Ph, 3,4-diMeC6H3, 4-MeC6H4, 2-MeC6H4, 4-BrC6H4, 3-BrC6H4,
        3-PhC6H4, 4-MeO(O)CC6H4, 4-Me(O)CC6H4, 1-naphthyl
Y = B(OH)2, BF3K
Pd salt: Pd(OAc)2, Pd(CF3CO2)2

DMF
Y

3

37-90%

Ar+

RO
P

O

HRO

RO
P

O

ArRO

 
Scheme 20. 

+
H2O

X = I, Br, Cl
Y = H, 4-Me, 4-MeO, 3-H2N

11

18-87%

X

COOH

Y

P

COOH

Y

O

Ph

Ph
Ph

P
O

HPh

MW
180 °C, 1h

Pd/C
K2CO3

 

Scheme 21. 

2.1. Extensions of the Pd-catalyzed Hirao Reaction 

Optically active P(V) derivatives, the precursors of P(III) 
ligands are of importance. Beside resolution [155], enantioselective 
syntheses may also lead to optically active phosphine oxides [156-
158]. Transition-metal-catalyzed cross-coupling reactions may also 
be suitable for the preparation of optically active phosphine oxides. 
The Pd(PPh3)4-catalyzed coupling of aryl halides and enantio-
merically pure tert-butylphenylphosphine oxide carried out in the 
presence of K2CO3 as the base and toluene as the solvent afforded 
enantiomerically enriched (ee>78%) tertiary phosphine oxides in 
yields of 63-96% (Scheme 22) [159]. 

110 °C
Pd(PPh3)4 

K2CO3

toluene

12

63-96%
ee > 78%

HPPh

But

O

+ Ar

Ar = Ph, 4-MeOC6H4, 2-Me2NC6H4, 2-H2NC6H4, 3-H2NC6H4,
        4-H2NC6H4, 4-tBuC6H4, 2-HOCH2C6H4, 4-F3CC6H4,
        2-O2NC6H4, 1-naphtyl, 2-thiophenyl, 3-thiophenyl,
        2-pyridyl, 9-anthracenyl
X = I, Br

X

(R) or (S)

ArPPh

But

O

 

Scheme 22. 

110 °C, 18-24 h
Pd2(dba)3

dppp
DBU

toluene

13

87-94%
ee > 97%

+

Ar = Ph, 3,4-di(MeO)C6H3, 4-MeOC6H4, 2-MeOC6H4, 4-ClC6H4, 
       1-(2-MeO-naphtyl)

N

Br

H
PAr

tBu

O

(S)

N

P

O

Ar

tBu

 

Scheme 23. 

(S)-Tert-butyl-aryl phosphine oxides were coupled with 2-
bromopyridine using Pd2(dba)3 as the catalyst, dppp as the ligand, 
and DBU as the base to give products 13 with excellent selectivity 



530    Current Organic Synthesis, 2019, Vol. 16, No. 4 Henyecz and Keglevich 

 

(ee>97%) (Scheme 23) [160]. The retention of the P-atom was 
proved by single-crystal X-ray analysis. 

Stankevič et al. prepared the m-anisyl-t-butyl-p-tolylphosphine 
oxide (14) by the Pd(PPh3)2Cl2-catalyzed reaction of t-butyl-p-
tolylphosphine oxide and 3-bromoanizole (Scheme 24) [161]. 

The palladium-catalyzed Hirao reaction was extended to the 
phosphorylation of aryl amides (Scheme 25) [162]. Substrates 
containing acyclic and cyclic N-activating groups were reacted with 
dialkyl phosphites. Mechanistic studies suggested that the course of 

the reaction is similar to that of the original Hirao reaction of aryl 
halides, and the key step of the catalytic cycle is the insertion of the 
metal into the C-N bond. 

A method for the arylation of P-stereogenic secondary 
phosphine oxides was developed to provide optically active tertiary 
phosphine oxides (15) (Scheme 26) [163]. The P-C coupling of 
ortho-substituted aryl iodides carried out applying Pd(CF3CO2)2 as 
the precursor for Pd(0) and a chiral ligand (L*) furnished the target 
tertiary phosphine oxides (15) in moderate to good enantio-
selectivities (ee: 19-83%). 

+

110 °C, 24 h
Pd(PPh3)2Cl2

 Cs2CO3

toluene

14

59%

Br
P

O

tBu

OMe

P

O

H

tBu
OMe

Me Me

 

Scheme 24. 

160 °C, 15 h
Pd(OAc)2

dppp
base

1,4-dioxane

3

37-98%

RO

P

O

HRO
+

R = Et, iPr, Bu

Ar = Ph, 4-MeOC6H4, 3-MeOC6H4, 4-F3COC6H4, 4-MeC6H4, 2-MeC6H4,

        3,4-diFC6H3, 4-FC6H4, 3-FC6H4, 2-FC6H4, 4-ClC6H4, 3-ClC6H4,

        4-PhC6H4, 2-PhC6H4, 4-MeO(O)CC6H4, 4-Me(O)CC6H4, 4-F3CC6H4,

        3-F3CC6H4, 2-F3CC6H4, 4-NCC6H4, 1,3-benzodioxol-5-yl, 

        2,3-dihydro-1,4-benzodioxin-6-yl, 2-(7-MeO)naphtyl, 2-thiophenyl
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Scheme 25. 

70 °C, 20 h
Pd(CF3CO2)2
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MeCN
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Y2 = C(O)tBu, C(O)Me, C(O)CF3, SO2Ph
Z = H, MeO, H2N, Me, F, Cl, Br, MeO(O)C, O2N
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Scheme 26. 
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Chinese researchers reported a protocol for the P-C coupling of 
heteroaryl boronic acids and dialkyl phosphites in the presence of 
PdCl2 and PPh3, and in the absence of any base (Scheme 27) [164]. 
At the same time, Ag2O was needed as an additive, whose role has 
not been clarified. 

Arylphosphonates (3) were prepared via C-Si bond cleavage by 
the reaction of arylsilanes and dialkyl phosphites performed in the 
presence of Pd(PPh3)Cl2 as the catalyst (Scheme 28) [165]. 
Potassium fluoride is necessary to activate the arylsilane before its 
entering the catalytic cycle. Ag2CO3 was assumed as a reoxidant at 
the end of the catalytic cycle, however, this has not been proved.  

80-100 °C, 12 h
Pd(PPh3)2Cl2

KF (4 eq.)
Ag2CO3

DMF

3

31-94%

RO
P

O

HRO
+

R = Me, Et, iPr, Bu
Ar = Ph,  4-MeOC6H4, 3-MeOC6H4, 3,5-diMeC6H3, 4-tBuC6H4,
        4-MeC6H4, 3-MeC6H4, 4-MeC6H4, 4-FC6H4, 4-ClC6H4,
        4-PhC6H4, 4-F3CC6H4, 1,3-benzodioxol-5-yl, 1-thiophenyl,
        1-naphtyl

ArSi(OEt)3

RO
P

O

ArRO

 
Scheme 28. 

New magnetically recoverable heterogeneous palladium 
catalysts were developed to make the Hirao reaction environ-
mentally more capable (Scheme 29) [166-168]. At first, the Pd 
complex of an “NNN” princer ligand (BIP) supported on 
nanomagnetic γ-Fe2O3@SiO2 was prepared, which proved to be a 
good catalyst in the cross-coupling reaction of diethyl phosphite 
and iodobenzene under solvent-free conditions [166]. The Pd 
complex of 2-aminothiophenol (Pd-2-ATP-γ-Fe2O3) [167] and 
DABCO (Pd-DABCO-γ-Fe2O3) [168] could be used as a catalyst in 
pure water, or in sodium dodecyl sulfate (SDS) aqueous micellar 
solution. The heterogeneous catalysts could be reused in five or six 
consecutive cycles, without any significant loss in their catalytic 
activity. 

2.2. Nickel-catalyzed P-C Coupling Reactions 

In the last years, the Ni-catalyzed P-C bond formation was also 
developed. Han and his co-workers elaborated the P-arylation of 
different >P(O)H compounds with aryl triflates in the presence of 
Ni(cod)2 as the Ni(0) precursor and dppf as the P-ligand (Scheme 
30) [169]. 

80-120 °C, 20 h
Ni(cod)2

dppf
Na2CO3

1,4-dioxane

10

56-96%

+ Ar

Ar = Ph, 4-MeOC6H4, 4-MeC6H4, 3-MeC6H4, 2-MeC6H4,
        4-FC6H4, 4-PhC6H4, 4-F3CC6H4, 4-NCC6H4,
        2-naphtyl, 3-piridyl

OTf
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HY2
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Scheme 30. 

The same research group also used aryl pivalates as C-O bond 
activated substrates for coupling reactions with >P(O)H reagents 
(Scheme 31) [170, 171]. Application of the Ni(cod)2/dcype catalyst 
system led to the corresponding P=O derivatives (10) in good yields 
(50-98%). Beside phenol esters, benzylic and allylic esters could 
also be phosphorylated. 

The combination of Ni- and photoredox catalysis allowed the 
cross-coupling of “C-O-S” containing aryl- and vinyl compounds 
(tosylates, sulfonates and sulfamates) with >P(O)H reagents under 
mild conditions (Scheme 32) [172]. In this case, Ni(cod)2 applied 
together with N-ligands, eg. 1,10-phenanthroline or dtbbyp, served 
as the catalyst.   

The use of Ni(cod)2 as the Ni-source, and 8-hydroxyquinoline 
as  the  N-ligand  allowed the synthesis of tertiary phosphine oxides  

100 °C, 2 h
PdCl2 
PPh3
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O
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Scheme 27. 
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Scheme 29. 
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80-120 °C, 18-46 h
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Scheme 31. 
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Scheme 32. 
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90 °C, 16 h
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Scheme 33. 

160 °C, 15 h
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Scheme 34. 
 
(19) from aryl nitriles and secondary phosphine oxides (Scheme 33) 
[173]. 

The coupling of amides with dialkyl phosphites described in 
subchapter 2.1, Scheme 25 was also accomplished using 
Ni(dppp)Cl2 as the catalyst (Scheme 34) [162].  

An example for the application of Ni(OAc)2 together with  a 
tiophene-based diphosphine ligand (dcypt) using the esters of 
aromatic carboxylic acids as the substrate is shown in Scheme 35 
[174]. Utilizing NaF as an additive increased the efficiency of the 
coupling, although its exact role is unknown. 

150-170 °C, 12-18 h
Ni(OAc)2

dcypt
additive

tPentOH

10

43-78%

+ Ar

Ar = 4-MeO(O)CC6H4, 4-F3CC6H4, 3-F3CC6H4, 4-NCC6H4,
        1,3-benzodioxol-5-yl, 1-naphtyl, 2-naphtyl, 4-pyridyl, 3-pyridyl,
        3-(6-trifluoromethyl)pyridyl, 2-pyrazinyl, 2-thiophenyl, 3-thiophenyl,
        2-benzothiophenyl, 2-furanyl, 1-isoquinolinyl, 4-(2-phenyl)quinolinyl,
        2-quinolinyl
additive: -, NaF

O

OPh

Ph

Ph

Y1

Y2

OnBu

OnBu

OiBu

OiBu

OEt

OEt

OEt

Ph

Y1

P
O

HY2

Y1

P
O

ArY2

 

Scheme 35. 

According to a recent study, the Ni-catalyzed P-C coupling 
reaction of aryl bromides and dialkyl phosphites was performed 
under electrochemical conditions to provide the corresponding aryl 
phosphonates (3) in moderate to good yields (15-91%) (Scheme 36) 
[175].  

25 °C, 2-4 h, 0.2 A
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Scheme 36. 

2.3. Copper-catalyzed P-C Couplings 

The application of Cu as the catalyst is by far less investigated, 
thus it is a more challenging field. Cu-catalyzed methods for C-P 
bond formation were summarized in a recent review [176]. Since 
then, just a few methods have been described for the coupling of 
>P(O)H reagents and aryl halides using Cu(I) or Cu(II) precursors 
and N-ligands [177-182]. A novel method involves the reaction of 
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aryl boronic acids and dialkyl phosphites performed in the presence 
of a Cu(II) complex, (Benz-bpa)Cu(CF3SO3)2 as the catalyst, and 
KOAc as an additive (Scheme 37) [183].  
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Scheme 37. 

The enantioselective Cu-catalyzed P-C coupling reactions 
represent a new trend (Scheme 38) [184]. Optically active tertiary 
phosphine oxides (20) could be prepared from racemic secondary 

phosphine oxides and diaryliodonium tetrafluoroborate salts in the 
presence of Cu(II) triflate as the metal source, (S,S)-PhPyBox as the 
chiral N-ligand, and K2HPO4 as the base in acetonitrile-water 
mixture, in mostly high enantioselectivities (ee: 50-98%). The role 
of water has not been mentioned. 

2.4. Other Methods 

Special catalytic systems have also been developed. Visible 
light photoredox catalysis was combined with an Au catalyst to 
promote the reaction of aryldiazonium salts with H-phosphinates 
and H-phosphonates (Scheme 39) [185]. In this way, the reactions 
could be carried out at room temperature, without the addition of 
any base. However, the synthesis of the starting diazonium salts 
from commercially available anilines means an extra step.  

A similar Au(I)-assisted redox catalytic coupling using diethyl 
phosphite and aryldiazonium salts was also developed (Scheme 40) 
[186]. In this case, 3-chloropyridine served as the base. 

3. HIRAO REACTIONS WITHOUT THE ADDITION OF 
USUAL P-LIGANDS 

Keglevich and his co-workers found that the Hirao reaction of 
bromoarenes with dialkyl phosphites, H-phosphinates or secondary 
phosphine oxides may take place without the addition of usual P-
ligands, but using the >P(O)H reactant in excess under MW 
conditions (Scheme 41) [187, 188]. It was found that both electron-
donating and electron-withdrawing substituents of the aromatic ring 
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decrease the reactivity dictating harsher reaction conditions (175-
200°C). 

Our assumption was that in the Pd(OAc)2-catalyzed “P-ligand-
free” Hirao reactions the trivalent tautomeric form of the excess of 
the >P(O)H reactant may serve as the P-ligand. To justify this, the 
reaction of bromobenzene with diethyl phosphite and diphenyl-
phosphine oxide was investigated in detail (Scheme 42) [189].  

Experiments showed that the use of only 1 equivalent of diethyl 
phosphite or diphenylphosphine oxide was not enough, as the yields 
were only 54% (24a) and 54% (24b), respectively. In the presence 
of 10% of Pd(OAc)2, the optimal amount of the >P(O)H reagent 
was 1.3 equivalents, leading to yields of 74% (24a) and 84% (24b), 
respectively. Theoretical calculations were in accord with the 
preparative results, and suggested that the >P(O)H reagents have a 
triple role in the cross-coupling process: 1 equivalent of it serves as 
the reactant, 10% of the >P(O)H species ensures the reduction of 
Pd(II) to Pd(0), while 20% of the reagent provides the P-ligand of 
the Pd-complexes of type (HO)Y2P

…Pd…PY2(OH). 

The formation of the active catalyst (PdP2) in the Hirao reaction 
of bromobenzene and diaryl phosphine oxides was studied in detail 
(Scheme 43). Quantum chemical calculations revealed that the 
activity of the PdP2 catalyst has a greater impact on the P-C 
coupling, than the intrinsic reactivity of the Ar2P(O)H compound. 
Hence, the catalyst containing (2-MeC6H4)POH as the ligand is 
more efficient, than that with Ph2POH ligand [190]. 

Later on, Hirao et al. have also studied a “P-ligand-free” P-C 
coupling reaction. Diethyl (4-methoxy-3-nitrophenyl)phosphonate 
(26) was synthetized from 4-bromo-1-methoxy-2-nitrobenzene 
applying only Pd(OAc)2 as the catalyst, and Na2CO3 as the base in 
xylene as the medium (Scheme 44) [191]. 

Recently, 2- and 4-phosphonated 13α-estrones (27 and 28) have 
been prepared by MW-assisted P-C coupling reactions [192]. 
Although the best results (yields of 66-93%) were obtained in the 
presence of Pd(PPh3)4, Pd(OAc)2 together with the excess of the 
Y2P(O)H reagent could also be used as the catalyst (to afford yields 
of 58-77%) (Scheme 45). The products proved to be potent estron-
based OATP2B1 inhibitors. 

A “ligand-free” MW-promoted desulfitative coupling of 
arylsulfinate salts with dialkyl phosphites was performed using 
PdCl2 as the catalyst under MW irradiation (Scheme 46) [193]. 
Ag2CO3 was assumed to be involved in the oxidation of the 
arylsulfinate substrate, but this has not been proved. 

The Keglevich group also developed a Ni-catalyzed “P-ligand-
free” P-C coupling process (Scheme 47) [194]. During the arylation 
of the >P(O)H compounds, NiCl2 was applied as the catalyst and 
triethylamine or potassium carbonate as the base under MW 
irradiation. 

The coupling of aryl sulfides, sulfoxides or sulfones with 
>P(O)H reagents was carried out in the presence of Ni(cod)2 
without  the  use  of  conventional  ligands  (Scheme 48)  [195]. The  
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reaction of diphenylphosphine oxide and thioanisol could be 
catalyzed by NiCl2. 
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Scheme 48. 

A heterogeneous Ni-catalyst supported by CeO2 or Al2O3 was 
utilized in the P-C coupling of aryl halides and secondary 
phosphine oxides without any added ligand (Scheme 49) [196]. 
However, the catalyst used in the reaction of 1-bromonaphthalene 
and diphenylphosphine oxide, and separated from the mixture by 
filtration practically lost its activity in the second load. 

Chinese researchers published the Cu-catalyzed “ligand-free” 
coupling reaction of >P(O)H compounds and aryl bromides or 
iodides to give the 2-phosphorylated phenolic derivatives (28) 
(Scheme 50) [197]. The reaction of (-)-menthyl phenylphosphinate 
and (-)-menthyl benzylphosphinate occurred with the retention of 

configuration at the P-atom.  According to the plausible 
mechanism, the oxidative addition may take place via a “Cu-
phenolate” intermediate, although the mechanism was not proved.  

The reaction of vinyl or aryl halides with dialkyl phosphites 
was studied by applying excess of Cu(I)-iodide and the base 
(Scheme 51) [198]. The best results (yields of 78-99%) could be 
obtained in the presence of KH/HMPA system, but the results with 
triethylamine as the base and THF as the solvent also deserve 
attention providing product 1 in yields of 24-76%. 

A Co-catalyzed and Cu-assisted P-C coupling of aryl/vinyl 
bromides and dialkyl phosphites or diphenylphosphine oxide was 
also described in the absence of any added ligand (Scheme 52) 
[199]. The corresponding products (2 and 31) were obtained in 
good yields (60-91%). The authors suggested that Co(I) formed 
from Co(II) by reduction with acac in the first step of the catalytic 
cycle may be the active form. At the same time, the transmetallation 
step is supported by Cu(I). It is noteworthy that the >P(O)H 
reactant was used in excess, so the participation of the >POH form 
cannot be excluded in the process. 

Regarding the Ni-, Cu- or even the co-catalyzed “ligand-free” 
coupling protocols, it should be emphasized that these reactions 
may be of a complex nature, therefore further investigations are 
necessary to understand the mechanism of each system. 

Nowadays, metal-free catalysis is of great importance. For this 
purpose, the P-C coupling of diaryl phosphine oxides with iodo-, or 
bromobenzoic acids was performed in the absence of any catalyst in 
water as the solvent under MW conditions (Scheme 53) [200]. 
Unfortunately, this method is limited only to the reaction of 
halobenzoic acids, but may be regarded as the “greenest” 
accomplishment that has been so far elaborated. 
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CONCLUSION 

These days, the Hirao reaction is an important synthetic tool to 
provide phosphonates, phosphinates and tertiary phosphine oxides 
as useful intermediates. Toluene, DMSO, acetonitrile, 1,4-dioxane, 
THF, DMF, EtOH (or other alcohols) are the typical solvents 
used in the Hirao reaction. The selection of the solvent should 
also depend on the catalyst/catalyst precursor. Pd(PPh3)4 is, in 
most cases, applied together with toluene, while with Pd(OAc)2 
as the catalyst precursor, DMSO is the most often used solvent. 
The best medium for the Ni-catalyzed P-C couplings is 
1,4-dioxane, and sometimes acetonitrile. One can see that mainly 
aprotic solvents are applied, but protic solvents may also 
emerge. Both organic and ionic bases may be used in the Hirao 
reaction. Regarding the Pd-catalysts, triethylamine and 
diisopropylethylamine are the most often used tertiary amines, 
but the use of pyridine, DBU and N-methylmorpholine was also 
described. In certain cases, K2CO3, Cs2CO3 and Na2CO3 played 
the role of the deprotonating agent. In the Ni-catalyzed cases, all 
bases mentioned were used. The originally applied Pd(PPh3)4 

catalyst may be replaced by Pd(OAc)2 used together with mono- 
and bidentate P-ligands. The best protocol is when the >P(O)H 
reagent serves not only as the reactant, but, via its tautomeric form 
(>P-OH), also as the P-ligand. In this “green” approach, the 
>P(O)H species have to be measured in a suitable excess (in three 
equivalents to the catalyst precursor), and MW-assistance is 
needed. The optimum temperature may be in the range of 120-150 
°C. Ethanol and acetonitrile may be the best solvents, but in special 
cases, there is no need for any solvent. Triethylamine seems to be 
the best base. Other metals, such as Ni and Cu may also be used as 
catalysts. The environmentally-friendly variations of the P-C 
coupling reactions offer newer possibilities. Evaluation of the 
mechanism of the Hirao reaction has had a positive impact on 
finding the optimum conditions. The reactivity of the Hirao reaction 
is, of course, influenced by the substituent in the aromatic ring. 
Both the electron-donating and the electron-withdrawing groups 
decrease the reactivity. On the other hand, the P-C coupling 
reactions remained chemoselective also in the presence of different 
substituents, like halogeno-, ethoxycarbonyl- and acetyl groups. 
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