
Genetics and population analysis

Estimating error models for whole genome

sequencing using mixtures of

Dirichlet-multinomial distributions

Steven H. Wu1, Rachel S. Schwartz1,2, David J. Winter1,

Donald F. Conrad3 and Reed A. Cartwright1,4,*

1The Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA, 2Department of Biological Sciences, The

University of Rhode Island, Kingston, RI 02881, USA, 3Department of Genetics, Department of Pathology and

Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA and 4School of Life Sciences,

Arizona State University, Tempe, AZ 85281, USA

*To whom correspondence should be addressed.

Associate Editor: Oliver Stegle

Received on September 19, 2016; revised on January 22, 2017; editorial decision on March 4, 2017; accepted on March 7, 2017

Abstract

Motivation: Accurate identification of genotypes is an essential part of the analysis of genomic

data, including in identification of sequence polymorphisms, linking mutations with disease and

determining mutation rates. Biological and technical processes that adversely affect genotyping in-

clude copy-number-variation, paralogous sequences, library preparation, sequencing error and

reference-mapping biases, among others.

Results: We modeled the read depth for all data as a mixture of Dirichlet-multinomial distributions,

resulting in significant improvements over previously used models. In most cases the best model

was comprised of two distributions. The major-component distribution is similar to a binomial dis-

tribution with low error and low reference bias. The minor-component distribution is overdispersed

with higher error and reference bias. We also found that sites fitting the minor component are en-

riched for copy number variants and low complexity regions, which can produce erroneous geno-

type calls. By removing sites that do not fit the major component, we can improve the accuracy of

genotype calls.

Availability and Implementation: Methods and data files are available at https://github.com/

CartwrightLab/WuEtAl2017/ (doi:10.5281/zenodo.256858).

Contact: cartwright@asu.edu

Supplementary information: Supplementary data is available at Bioinformatics online.

1 Introduction

Identifying genotypes from next-generation sequencing (NGS) data

is an important component of modern genomic analysis. Accurate

genotyping is key to identifying sequence polymorphisms, detecting

de novo mutations, linking genetic variants with disease, and deter-

mining mutation rates (Awadalla et al., 2010; Goldstein et al., 2013;

Koboldt et al., 2013; Peng et al., 2013; Sayed et al., 2009).

Inaccurate genotyping affects the accuracy of identifying de novo

mutations, as true mutations are rare compared to errors in

sequencing and downstream analyses. Because putative SNPs are

typically validated using another sequencing technology, high false

positive rates increase the effort required for validation.

However, estimating genotypes from NGS data can be computa-

tionally and statistically challenging. A typical NGS experiment gen-

erates millions of short read fragments, 100–650 base-pairs in

length that are aligned to a reference genome. If the only error was

due to sampling, NGS methods would produce data that was per-

fectly representative of the underlying genotype; the base calls for
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homozygous sites would be identical, and the base calls for heterozy-

gous sites would follow a 1:1 binomial distribution. For this reason,

genotyping and variant calling software initially used binomial or

multinomial distributions to model heterozygous base-counts

(Cartwright et al., 2012; Goya et al., 2010; Hohenlohe et al., 2010;

Li et al., 2008a, b; Lynch, 2009; Maruki and Lynch, 2015).

However, there are at least three experimental processes that are

thought to affect the ratio of the alleles. (i) During library prepar-

ation, variation in amplification rates can cause some chromosomes

to be replicated more than others (Heinrich et al., 2012). This vari-

ation is especially a concern if there is little starting material.

(ii) NGS technologies can introduce sequencing errors into sequenc-

ing reads. Error rates are on the order of 0.1–1% per base-call.

While this may seem small, 0.1% error is equivalent to the differ-

ence between an average human and the human reference genome

(Fox et al., 2014; Wall et al., 2014). (iii) Bioinformatic methods that

assemble reads with respect to a reference can misplace reads and

penalize non-reference alleles (i.e. fewer non-reference alleles align

to the reference genome) (Degner et al., 2009; Krawitz et al., 2010).

Together these processes can shift the mean and increase the vari-

ance of sequencing read count distributions. These processes do not

affect all parts of the genome equally. The genomic context of a site,

including the presence of nearby indels, structural variants, or low

complexity regions, influences the probability that reads generated

from a given site will be subject to these processes (Li, 2014; Malhis

and Jones, 2010). Thus, it is possible for both homozygotes and het-

erozygotes to have an intermediate ratio of two alleles, and it can be

difficult to accurately identify genotypes using a binomial distribu-

tion (Malhis and Jones, 2010).

Current approaches to calling genotypes from NGS data deal

with the issues described above to some degree. The increased vari-

ance and skewed allele ratios expected from mismapped reads can

be partially controlled by including mapping quality data in a

genotype-calling procedure. In the simplest approaches, reads with

low quality scores are removed from an analysis. In Bayesian

approaches to genotype calling, read quality data may be included

when calculating genotype probabilities (e.g. Li et al., 2009b).

The increased variance expected from library preparation,

sequencing and errors in mapping reads to a reference genome can

be accommodated by modeling read-counts as coming from a beta-

binomial distribution (Ramu et al., 2013). The beta-binomial dis-

tribution acts as an over-dispersed binomial, allowing the excess

variance to be handled in a standard statistical framework. The

Dirichlet-multinomial (DM) distribution is the general case of the

beta-binomial, allowing for overdispersion and modeling of more

than two outcomes. The DM has been used to model allele counts

and the frequency of multi-allelic genotypes within tumor samples

(Josephidou et al., 2015; Muralidharan et al., 2012; Tvedebrink,

2010). Such genotype calling procedures can be combined with ma-

chine learning algorithms that attempt to differentiate between true

variants and those caused by sequencing artifacts (DePristo et al.,

2011).

In this study, we evaluate the hypothesis that finite mixtures of

DM distributions can produce a better fit to the underlying error

processes than previous approaches. The mismatch between

observed and expected read distributions created by the processes

described above contributes to observed false-positive single nucleo-

tide polymorphism (SNP) discovery rates of 3–15% (Farrer et al.,

2013; Harismendy et al., 2009). We posit that improving the ex-

pected read distribution (i.e. the model) will reduce false positives.

As a first step toward this goal in this study we model the distribu-

tion of base counts produced from NGS using a mixture of DM

distributions (MDMs). Furthermore, we model sites that are the

most likely to be true heterozygotes (THs) (rather than false posi-

tives). By modeling these sites exclusively, we determine the true ef-

fect of variation in amplification rates, error and mismapping.

Fitting MDMs to sequencing data improves existing genotyping

methods in two important ways. First, we can account for the

context-dependent nature of genotyping errors by allowing multiple

DM distributions, each with different parameter values, to be esti-

mated for a given dataset. Additionally, by using more than two cat-

egories, we explicitly model the presence of bases that are neither

reference nor the likely alternative allele at a given site. Thus, we are

able to directly estimate the probability of sequencing errors in a

given DM model.

We first demonstrate the value of our approach by fitting

MDMs to sequencing data derived from a haploid human cell line

(CHM1). The MDM produces a superior fit to this dataset com-

pared to other models, showing that even relatively simple genetic

datasets can be the result of heterogeneous processes, and thus bene-

fit from a mixed-model approach. We then fit MDMs to diploid

data generated by the 1000 Genomes Project (1000 Genomes

Project Consortium et al., 2010, 2015). For these datasets, the

MDM also improves the fit compared to other models. Most inter-

estingly, when we limit our data to sites of known polymorphism,

most of the data fit a binomial distribution, rather than the expect-

ation of over-dispersed, reference-biased data. Using a model that

fits the data should lead to significant improvements in genotyping,

which in turn should lead to fewer candidate mutations that are

found to be inaccurate when validated in a lab. When we assign sites

to different model components and retain those that fit the major

component, we find that our approach is often better than other

methods at correctly calling putative heterozygotes while minimiz-

ing false-positive calls.

2 Materials and methods

2.1 Data
We extracted datasets from two types of data. The first dataset is

the haploid human sequence from a hydatidiform mole cell line

(CHM1hTERT SRR1283824 from samples: SRS605680, experi-

ment: SRX540665 and study: SRP017546). We refer to this dataset

as the CHM1 dataset in this paper. Second, we obtained Illumina se-

quences from the 1000 Genomes Project for three individuals, a

woman (NA12878) and both of her parents (NA12891 and

NA12892). Sequencing was repeated for these individuals in differ-

ent years using different technologies (2010, 2011, 2012 and 2013).

The 2010 dataset was generated during pilot 2 studies with short

and variable read length between 36bp and 76bp. The 2011 and

2012 dataset were not part of a release; they contain the same

sequencing data, 101 bp reads, with slightly different bioinfor-

matics. The 2013 dataset was part of the phase 3 release and was

sequenced without PCR, with the longest read length of 250bp

(1000 Genomes Project Consortium et al., 2010, 2015). We refer to

this dataset as the CEU dataset. If the release year is appended, for

example CEU13, then we refer to the specific release in that year

(e.g. 2013).

For each of these five datasets (CHM1 and each of the four re-

leases of CEU), we analyzed two genomic regions, the whole

chromosome 21 and a subregion of chromosome 10, from positions

85534747 to 135534747, which is approximately the same size as

chromosome 21 (48 million base pairs). For CHM1, we called geno-

types by first obtaining allele counts for each base at each site using
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the mpileup function in Samtools v1.2 (Li, 2011; Li et al., 2009a)

and the human reference genome (Genome Reference Consortium

human genome build 37). We then used BCFTools v1.2 (Li, 2011;

Li et al., 2009a) to identify sites called as homozygous reference. For

each of these sites, we calculated the frequency of the reference allele

and the frequency of all non-reference alleles (error). We filtered this

dataset based on the read depth for each site: we only kept sites with

total read counts of greater than 10 and less than 150, and we refer

this dataset as CHM1’s full dataset (FD). The upper limit is calcu-

lated using a method based on Warr et al. (2015), which takes the

median plus twice the standard deviation of coverage per site; sites

with zero coverage are ignored. Sites with high numbers of reads are

likely from copy-number-variable loci that have aligned to a single

region of the genome. In sites with extreme coverage, apparent het-

erozygotes are more likely to be due to paralogs rather than vari-

ation within a site. The low read filter limits the data to calls with

enough coverage to provide a reasonably accurate call and propor-

tion of reads for each base.

We also focused on modeling sites that were very likely to be homo-

zygous reference sites in order to understand what the distribution of

reads for those sites looks like. To generate our reference dataset (RD),

we removed sites for which less than 80% of the reads contained the

reference allele from the FD dataset. The cutoff point was picked after

examining the empirical distributions; there were only a few sites for

which 50–80% of the reads contained the reference allele.

For the CEU data, we obtained allele counts as above for all three

individuals. We then called genotypes as above on individual

NA12878 (the daughter of the trio) and by using the BCFtools trio

caller with the data from all three individuals. We limited the dataset

we used for subsequent analyses to sites that were found by both the

trio caller and the individual caller. Sites that were found only by the

trio caller, but not by the individual caller were likely identified by the

pedigree with limited data for the daughter; thus, these low coverage

sites were not included in subsequent analysis. We removed sites with

read counts of less than 10 or greater than 150, as for CHM1. We call

this CEU’s potential heterozygote (PH) dataset. For each of these sites

we calculated the frequency of the reference allele, alternate allele,

and any other alleles (error). We compared the frequencies of each al-

lele category (reference, alternate, error) for each possible genotype

combination. Because we found no differences in frequencies for dif-

ferent genotypes, all subsequent analyses were only performed on the

general reference–alternate–error dataset.

We created an additional dataset by removing sites from the PH

dataset not found to be heterozygous by the 1000 Genomes Project

(1000 Genomes Project Consortium et al., 2010, 2015). We then

discarded sites for which the alternate allele differed from the one

previously identified by the 1000 Genomes Project. We call this the

TH dataset.

Because the CHM1 RD dataset was larger than the CEU TH

dataset, we randomly subsampled the CHM1 dataset to have an ap-

proximately equal number of sites (40 000 sites) as the CEU TH

dataset.

2.2 Model fitting and parameter estimation
We fit seven models to each CHM1 dataset, and eight to each CEU

dataset. The models included a multinomial, a multinomial with ref-

erence bias (CEU only), DM and MDM distributions, ranging from

2 to 6 components. We estimated the parameters and calculated the

genotype likelihood for each model. Additional details of these

methods are available in the GitHub repository for this paper (see

Availability section).

The genotype likelihood measures the likelihood of a sample’s

genotype, G, given a set of base-calls, R, and is proportional to

the probability of observing R if the genotype was G, i.e.

LðGjRÞ / PðRjGÞ. We derived genotype likelihoods using MDM

distributions. The DM is a compound distribution generated when

a Dirichlet distribution is used as a prior for the probabilities

of success of a multinomial distribution: p � DirichletðaÞ and

x �MultinomialðN; pÞ, where a is a vector of concentration param-

eters, p is a vector of proportions, x is a vector of counts and N is

the sample size. After integrating out p, the resulting probability

mass function can be trivially expressed as a product of ratios of

gamma functions:

Pðx; a;NÞ ¼
N

x1; x2; . . . ; xm

 !
C
P

aið Þ
C
P

ai þNð Þ
Y

i

Cðai þ xiÞ
CðaiÞ

(1)

where i is one of the nucleotides,
P

xi ¼ N and ai > 0.

Furthermore,

EðxiÞ ¼ Npi and VarðxiÞ ¼ Npið1� piÞ
AþN

Aþ 1
(2)

where A ¼
P

ai and pi ¼ ai

A. It is helpful to reparameterize the

distribution by letting ai ¼ 1�u
u pi, where u ¼ 1

ðAþ1Þ represents

the pairwise correlation between samples. As a result, VarðxiÞ ¼ N

pið1� piÞð1þ ðN � 1ÞuÞ and u 2 ½0; 1� is a parameter controlling

the amount of excess variation in the DM. When u approaches 0,

the DM converges to a multinomial. Thus, the DM can be inter-

preted as an over-dispersed multinomial distribution. As u increases

the distribution becomes more overdispersed, and as u approaches

1, every observation contains only one type of nucleotide.

For a single-component DM, we estimated the maximum-

likelihood model starting with a method-of-moments estimation and

optimizing using the Newton–Raphson method. For MDM, the

maximum-likelihood estimate was computed using an EM algo-

rithm and random starting points. This procedure was repeated

1000 times to search for the global maximum-likelihood estimate.

For the DM distribution, we estimated u as a measure of the

overdispersion of the data. In addition, we estimated q, the mixing

proportion of sites belonging to each DM component. For the

homozygous CHM1 dataset, we estimated the proportion of the ref-

erence allele and error terms for each model or model component.

For each CEU dataset, we estimated the proportion of the reference

allele, alternate allele, and the error terms. The reference and alter-

nate allele were determined by Samtools.

To determine the optimal number of components in the MDM

model, we calculated the Bayesian information criterion (BIC) for

each dataset. The model with the lowest BIC is considered the model

that best optimizes both goodness-of-fit and simplicity. Similarly,

we also calculated the Akaike information criterion (AIC). The BIC

and the AIC for each model are calculated by the following

formulas:

BIC ¼ �2 log ðLÞ þ k log ðnÞ

AIC ¼ �2 log ðLÞ þ 2k

where L is the maximum-likelihood estimate from the model, k is

the number of free parameters and n is the number of sites in the

dataset.

2.3 Visualizing model fit
We visualized the fit of the data to each model and compared the fit

between models using quantile–quantile (QQ) plots. QQ plots
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display the quantile of the observed read count frequencies from the

dataset against the quantile of the expected read count frequencies.

The expected read count frequencies are simulated from parameters

estimated from the EM by Monte Carlo simulation with 100 repli-

cates. Two separate QQ plots were used to illustrate the fit of mod-

els for the CHM1 dataset, one for the reference allele and one for

the error term. Three QQ plots were used for the CEU datasets, one

each for reference, alternate and error terms.

2.4 Frequency of sites in copy number variable regions

and low complexity regions
In order to explore the composition of each component, the likeli-

hood of every site was calculated under each component of the

model in each of the CEU datasets. The likelihood for each compo-

nent was evaluated using the parameters estimated from the EM. By

comparing the likelihood between all components, each site was as-

signed to the component with the highest likelihood.

We extracted all the known copy number variable regions

(CNVs) sites for NA12878 in the CEU dataset (Mills et al., 2011).

We calculated the number and proportion of sites belonging to the

known CNVs for the major and minor components (combined, be-

cause some components only contain a small proportion of sites) for

the best fit model for each of the eight datasets. We used a Fisher’s

exact test to determine whether there is a significant difference be-

tween the proportion of CNVs in each component.

We extracted all known repetitive/low complexity regions (LCRs)

in the human reference from the UCSC Genome Bioinformatics with

the Table Browser data retrieval tool (Karolchik et al., 2004), and

repeated the same analyses performed for the CNV regions. We calcu-

lated the number and proportion of LCRs in the major and minor

components for the best fit model and used a Fisher’s exact test to de-

termine whether there is a significant difference between these two

components.

2.5 Assignment of sites to model components
Sites can be assigned to components based on the posterior probabil-

ity that they were generated by each component. We developed a

classification algorithm that called sites as high-quality heterozy-

gotes (positive) or low-quality (negative) based on the probability

that they belonged to the major component of estimated two-

component models. Sites in our potential heterozygote datasets were

classified into these categories and validated using the corresponding

TH dataset, e.g. true positives were any potentially heterozygous

sites identified as high quality by our classifier and were known to

be polymorphic in humans.

We varied the cut-off probability used in the classifier and con-

structed the receiver operating characteristic (ROC) curve, where

sensitivity is plotted against specificity, to examine the performance

of our model as a classifier across a range of classification thresh-

olds. The area under the ROC curve (AUC) summarizes the per-

formance of this classification method across a range of cutoff

points. An AUC of 1 represents a perfect classifier, while an AUC of

0.5 suggests the prediction is close to random.

Three different optimal cutoff points were used to evaluate the

performance of our classifier (L�opez-Rat�on et al., 2014). (i) Cost-

benefit (CB) method, where the default costs ratio of 1 was used.

(ii) Youden’s Index, which is equivalent to maximizing the sum of

sensitivity and specificity. (iii) ROC01, which finds the point on the

ROC curve closest to the point (0,1).

For comparison, the default GATK variant discovery workflow

was applied to the full dataset (DePristo et al., 2011; McKenna

et al., 2010; Van der Auwera et al., 2013). In short, we used

HaplotypeCaller from GATK and set the minimum phred-scaled

confidence threshold to 0 in order to obtain all possible calls. The

GATK ROC curve is generated by altering this threshold and calcu-

lated the sensitivity and specificity for each threshold. We reported

the sensitivity and specificity from each cutoff and GATK.

3 Results

3.1 Haploid dataset—homozygous reference
Using the expectation maximization (EM) algorithm, we fit seven

models to each genomic region in each CHM1 dataset: a multi-

nomial, a DM and MDM models with two to six components. The

best model for each dataset was the two-component MDM. The fit

of the two-component MDM model to the Chr21 RD dataset is

shown in Figure 1a (see Supplementary figures for additional

results.)

In all cases, one component contained a substantial majority of

sites (approximately 75% of sites for Chr21 RD and 95% of the

sites for other datasets). We will refer to the component to which

the highest proportion of sites was assigned as the ‘major compo-

nent’ and all other components as ‘minor components’.

For FD, the major component had relatively little overdispersion

(u ¼ 0:003 and 0.004 for chromosome 21 and chromosome 10, re-

spectively), while the minor component displayed strong overdisper-

sion (u ¼ 0:892 and 0.948). When we fitted MDMs to the reference

datasets (in which sites with a high proportion of non-reference al-

leles were removed) the major component had less overdisperson

compared with the full dataset (u ¼ 0:000 and 0.003). The minor

components of models fitted to this dataset were slightly overdis-

persed (u ¼ 0:015 and 0.048) (Table 1 and Supplementary Tables).

3.2 Diploid dataset—heterozygous sites
We fit eight models to each of the 16 CEU datasets (two genomic re-

gions, four release years, two levels of filters): a multinomial, multi-

nomial with reference bias, a DM and MDMs with two to six

components. As expected, the addition of model components

increased the likelihood of the MDM model for all cases

(Supplementary Tables).

For the TH datasets, the best-fitting models had either two

or three components. The fit of the three-component MDM model

to the CEU13 Chr21 TH dataset is shown in Figure 1b (see

Supplementary figures for additional results.) The majority of the

sites (68–99%) were assigned to one component in the model

(Table 1 and Supplementary Tables). This major component of the

model had little overdispersion (u ¼ 0:000–0.0014). For the 2011,

2012 and 2013 datasets, the major component had an approxi-

mately equal proportion of reference and alternate alleles (50.2–

50.9% reference versus 49.1–49.8% alternate, and a relatively

small error term (< 0:04%). Thus, for these datasets, the majority

of sites fall into a component that is well approximated by a bino-

mial distribution with equal probabilities of reference and alterna-

tive alleles. However, the best-fitting model for the 2010 dataset

has a slightly larger error term (0.2% and 0.3%), and the reference

and alternate terms are 53% and 46%, respectively.

The proportion of the reference allele in the second component

of the model for each dataset ranged from 50.4% to 67.0%. This

component also had greater overdispersion in most cases

(u ¼ 0:000–0.124). For the dataset with a three component model

(CEU13 chromosome 21), the third component has an elevated pro-

portion of the error term.
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Comparing the PH dataset to the TH dataset, the best fitting

model in the PH dataset had three to six components (Supplementary

Tables and Fig. S1). However, when models have more than four

components, the additional components contained a very small pro-

portion of the data (< 1:8%). Thus, a model with more than four

components was likely overfitting the data from a biological perspec-

tive. The major components all had little overdispersion, which is

similar to the TH dataset. However, there is huge variation in the

value of u within each of the minor components. PH datasets tend to

have minor components with the proportion of reference allele deviat-

ing from 50%. Overall, the major component in the PH dataset is

similar to the major components in the TH dataset, but minor compo-

nents showed very different parameter distributions.

3.3 Copy number variants and low complexity regions
We assigned each site from the eight CEU PH datasets to a compo-

nent in the best-fitting model based on the site likelihood. Repetitive

regions of the genome (e.g. SINEs, ALUs, LINEs, LTRs and retropo-

sons), low-complexity regions (LCRs), and copy-number variable

genes (CNVs) are known to have higher genotyping error rate (Li,

2014; Malhis and Jones, 2010). The read counts of these sites are

likely to deviate from the expected distributions and differ from

other genomic regions. Therefore, we predict that the minor compo-

nents of our models will be enriched for these elements.

The minor component of the best-fitting model for each dataset

was enriched for CNVs, repetitive regions and LCRs. In chromo-

some 21, the proportion of CNVs is 3.7–6.7% in the minor

component and 0.5–1.5% in the major component. In chromosome

10, the proportion of CNVs is 0.3–0.5% in the minor component

and 0.2–0.3% in the major component. Fisher’s exact tests show a

significantly higher proportion of CNVs sites in the minor compo-

nent than major component for all datasets (P < 0:05) except for

CEU10 chromosome 10 (P¼0.198). In the minor component, 53.5–

60.7% of sites were in repetitive regions/LCRs, compared with

45.9–51.1% in the major component. Fisher’s exact tests show a sig-

nificantly higher proportion of repetitive regions/LCRs in the minor

component (P < 1� 10�5; Table 2).

3.4 Identification of high-quality heterozygous

genotypes
Figure 2 and Supplementary figures examine the performance of

adapting our MDM model into a classifier of heterozygotes. AUC

was between 0.63 and 0.81 (Supplementary Table). Based on the

ROC curve, we examined three optimal threshold values (the prob-

ability cutoff for assigning a site to the major component). These

thresholds demonstrate different ways to utilize this classifier to bal-

ance sensitivity and specificity. For example, using cost–benefit cri-

teria for the CEU13 chromosome 21 dataset we could use our model

to filter out half of the false-positive heterozygous sites without los-

ing THs (Fig. 2).

We compared our results to genotype calls produced using the

Genome Analysis Tool Kit (GATK) variant discovery pipeline. For

chromosome 21, our approach had greater sensitivity than GATK

for any given specificity value, and thus produced higher AUC
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Fig. 1. Mixtures of Dirichlet-multinomials provide the best fits to genomic datasets. QQ plots evaluate the fit of three different models to (a) the CHM1 chromo-

some 21 RD dataset. (b) The CEU 2013 chromosome 21 TH dataset. The quantiles of the observed read count frequencies are calculated from the datasets, and

the quantiles of the expected read count frequencies are estimated from the fitted model. A model that fits the data well produces points that fall along the

diagonal
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(Fig. 2). For chromosome 10, AUC values were similar between

GATK and our method. Our approach is more sensitive than the

GATK pipeline for high-specificity values, but less sensitive than

GATK for lower values of specificity (Supplementary figures and

Tables). Thus, while GATK output includes almost exclusively true

positive heterozygotes, it also excludes many additional TH sites

that we are able to include in our output.

4 Discussion

In this paper, we have shown that standard models inaccurately rep-

resent the distribution of reads for homozygotes and heterozygotes.

For every dataset we considered, our MDM approach provided a

better fit to NGS data than any single-component model. Indeed,

the best-fitting models generated for a haploid human cell line

Table 1. The number of components (c) in the best MDM model according to BIC values for CHM1 and CEU datasets, and parameters esti-

mated for these models

Dataset c pref palt perr u q

CHM1 RD Chr21 2 1.00 NA 2.20e�4 0.000 0.751

1.00 NA 3.61e�4 1.53e�2 0.249

CHM1 RD Chr10 2 1.00 NA 2.60e�4 2.69e�3 0.942

0.999 NA 8.33e�4 4.75e�2 5.85e�2

CHM1 FD Chr21 2 1.00 NA 2.49e�4 2.52e�3 0.972

0.982 NA 1.76e�2 0.892 2.78e�2

CHM1 FD Chr10 2 1.00 NA 2.82e�4 4.15e�3 0.984

0.975 NA 2.54e�2 0.948 1.64e�2

CEU13 TH Chr21 3 0.504 0.496 3.53e�04 2.46e�04 0.939

0.508 0.491 5.26e�04 6.89e�02 6.04e�02

0.239 0.483 0.278 6.56e�02 5.87e�04

CEU12 TH Chr21 2 0.509 0.491 3.15e�04 1.29e�04 0.961

0.541 0.457 2.04e�03 7.73e�02 3.90e�02

CEU11 TH Chr21 2 0.509 0.491 3.15e�04 1.31e�04 0.961

0.541 0.457 1.98e�03 7.82e�02 3.91e�02

CEU10 TH Chr21 2 0.533 0.465 2.25e�03 1.52e�03 0.922

0.670 0.327 2.70e�03 0.000 7.83e�02

CEU13 TH Chr10 2 0.502 0.498 3.36e�04 4.28e�04 0.922

0.504 0.490 6.21e�03 1.24e�01 7.54e�03

CEU12 TH Chr10 2 0.508 0.491 3.19e�04 5.53e�04 0.986

0.540 0.457 3.05e�03 7.60e�02 1.38e�02

CEU11 TH Chr10 2 0.508 0.491 3.19e�04 5.56e�04 0.986

0.542 0.455 3.01e�03 7.37e�02 1.39e�02

CEU10 TH Chr10 2 0.534 0.463 3.05e�03 0.000 0.684

0.550 0.449 6.45e�04 1.29e�02 0.316

Note: Each row represents a different component in the model. pref, palt and perr are the proportion of the reference, alternative and error terms respectively. u

is the overdispersion parameter. When u approaches 0, the distribution approaches a multinomial, and when u approaches 1, the distribution is nearly completely

overdispersed. q is the proportion of sites in each component.

Table 2. The minor components have a higher percentage of copy number variable regions (CNVs) and repetitive/low complexity regions

(LCRs)

Dataset Non-CNV/CNV % P value Non-LCR/LCR % P value

CEU13 Chr21 Major 26 924/415 1.5 4.11e�143 13 362/13 977 51.1 2.91e�48

Minor 10 851/773 6.7 4746/6878 59.2

CEU13 Chr10 Major 32 012/94 0.3 4.19e�3 16 043/16 063 50.0 5.39e�06

Minor 5864/32 0.5 2756/3140 53.3

CEU12 Chr21 Major 26 891/193 0.7 4.54e�87 13 362/13 722 50.7 2.67e�57

Minor 7760/331 4.1 3178/4913 60.7

CEU12 Chr10 Major 32 560/90 0.3 1.58e�3 16 204/16 446 50.4 2.08e�16

Minor 7035/37 0.5 3129/3943 55.8

CEU11 Chr21 Major 26 858/191 0.7 1.11e�88 13 344/13 705 50.7 3.11e�54

Minor 7743/333 4.1 3194/4882 60.5

CEU11 Chr10 Major 32 539/89 0.3 1.01e�3 16 195/16 433 50.4 3.19e�16

Minor 7060/38 0.5 3144/3954 55.7

CEU10 Chr21 Major 21 968/109 0.5 3e�90 11 936/10 141 45.9 3.62e�71

Minor 8518/326 3.7 3790/5054 57.1

CEU10 Chr10 Major 26 380/49 0.2 0.198 14 305/12 124 45.9 1.68e�53

Minor 10 197/26 0.3 4617/5606 54.8

Note: The number and percent (%) of CNV regions and of LCRs are shown for the major and minor components (combined) for the best fit model for each

CEU PH dataset. P value was calculated for the difference between the proportion of CNVs or LCRs in each component.
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contained two components, demonstrating that NGS datasets gener-

ated from relatively simple biological samples (i.e. no THs and a

high-quality reference genome) can benefit from the approach we

describe here. Similarly, our MDM model provides a better fit to

more complex data, including potentially heterozygous sites in data

arising from the 1000 Genomes Project. In order to take into ac-

count the excess variation in the PH dataset, the MDM models fit

more complex models to the PH datasets than to the TH datasets.

4.1 Overdispersion and reference bias are not universal

in NGS data
Previous work on the statistical properties of NGS data have empha-

sized the presence of reference bias due to errors in read mapping

(Degner et al., 2009; Heinrich et al., 2012; Krawitz et al., 2010),

and overdispersion due to correlated errors during library prepar-

ation and sequencing (Ramu et al., 2013). Both these processes

would move the distribution of reads in an NGS experiment away

from a standard binomial distribution with probabilities reflecting

the underlying genotype. Our results demonstrate that not all sites

in an NGS experiment are subject to these processes. The results are

likely to vary between different datasets and different regions within

the same dataset. The best-fitting model for every dataset that we

considered contained a major component with relatively little over-

dispersion or allelic bias. Sites that fall in these components are thus

well approximated by a binomial. On the other hand, a substantial

minority of sites in all cases fall into components that do display al-

lelic bias, a high rate of apparent sequencing error, and/or overdis-

persion. Our mixture model approach allows us to accurately model

read distributions for different types of sites and to avoid applying

inappropriate model parameters to the majority of sites.

4.2 Copy number variants and low complexity regions
The minor components of our MDM models are enriched for CNVs

and low-complexity regions (LCRs). CNVs can cause misalignment

of reads in repetitive regions, which is thought to be a cause of

genotyping error (Muralidharan et al., 2012). LCRs are particularly

prone to misalignment as a result of compositional biases and the

alignment of paralogous sequences (Frith, 2011; Li, 2014; Wootton

and Federhen, 1996). We believe that these genomic regions resulted

in misalignment of some reads and altered the profile of the read

counts for some sites. Sites with this erroneous read profile logically

need to be modeled differently; thus, our approach of using an

MDM avoids applying inappropriate model-parameters to the ma-

jority of sites.

4.3 Distinguishing true and false-positive heterozygotes
One of the applications of this model is to improve the accuracy of

genotype calling and reduce the number of false-positive variant

calls produced from NGS data. We investigated the performance of

MDM models as classifiers for putatively heterozygous sites. The

sensitivity and specificity of this classifier can be tailored to a par-

ticular application by altering the probability value at which a site is

assigned to a minor component. Used in this way, the MDM classi-

fier shows promise for reducing the number of falsely called hetero-

zygotes. Unless high sensitivity without regard to specificity is a

priority (i.e. false positives are unacceptable, but false negatives are

unimportant), our method outperforms the standard GATK variant

calling workflow for this purpose. It should be noted the GATK

pipeline includes a complex genotype-calling algorithm and local re-

alignment of reads, both of which reduce the number of false posi-

tive SNP calls. The approach we describe here could be included in

such a pipeline, and thus further increase the accuracy of genotype

calling.

The size of the dataset can influence parameter estimation. The

two cases with relatively low-quality classification, CEU10 chromo-

some 10 and CEU13 chromosome 10, are likely due to an extremely

low proportion of false positives in the dataset: with only 5% false

positive sites, it is a challenging task for the classification algorithm

to identify these sites. In these cases, it can be helpful to examine the

95% confidence intervals of the estimated parameters to determine

whether there is enough power for accurate estimation.

4.4 Differences among datasets
Although all the diploid datasets contained reads produced from

Illumina sequencing, a variety of different library preparations and

sequencing platforms were used to produce the data. The 2010 data

was generated using short paired reads (35–67 bp) and relatively

error-prone sequencing. The 2011 and 2012 datasets contain reads

of intermediate length (101 bp) mapped to a reference genome de-

signed to lower the rate of misalignment. The 2013 dataset contains

the longest reads (250 bp) and was produced using a PCR-free li-

brary preparation.

Our approach was able to fit each of these datasets well, regard-

less of the library preparations and sequencing technologies. The

parameter values estimated by EM in each dataset reflect the tech-

nology used. Not surprisingly, the 2010 dataset appears to have a

different error profile from other years: the major component of this

model has higher overdispersion and stronger reference bias than

that of any other dataset. The major components of datasets from

2011 and 2012 fit more closely to the expectation of a binomial dis-

tribution with equal frequencies of reference and non-reference al-

leles. Thus, we conclude that advances in sequencing technologies

have led to the majority of sites in NGS datasets better fitting basic

expectations of how alleles are amplified, sequenced, and mapped,

while the remaining sites contain a high rate of error in genotype

calling.

Fig. 2. The receiver operating characteristic (ROC) curve for the CEU13

chromosome 21 dataset demonstrates better classification of heterozygous

sites using our approach. This dataset is shown as an example of how the

model can be used to classify sites. Sensitivity and specificity are calculated

for three possible optimizing criteria from the MDM heterozygotes site classi-

fier: cost benefit (CB), closest point to (0,1) (ROC01), and Youden’s Index

(Youden). For comparison, the output from the GATK recommended work-

flow is also shown
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We expected the 2013 datasets, which was produced with a

PCR-free protocol, to be ‘cleaner’ than other datasets. This was not

the case. Our estimates of the overdispersion parameter do not ap-

pear to be lower for the 2013 datasets than others. In fact, for

chromosome 21 the 2013 data produces a higher estimate of u than

either the 2012 or 2011 data (Table 1 and Supplementary Fig. S2).

It is possible that steps taken to avoid PCR-error in producing

the CEU13 dataset introduced other errors or biases that are re-

flected in these estimates. We suggest reconsidering the benefit of

the PCR-free approach. Alternatively, as CEU13 is the only dataset

we examined that used 250 bp reads it is possible that the sequenc-

ing chemistry used to produce these longer reads has a unique error

profile.

We conclude that read distributions for a majority of sites fit a

basic binomial distribution. This observation contrasts with recent

approaches to improve genotyping that fit a more complex beta-

binomial. A minority of sites are subject to processes that drive read

count distributions away from a binomial distribution. The PH

dataset shows different parameter distributions comparing to TH

dataset. Most of the minor components in the PH dataset also sug-

gested these sites are deviated from binomial distributions. Our ap-

proach using a mixture of distributions allows us to correctly model

these sites without applying inappropriate models to the majority of

the genome. This approach also results in a better fit of the model to

the data. In future, it may be possible to identity genomic features

associated with unusual sequencing data and ultimately develop im-

proved models for these sites in particular. The approach we de-

scribe here will be included in future versions of the mutation-

detecting software DeNovoGear and accuMUlate (Long et al.,

2016; Ramu et al., 2013).
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