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ABSTRACT: The application of machine learning to predict materials properties
measured by experiments are valuable yet difficult due to the limited amount of
experimental data. In this work, we use a multifidelity random forest model to learn the
experimental formation enthalpy of materials with prediction accuracy higher than the
Perdew−Burke−Ernzerhof (PBE) functional with linear correction, PBEsol, and meta-
generalized gradient approximation (meta-GGA) functionals (SCAN and r2SCAN), and
it outperforms the hotly studied deep neural network-based representation learning and
transfer learning. We then use the model to calibrate the DFT formation enthalpy in the
Materials Project database and discover materials with underestimated stability. The
multifidelity model is also used as a data-mining approach to find how DFT deviates
from experiments by explaining the model output.
KEYWORDS: formation enthalpy, stability, machine learning, DFT, multifidelity, transfer learning

■ INTRODUCTION
To accelerate the design of new materials, computational
methods such as density functional theory (DFT)1 have been
employed to generate large data sets that contain more than 105
entries of material properties, including the Materials Project
(MP),2 Open Quantum Materials Database (OQMD),3 the
Automatic Flow ofMaterials Discovery Library (AFLOW),4 and
the Joint Automated Repository for Various Integrated
Simulations (JARVIS).5 While the availability of such databases
has boosted the exploration of novel materials,6−15 it is
important to note that most of the data is generated with
computationally “cheap” DFT functionals such as Perdew−
Burke−Ernzerhof (PBE),16 which can, in turn, lead to non-
negligible errors when compared with experimental measure-
ments.
As an example, the formation enthalpy (ΔHf) is a fundamental

property that determines the thermodynamic stability of
materials. The mean absolute error (MAE) between the
computed ΔHf in these large DFT databases and experimental
measurements is reported to be ∼0.1 eV/atom.3,17 Due to the
sensitivity of phase stability to energy, such a difference might be
the difference between a material that is readily synthesizable
and one that is almost impossible to realize.18−20 In addition,
because of the limited amount of available experimental data,
currently most machine learning (ML) models applied to
materials are trained on DFT datasets,6,21−35 making any error
in the DFT calculations critical to the usefulness of such ML
models.7,31,36,37

To improve the accuracy of formation enthalpy calculations, a
number of density functionals have been developed, such as

PBEsol,38 SCAN,39 r2SCAN,40 and HSE,41 which have shown
significant improvement in the accuracy of formation enthalpy
calculations.42−44 On the other hand, except PBEsol, these more
accurate functionals are computationally more expensive,
limiting their utility for the generation of large databases.43,45

Empirical corrections represent another, faster approach to
improve the accuracy of the prediction of ΔHf. For example, in
the MP dataset, ΔHf of certain materials (including oxides,
phosphates, borates, and silicates) is empirically corrected by
fitted element corrections,46 and in OQMD,ΔHf is corrected by
a chemical-potential fitting.3 Very recently, Wang et al.47

proposed a linear correction scheme with an error of 0.051
eV/atom compared with experimental values on a dataset with
222 materials containing certain anions and transition metals.
Yet, despite this recent success in lowering the error for some
chemical systems,48 such corrections are based on the human
understanding of specific chemistries and relatively simple
assumptions and are thus difficult to be transferable across
different chemistries.46,48 It would be beneficial to design
prediction schemes that can automatically extract the chem-
istry−property relationship across different chemistries without
human intervent ion, and data-dr iven ML meth-
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ods18,24,26,28,29,32,45 are promising candidates to learn the
complex mapping between chemistry and ΔHf.
One of the biggest challenges in machine learning of material

properties is the lack of experimental data.49 Efforts have been
made to improve the performance of learning on small
experimental datasets by extracting and transferring information
from large DFT datasets. Currently, there are mainly two
strategies to achieve the transfer between DFT and experimental
datasets, transfer learning21,28,50−53 and multifidelity machine
learning.45,54−56 The idea of transfer learning (Figure 1a) is first
learning large DFT datasets (source) using a large neural
network and then transferring the weights of the network to the
machine learning task of small experimental datasets (target).
Although transfer learning has achieved success in problems
where the source and target data sets are highly corre-
lated,21,28,50,51 the approach is mostly applied to neural network
architectures, and if the correlation is not strong enough, transfer
learning will not improve and may even deteriorate the learning
performance.52 Different from transfer learning where informa-
tion is passed by transferring network parameters, in multi-
fidelity machine learning (Figure 1b), information of cheap and
low-fidelity data is directly passed to the learning task of
expensive and high-fidelity data, either in the feature (input)
level54 or in the label (output) level.45,55−57 In other words, the
low-fidelity data can be used as a feature in the machine learning
task of high-fidelity data or the task of machine learning the high-
fidelity data can be converted to the task of machine learning the
difference between high-fidelity data and low-fidelity data, which
is also known as Δ-machine learning.57 From the handful of
previous studies, multifidelity machine learning has shown
higher predictive power than single-fidelity ones (directly

learning the high-fidelity data) on material properties like
band gaps and energies from different density function-
als.45,55−57 However, there is no previous work that adapts
multifidelity machine learning at both feature and label levels at
the same time.
In this work, we present a comprehensive machine learning

study ofΔHf
exp using transfer learning and multifidelity machine

learning. For the machine learning architectures, we compare
four different models, random forests (RFs), multilayer
perceptron (MLP), Representation Learning from Stoichiom-
etry (ROOST),26 and Crystal Graph Convolutional Neural
Network (CGCNN).32 We find that multifidelity RF in both the
feature and label levels has the best prediction performance for
ΔHf

exp with more than 30% reduction in MAE compared with
DFT results from MP and improved performance compared to
recent linear correction schemes47 as well as more sophisticated
density functionals like PBEsol,38 SCAN,39 and r2SCAN.40 We
also analyze the effects of machine learning architectures,
featurization methods, and information transfer strategies on
learning ΔHf

exp and ΔHf
diff. Further, the more accurate ΔHf are

applied to re-evaluate the thermodynamic stability of materials,
and cases with underestimated stability in the MP database are
discovered. We also use the machine learning model to find
where current DFT deviates from experiments by explaining the
model output.

■ RESULTS

Illustration of Machine Learning Frameworks and Datasets

In this work, we use two different strategies to learn ΔHf
exp with

the assistance of information from the MP dataset, transfer

Figure 1. Illustrations of the machine learning frameworks and datasets used in this work. (a, b) Schematics of transfer learning and multifidelity
machine learning in this work, respectively. In panel (a), first theΔHf

DFT is used as a label to train anMLmodel, then the weights of the first MLmodel
are transferred to initialize a second ML model, and then the ΔHf

exp is used as a label to train the second model; finally, the second model is used to
predict ΔHf

exp of all materials in the large DFT dataset. In panel (b), first the dataset of the difference between ΔHf
exp and ΔHf

DFT is constructed
(ΔHf

diff), then ΔHf
diff is used as a label to train an ML model with the ΔHf

DFT as an input feature, and finally the trained model is used to calibrate the
difference between ΔHf

DFT and ΔHf
exp for all materials in the large DFT dataset. (c) ΔHf

DFT versus ΔHf
exp. (d) ΔHf

diff versus ΔHf
DFT.
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learning, and multifidelity machine learning (in the following,
“ΔHf

DFT” denotes the empirically corrected PBE ΔHf by Jain et
al.46 from the MP database, V2021.03.22). As shown in Figure
1a, in transfer learning, a neural network is first trained on the
large MP dataset, then weights of the neural network are
transferred to initialize a second neural network, and finally,
some of the weights of the second network are optimized by the
small ΔHf

exp dataset. Once trained, the second neural network
can serve to predict ΔHf

exp of materials in the large MP dataset.
In multifidelity machine learning, as shown in Figure 1b, first the
dataset of ΔHf

diff (ΔHf
exp − ΔHf

DFT) is built and then machine
learning models are trained on the ΔHf

diff dataset, with ΔHf
DFT

also as an input feature of each material. Once trained, the
machine learning model can serve to calibrateΔHf

DFT by adding
ΔHf

diff to ΔHf
DFT to obtain ΔHf

exp. The key difference between
transfer learning and multifidelity machine learning is that in the
former two networks are trained and information transfer is
achieved by transferring network weights, while in the latter,
only onemodel is trained and information transfer is achieved by
learning the difference between two datasets and adding the
ΔHf

DFT as one of the input features. In addition to the two basic
strategies as shown in Figure 1a,b, variants are also tested in this
work, including a combination of transfer learning and
multifidelity machine learning (initializing a network from one

Figure 2.Comparison of machine learning models. (a)Mean average errors (MAEs) between predictions ofΔHf from somemachine learning models
and experimental measurements. Each type of machine learning model is trained 10 times to estimate the uncertainty levels. RF denotes random forest
with compositional features from matminer,59 and ROOST26 and CGCNN32 are two deep learning models that automatically extract materials’
fingerprints from compositions and structures, respectively. Here, “dft.” in front of “RF” means the model is trained withΔHf

DFT as an input, “trans.” in
front of “ROOST” and “CGCNN” model is trained in a transfer learning manner, diff. model is trained on ΔHf

diff, and “exp.” model is directly trained
onΔHf

exp. The dashed horizontal line corresponds to the MAE ofΔHf
DFT. (b)ΔHf

exp versus ΔHf
ML from the best RF model (the second from the left

in panel (a)) andΔHf
DFT. (c) MAE of predictions ofΔHf

exp with noise from RF and ROOST. Under each noise level, Gaussian noises with a standard
deviation of noise level*0.8 eV/atom (0.8 eV/atom is the standard deviation of the ΔHf

exp dataset) are added to both training set and test set. (d, e)
Learning curves of different models. The MAE is for the test set. In panel (e), all of the curves are based on random forest, and “struct.” means the
model is trained with structural and compositional features, and “no struct.” means the model is trained with only compositional features.
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trained on ΔHf
DFT and optimizing the newly initialized network

by ΔHf
diff) and multifidelity machine learning by only learning

ΔHf
diff or only adding ΔHf

DFT as an input feature.
As described above, we choose four different machine

learning architectures to realize transfer learning and/or
multifidelity machine learning, which are RF, MLP, ROOST,
and CGCNN. The choice aims to increase the variety of
machine learning architectures to fairly evaluate the effect of
transfer learning and multifidelity learning and to enlarge the
hypothesis space to search for the best machine learning models
for predicting ΔHf

exp. These ML architectures also provide
varieties in terms of basic algorithms, input information, and
featurization: MLP, ROOST, and CGCNN are based on neural
networks, while RF is not; ROOST only needs compositions as
an input, while CGCNN takes both compositions and three-
dimensional (3D) structures as input, and RF and MLP can be
trained either with or without structural information; RF and
MLP need human-engineered featurization, while ROOST and
CGCNN learn fingerprints of materials in the training process.
In this work, we choose the Materials Project (MP) database

(V2021.03.22) as the source of ΔHf
DFT because MP is a widely

used large DFT database and the difference ofΔHf betweenMP
and other large DFT databases is not large. For example, the
difference between ΔHf of 563 materials from MP and OQMD
is reported to be 0.028 eV/atom.3 As for the experimentally
measured ΔHf, we combine the IIT dataset17 and SSUB
dataset58 and remove the duplicates, leading to 1143 data points
with available ΔHf

exp, ΔHf
DFT, and DFT-optimized 3D atomic

structures from MP. In addition to the value of ΔHf
exp, there are

also uncertainty estimations in the IIT dataset,17 fromwhich one
can see that the mean uncertainty of ΔHf

exp based on 499
materials is around 0.023 eV/atom. More details about the data
collection procedure are provided in the Methods section.
ΔHf

DFT and ΔHf
exp are compared in Figure 1c, from which one

can see that ΔHf
DFT are already quite close to ΔHf

exp in value,
and there is no clear systematic shift between ΔHf

DFT and
ΔHf

exp. As shown in Figure 1d, the distribution of ΔHf
diff is

centered around zero, and there is no obvious correlation
between ΔHf

diff and ΔHf
DFT. From Figure 1c,d, one can see that

ΔHf
diff has a narrower distribution thanΔHf

exp with the standard
deviation of 0.1718 and 0.8000 eV/atom for the datasets of
ΔHf

diff and ΔHf
exp, respectively.

Predicting ΔHfexp by Machine Learning

For the RF and MLP, compositional and structural features are
provided from matminer59 as input features (a list of features is
provided in the Methods section), for ROOST only, the
compositions are provided as input and it automatically learns
the fingerprints of materials, and for CGCNN, the compositions
and 3D atomic structures are provided as input and the
fingerprints are learned in the training. To test the prediction
performance, 20% of the 1143 materials are chosen randomly as
the test set. Details about the training procedure are provided in
the Methods section. As a baseline, for the test set, we find that

the MAE between ΔHf
DFT and ΔHf

exp is 0.0955 eV/atom. The
test results for some machine learning models are shown in
Figure 2a with detailed lists of all machine learning models in
Figure S3 and Table S1, and here we analyze the results from the
following aspects:

(1) The best performance is achieved with the RF model that
is trained on ΔHf

diff and has compositional features and
ΔHf

DFT as input features (Figure 2a). The error for this
best case, 0.0617 eV/atom, is roughly 30% lower than that
ofΔHf

DFT. The parity plot ofΔHf
DFT andΔHf

ML from the
best RF model versus ΔHf

exp of the test set is shown in
Figure 2b, from which one can observe that ΔHf from the
best RF model aligns closer to the ΔHf

exp than ΔHf
DFT

within the range from −5 to 1 eV/atom. Predictions from
the best RF model also have a higher R2 score (0.99) than
that from the DFT calculations in the MP database
(0.97).
Recently, Kingsbury et al.44 have performed high-

throughput calculations for 6000 materials by PBEsol,38

SCAN,39 and r2SCAN functional.40 In Table 1, MAEs
between experimental ΔHf and ΔHf from different
density functionals with different empirical corrections
are listed. Different from Figure 2, the reported MAEs in
Table 1 are based on a dataset with 122materials that have
all of the values of ΔHf from different sources (these
materials are in the test set mentioned above). One can
observe that MAE of the best RF model is almost half of
that of SCAN,39 PBEsol,38 and also almost half of that of
the corrections from Jain et al.46 and Wang et al.47 The
superiority of the best RF model over the meta-
generalized gradient approximation (meta-GGA) func-
tionals (SCAN and r2SCAN) is encouraging because (i)
the best RF model provides a lower error compared with
more sophisticated density functionals, (ii) it is much
faster than the self-consistent DFT simulations, especially
with meta-GGA functionals, enabling one to screen ΔHf
of materials accurately in a high-throughput fashion. For
example, for the 105materials in large DFT databases such
as MP, more accurate predictions of ΔHf can be
calculated by the RF models within minutes, while that
from meta-GGA functionals may take months of
calculations. For new materials without low-fidelity ΔHf
predictions yet (such as corrected PBE), computational
cost for the low-fidelity ΔHf should be added to the total
cost of the best RF model.
As for the superiority of the best RF model over the

recent linear correction scheme from Wang et al.,47 as
shown in Table 1, there are four possible explanations: (i)
the RFmodel takes nonlinear effects into account, (ii) the
compositional descriptors used here capture more
information than simple stoichiometry used in Wang et
al.,47 (iii) the learned correction in Wang et al.47 is only
from materials with certain anions and transition metals,

Table 1. Comparison of MAEs between ΔHf
exp and ΔHf from Different Density Functionals with Different Correctionsa

functional (correction) PBE (random forest) PBE (linear, Jain et al.46) PBE (linear, Wang et al.47) PBEsol (no)44 SCAN (no)44 r2SCAN (no)44

MAE (eV/atom) 0.0542 0.0935 0.0927 0.0973 0.1024 0.0825
aDifferent from Figure 2, the reported MAEs here are based on a dataset with 122 materials in the test set that have all of the values of ΔHf from
different sources. The cell of “PBE (random forest)” is the PBE ΔHf that is first corrected by Jain et al.

46 and then corrected by the best RF model
in this work. “PBE (linear, Jain et al.46)” is the one used in the MP database before May 2021 (V2021.03.22) and is the one used as the low-fidelity
data in this work (ΔHf

DFT). “PBE (linear, Wang et al.47)” is the one used in the MP database after May 2021 (V2021.05.13). “(no)” in the right
three cells at the upper row means that no correction is applied to the ΔHf from the density functional.

JACS Au pubs.acs.org/jacsau Article

https://doi.org/10.1021/jacsau.2c00235
JACS Au 2022, 2, 1964−1977

1967

https://pubs.acs.org/doi/suppl/10.1021/jacsau.2c00235/suppl_file/au2c00235_si_001.pdf
pubs.acs.org/jacsau?ref=pdf
https://doi.org/10.1021/jacsau.2c00235?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


while in the present work, there is no such constraint, and
(iv) the calibration scheme used here is built on
empirically corrected PBE results as opposed to
uncorrected PBE data in Wang et al.47

(2) Training the machine learning models on ΔHf
diff helps to

reduce error compared with training models on ΔHf
exp

directly, as, under the same condition (architecture and
featurization), the models trained on ΔHf

diff always have
lower MAE than that trained on ΔHf

exp. Here, we
attribute the lower absolute error of learningΔHf

diff to the
fact that ΔHf

diff has a narrower distribution than ΔHf
exp

with 5 times smaller standard deviation (0.17 versus 0.80
eV/atom). One can imagine that, if ΔHf

diff and ΔHf
exp

have the same distribution except for a scaling factor of 1/
5, then ideally the MAEs of ML models (with proper
normalization) trained on ΔHf

diff should also be 1/5 of
that trained on ΔHf

exp. However, the MAEs of models
trained on ΔHf

diff are all larger than 1/5 of that trained on
ΔHf

exp, suggesting that ΔHf
diff is easier to learn absolutely

but harder to learn relatively than ΔHf
exp.

To further illustrate the above explanation, we use the
R2 score, a unitless metric invariant to scaling, to show the
relative difficulty of predicting ΔHf

diff and ΔHf
exp. The R2

of predictions ofΔHf
diff by the best RFmodel is 0.54 (here

R2 of 0.54 is based on predicted ΔHf
diff versus trueΔHf

diff,
while the R2 of 0.99 in Figure 2b is based on predicted
ΔHf

exp versus true ΔHf
exp), while the R2 of predictions of

ΔHf
exp by the same RF model is 0.94, suggesting that

ΔHf
exp is easier to learn relatively than ΔHf

diff.
(3) FeedingΔHf

DFT as one of the input features helps to lower
the error, as with the same machine learning architecture
(RF or MLP), label, and other features, models with
ΔHf

DFT as one of the input features always have lower
error than that without ΔHf

DFT. This effect is more
significant when the models are trained on ΔHf

exp

because, as shown in Figure 1c, ΔHf
DFT has a strong

correlation with ΔHf
exp, while, as shown in Figure 1d, the

correlation between ΔHf
DFT and ΔHf

diff is not obvious.
Combining analyses (2) and (3), one can observe that

adapting the strategy of multifidelity machine learning
might help to significantly lower prediction error if the
difference between the different fidelity datasets has a
narrower distribution than the high-fidelity dataset and/
or if there is a strong correlation between the different
fidelity data sets. Machine learning models with both the
modifications of changing labels and adding extra input
features might outperform that with either single
modification.

(4) Similar to (3), transfer learning helps more when
transferring from ΔHf

DFT to ΔHf
exp than from ΔHf

DFT

to ΔHf
diff because of the stronger correlation between

ΔHf
DFT and ΔHf

exp.
(5) RF with human-engineered features performs better than

ROOST and CGCNN, two deep representation learning
models, when trained on ΔHf

diff, while RF performs
similar to or worse than neural network-based models
when trained on ΔHf

exp. Although it is not surprising that
neural network-based deep learning algorithms do not
show superior performance over RF due to the limited
dataset size,52,60 the effect of learning targets (ΔHf

diff and
ΔHf

exp) on the relative performance of different machine
learning models is interesting and worth discussion.

The different uncertainty levels between ΔHf
diff and ΔHf

exp

might help to explain why RF performs better than neural
network-based models when trained onΔHf

diff, while there is no
such superiority of RF when trained on ΔHf

exp. As discussed
above, ΔHf

diff has a narrower distribution than ΔHf
exp. Because

ΔHf
diff = ΔHf

exp − ΔHf
DFT, if we assume ΔHf

exp and ΔHf
DFT are

two independent random variables, then ΔHf
diff would have

larger uncertainty than ΔHf
exp. Therefore, the robustness of RF

against uncertainty60−62 might explain the superiority of RF
when trained on ΔHf

diff. The larger uncertainty level of ΔHf
diff

might also help to explain whyΔHf
diff is harder to learn relatively

than ΔHf
exp as in (2).

To further investigate the effect of uncertainty on the
performance of machine learning models, RF and ROOST are
employed to learn ΔHf

exp with random noises, a source of
uncertainty. In Figure 2a, one can see that RF performs worse
than ROOSTwhen trained onΔHf

exp. In Figure 2c, theMAEs of
RF and ROOST and the corresponding noise levels are shown.
One can see that, under low noise levels, the errors of RF are still
higher than that of ROOST, while under high noise levels, the
errors of RF become lower than that of ROOST. The different
relative performances of RF and ROOST under different noise
levels agree with the superiority of RF against uncertainty60−62

and support our hypothesis that the different uncertainty levels
of the ΔHf

diff dataset and the ΔHf
exp dataset might explain why

RF is better on the ΔHf
diff dataset while ROOST is better on the

ΔHf
exp dataset.

In Figure 2e, we plot the learning curves of RF and ROOST
on learning ΔHf

diff and ΔHf
exp, respectively. For learning ΔHf

exp,
we observe that with a few data points, RF has smaller errors
than ROOST, while with more than 400 data points, ROOST
outperforms RF, which agrees with previous observations26,63

that deep learning is powerful for large datasets, while classic
machine learning is more suitable for small datasets. However,
for learning ΔHf

diff, we observe that RF performs better than
ROOST consistently for all dataset sizes. As for the rate of
improvement with respect to dataset size (slope of learning
curve), we observe that for RF, the slope on learning ΔHf

diff is
slightly smaller than that onΔHf

exp, while for ROOST, the slope
on learning ΔHf

diff is significantly smaller than that on ΔHf
exp,

which shows that the slopes of learning curves of machine
learning models are affected by the quality of data: higher
uncertainty of data, smaller slope of learning curves, and
different machine learning models are affected differently: the
slope of RF is less affected, while the slope of ROOST is more
affected. Further empirical and theoretical studies are necessary
to investigate the relation between data quality and the slope of
the learning curve for different machine learning models. From
the learning curves, we also expect that, with more ΔHf

exp data
points in the future, learning ΔHf

exp directly by ROOST might
be more powerful than learning ΔHf

diff by random forest.
Based on the fact that when trained on ΔHf

diff, random forest
with human-engineered featurization outperforms neural net-
work-based models, especially deep representation learning
models, we suggest that for machine learning applications in the
field of materials science, with limited data set size and without
proof of a low uncertainty level of the data set, deep neural
network-based representation learning algorithms24,26,32,64

should not be the only type of models employed, and other
feature engineering methods and machine learning architectures
beyond neural networks should also be tested.
While there are some previous works that show that

information on the local bonding environment can be used to

JACS Au pubs.acs.org/jacsau Article

https://doi.org/10.1021/jacsau.2c00235
JACS Au 2022, 2, 1964−1977

1968

pubs.acs.org/jacsau?ref=pdf
https://doi.org/10.1021/jacsau.2c00235?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


correct formation enthalpies of certain materials like sulfides,65

fluorides,66 and oxides,48,66 in this work, the machine learning
models with only compositions as input outperform those with
both compositions and structures as input (Figures 2a and S3).
One of the possible causes of the phenomenon is that there still
lack the data points of polymorphs with the same composition
but different ΔHf

exp in the current dataset, which suggests the
urgency of building a comprehensive ΔHf

exp dataset with
sufficient entries of polymorphs to comprehensively understand
the role of structures in determiningΔHf

exp. In Figure 2e, we plot
the learning curves for random forest (RF) with and without
structural features for learning ΔHf

diff and ΔHf
exp. We can

observe that, for learning ΔHf
diff and ΔHf

exp, RF without
structural features outperforms RFwith structural features, while
the slopes of learning curves of the RF models with structural
features are larger than that of the RF models without structural
features. A possible explanation is that models with structural
features have more available information, more degrees of
freedom, and therefore easier to overfit small data sets, while
those additional information makes models with structural
information more powerful and consequently with steeper
learning curves. Based on the learning curves, we expect that
with more data in the future, models with structural information
might outperform those with only compositional information.
For the models only based on compositional information,

such as random forest with only compositional features and
ROOST, the corrections are the same for the polymorphs. Since
the best model in this work is only based on compositional
information, in the following sections, the analysis is purely
based on compositions. However, there are also models based
on structural information trained and tested in this work, such as
random forest with compositional and structural features and
CGCNN. Corrections from models with structural information
are in principle different for polymorphs. In Table S2, we show
the corrections from random forest (RF) with both composi-
tional and structural features (“struct. RF diff.” in Figure S3 and
Table S1) to three pairs of polymorphs with recorded ΔHf

exp

values and not in the training set. We find that, for all materials
except CaSiO3 wol., ΔHf

RF is closer to ΔHf
exp than ΔHf

DFT,
showing the ability of the RF model to correct the DFT
prediction of ΔHf. As for relative phase stability, ΔHf

DFT

contradicts with ΔHf
exp for SiO2 and TiO2. Unfortunately, for

the two systems, corrections from RF cannot reverse the wrong
phase stability estimation from DFT. A possible explanation is
that the RFmodel mainly employs compositional information to
learn and predict, as we find that compositional features
contribute 80% of feature importance, while structural features
only contribute 20% of feature importance. Therefore, the RF
model predicts similar corrections to different structures with
the same composition. More data points of ΔHf

exp, especially
that of polymorphs, are necessary to develop machine learning
models that rely more on structural information and are capable
of reversing the wrong phase stability estimation of polymorphs
from DFT.
We summarize the potential drawbacks of using one model

versus the others for predicting ΔHf as follows: (i) RF and MLP
rely on off-the-shelf featurization, which means that they cannot
capture information unknown to human beings. Therefore, they
are typically less powerful than deep representation learning
models such as ROOST and CGCNN for large datasets.26,63 For
predictingΔHf, although RF is the best model in this work, with
more data points in the future, it is likely that RF will be less
powerful than ROOST as shown by the learning curves in Figure

2d. (ii) ROOST and CGCNN are deep representation learning
models that learn the features of materials automatically in the
training process. Therefore, they are thought to be more
powerful than models with off-the-shelf featurization, but their
prediction performance might be worse with small datasets,26,63

such as this work. (iii) MLP, ROOST, and CGCNN are neural
network-based models. Compared with random forest, which is
a decision tree-based ensemble model with hundreds of
individual models, ensembles of neural networks are typically
only composed of around 10 individual models because of the
higher computational cost of neural networks.26 Therefore, they
might be less powerful than RF in cases where the number of
models in ensembles is important,62 such as theΔHf

diff with high
uncertainty in this work.62

Discovering Materials with Underestimated Stability in MP

With the best RF model that can significantly lower the error of
ΔHf from the MP database, we can calibrate ΔHf of all materials
in the MP database. The dataset with all of the calibrated ΔHf is
provided in the Supporting Information, and as an application,
here we use the calibrated ΔHf to re-evaluate the thermody-
namic stability of all materials in the MP database by
constructing the energy above hull (Ehull, the energy difference
between the candidate compound and the ground-state
phase(s) in a compositional space.67 More discussions about
Ehull are provided in the Methods section and Figure S3).
However, as Bartel et al.18 pointed out, although sometimes
DFT has large errors for the prediction ofΔHf,ΔHf

DFT of similar
materials contain similar systematic errors, and when evaluating
phase stability, the cancellation of systematic errors makes DFT
more useful for evaluating the relative stability between
compounds than some machine learning models with similar
or even better accuracy with respect to ΔHf

exp.
Therefore, before screening Ehull for the full MP dataset, we

first evaluate the performance of ΔHf
DFT and ΔHf

ML for
evaluating the relative stability between compounds. Since there
are only 229 materials in the test set, which are not enough for
constructing phase diagrams and Ehull, we use the difference
between ΔHf of pairs of compounds in the same chemical
system to evaluate the relative stability between compounds. We
list all 20 pairs of compounds in the same chemical system in the
test set in Table 2, and we also plot the difference from
experiments versus that fromMP and machine learning (ML) in
Figure 3a. One can see that ML outperforms MP in terms of the
difference of ΔHf between compounds in the same chemical
system, which shows that the ML model outperforms DFT for
relative stability evaluation.
We next re-evaluate material stability using ML calibrated

ΔHf to construct EhullML for all materials in the MP database
using all compositions in MP. In chemical intuition, materials
with smaller Ehull tend to be more thermodynamically
synthesizable and stable,19,20,68 although Ehull = 0 is not a hard
threshold for successful synthesis and room-temperature and
pressure stabilities of materials because of other factors such as
kinetics,69 and in practice, empirical heuristics of several room-
temperature kBT are used as stability thresholds.

19,20,68 In Figure
3b, the distributions of Ehull of all materials in the MP database
constructed from ΔHf

DFT and ΔHf
ML of all compositions in the

MP database are shown, from which one can see that most
materials have similar EhullMP and EhullML, and majority of
materials have close-to-zero EhullMP and EhullML. More
importantly, there are materials with large EhullMP and small
EhullML. These materials might have underestimated stabilities in
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MP. For example, there are 800 materials in the blue rectangle in
the upper-left corner in Figure 3b that have EhullMP > 0.16 eV/
atom and EhullML < 0.06 eV/atom, amongwhich there are around
100 already synthesized materials. (The thresholds are based on
6 times and 2 times of room-temperature kBT.

19,20) As example,
we list some materials in Table 3 with novel physical properties
and/or potential applications with EhullMP > 0.16 eV/atom and
EhullML < 0.06 eV/atom, where there are both synthesized
materials and hypothetical materials. One can see that there are a
number of materials with various applications ranging from
battery electrodes,70 catalysts71−73 to optical,74−76 elec-
tronic,77,78 magnetic79−83 devices, and superconductors84,85

for which EhullML succeeds in explaining their synthesizability,

while EhullMP suggests a low likelihood of being synthesizable.
One extreme example is MnSnIr,86 a stable half-Heusler
compound synthesized from a peritectic reaction,87 of which
EhullMP is considerably high (0.5117 eV/atom), while EhullML is 0.
The huge gap between EhullMP and EhullML is mainly because of
the large deviation between ΔHf

DFT (0.2945 eV/atom) and
ΔHf

ML (−0.2363 eV/atom) of MnSnIr itself. As a comparison,
the ΔHf

exp of MnSnIr is −0.3047 eV/atom,17 which shows that,
for this compound, DFT deviates significantly from the
experiment, while our machine learning model can calibrate
such a huge difference. A possible reason for the large error of
ΔHf

DFT of MnSnIr is that, in Materials Project (V2021.03.22),
the DFT + U correction is only applied to Mn−F, Mn−O, and
Mn−S systems and not applied to systems without F, O, S such
as the full ternary compound MnSnIr.46 Large deviations
between ΔHf

DFT and ΔHf
exp are also observed for other

compounds containing Mn and Sn, such as MnSnAu (ΔHf
DFT:

−0.0488 eV/atom; ΔHf
exp: −0.5016 eV/atom), MnSn2

(ΔHf
DFT: 0.1363 eV/atom; ΔHf

exp: −0.0954 eV/atom), and
Mn2SnRu (ΔHf

DFT: 0.0789 eV/atom; ΔHf
exp: −0.1803 eV/

atom), which agrees with the observation in Figure 4b shown
later that DFT tends to overestimate ΔHf (more positive) of
compounds with Mn and Sn. As a result, in the phase diagram of
Mn−Sn, there are no stable intermetallic compounds according
toΔHf

DFT, which disagrees with the experimental phase diagram
where there are several stable intermetallics including Mn3Sn,
Mn3Sn2, and MnSn2.

88

In addition to the already synthesized materials, those
unrealized hypothetical materials provide potential opportuni-
ties for energy and environmental materials,89−91 structural
materials,92 and electronic devices,93,94 and as shown in Table 3
and Figure 3b, many of these materials that are estimated stable
by EhullML might have underestimated stability in the MP
database.
There are also 1000 materials in the lower-right corner in

Figure 3b that have EhullMP < 0.06 eV/atom and EhullML > 0.16
eV/atom. Details of those materials can be obtained in the
shared online dataset. An extreme example is LiNbGeO5,

95 a

Table 2. Difference of ΔHf between Pairs of Compounds in
the Same Chemical System from Different Sourcesa

pair of compounds experiment
materials
project

machine learning in this
work

TiFe2−TiFe 0.0487 −0.1324 −0.1316
BiI3−BiI 0.1075 0.1868 0.1193
LuIr2−LuIr −0.1502 −0.1664 −0.1826
LaSi−La5Si3 0.143 0.1335 0.1229
BMo2−BMo −0.1858 −0.1856 −0.1972
Na2O−NaO2 0.5435 0.5428 0.3328
BW2−B5W2 −0.0591 0.5108 0.2408
Co3O4−CoO 0.1229 −0.0302 −0.0553
ZrCo2−Zr2Co 0.0974 0.0574 0.0553
TmAg−TmAg2 0.1835 0.0088 0.1187
PrNi5−PrNi −0.0259 −0.0281 −0.0116
TiAu2−TiAu 0.0179 −0.0026 −0.0243
NdRh−NdRh2 0.0446 0.0202 0.0064
CaO2−CaO −1.0353 −1.1070 −1.075
Zr5Si3−Zr5Si4 −0.2094 −0.0855 −0.0964
Zr5Si3−ZrSi2 0.1181 0.1654 0.1397
Zr5Si4−ZrSi2 0.3275 0.2509 0.2361
Mn2Sb−MnSb −0.0824 0.3453 0.1428
CrSi−CrSi2 0.0090 −0.0783 −0.0280
Mn11Si19−Mn3Si 0.0596 0.1276 0.0809

aDifference of ΔHf is the unit of eV/atom.

Figure 3. Stability evaluation from energy above hull. (a) Difference of ΔHf between pairs of compounds in the same chemical system from
experiments versus that from MP and machine learning. (b) Distribution of energy above hull (Ehull, in eV/atom) of all materials in the Materials
Project2 database calculated by the corrected PBEΔHf in MP (EhullMP) versus that calculated by the machine learningΔHf in this work (EhullML). Here,
Ehull is constructed from all materials in the Materials Project database. The color scheme is used to show the (log 10 of) number of materials within a
range of certain EhullML and EhullMP, and the blue rectangle shows the area with EhullMP > 0.16 eV/atom and EhullML < 0.06 eV/atom. (c) Appearance
frequencies of number of elements of each material in the data sets. Here, “exp. dataset” is the ΔHf

exp used in this work, “MP database” is the set of all
materials in the Materials Project database, “MP unstable, ML stable” is the set of materials with EhullMP > 0.16 eV/atom and EhullML < 0.06 eV/atom,
and “MP stable, ML unstable” is the set of materials with EhullMP < 0.06 eV/atom and EhullML > 0.16 eV/atom.
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synthesized compound with EhullMP of 0 and EhullML of 0.4334
eV/atom.
To further investigate how MP and ML disagree with each

other, the appearance frequencies of the number of elements in
each material in four data sets are plotted in Figure 3c. One can
see that in the exp. dataset used as the training set in this work,

around 90% of the materials are binary compounds and 10% of
the materials are ternary, while in the MP database, there are
about 40% contain more than three elements. Since the training
set does not cover material space with more than three elements,
the ML predictions for materials with more than three elements
are extrapolations and in general less reliable than that for binary

Table 3. Examples of Materials That Have Novel Physical Properties and/or Potential Applications with Ehull
MP > 0.16 eV/Atom

and Ehull
ML < 0.06 eV/Atoma

materials MP ID EhullMP EhullML
characterization
method(s) comment/novel physical property/potential application

MnSnIr mp-11480 0.5117 0 experiment largest difference between EhullMP and EhullML

Ta3Pb mp-1187214 0.3386 0 experiment superconductor85

AgRh mp-1183233 0.2633 0.0359 experiment electrocatalyst71

FeCoSn mp-1025124 0.1836 0.0384 experiment tuning phase transitions for isostructural alloying96

SmCo4Ag mp-1219086 0.1797 0.0493 experiment positively correlated magnetization with temperature79

Li3(FeS2)2 mp-753818 0.1697 0.0180 experiment Li−FeS2 battery electrode70

PdRu mp-1186459 0.2277 0.0032 experiment catalyst72

Ni3Ag mp-1100764 0.2332 0 experiment dual-frequency absorption74

Rb2NaTaF6 mp-1114459 0.2038 0 experiment large anisotropic shift from both covalent and polarization spin transfer
mechanisms80

Nb3Tl mp-569366 0.2083 0 experiment superconductor84

UPb3 mp-1184128 0.1621 0 experiment sharp metamagnetic transitions81

Cu3N mp-1933 0.1865 0.0464 experiment light recording media75

FeNi2 mp-1072076 0.1858 0.0292 experiment size-dependent catalytic activity73

HfCo7 mp-1105489 0.2098 0.0500 experiment rare-earth-free permanent magnets82

MnBi mp-1185989 0.2078 0 experiment/DFT half-metallic ferromagnetism78

Be2Si mp-1009829 0.2352 0.0272 experiment/DFT hybrid nodal-line semimetal77

Mn2Hg5 mp-30720 0.2362 0 experiment/DFT π-based covalent magnetism83

Ta3Bi mp-1187199 0.3442 0 DFT topological dirac semimetal93

MnCrSb mp-1221652 0.2564 0 DFT half-metallicity94

LiB11 mp-1180507 0.2084 0.0234 DFT pseudo-plasticity92

NiAg3 mp-976762 0.1850 0 DFT acetylene adsorbent91

Li2VN2 mp-1246112 0.1615 0.0279 DFT Li-ion battery electrode89

LiGdO3 mp-1185401 0.3476 0.0575 machine learning perovskite with high tolerance factor90

LiPmO3 mp-1185388 0.2815 0 machine learning perovskite with high tolerance factor90

aThe materials with the experiment as one of the characterization methods are synthesized materials, and others are currently only hypothetical.
Ehull is in the unit of eV/atom.

Figure 4. Impact of each feature on model output. (a, b) Distributions of the impacts (SHAP values97) of compositional features and elemental
fractions on the model output (ΔHf

diff), respectively. The color represents the feature value (red high, blue low), and here only the top 10 features and
elemental fractions with the highest sum of absolute SHAP values are shown. The inset figure in panel (b) illustrates the trends of DFT to
underestimate or overestimate ΔHf of materials with certain nonmetal elements. Here, the blue-shaded elements are those for which DFT tends to
underestimate ΔHf, the red-shaded elements are those for which DFT tends to overestimate ΔHf, and boron shows a mixed trend.
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and ternary compounds. For the set of materials unstable by MP
and stable by ML, the distribution of the number of elements is
similar to that of the exp. dataset where the majority of materials
are binary or ternary, while in the set of materials stable by MP
and unstable by ML, most materials have four or five elements.
Here, the lack of materials with more than three elements in the
current ΔHf

exp dataset suggests that the ML predictions for
materials with more than three elements should be carefully
checked if ML and MP disagree with each other, and it also
suggests the urgency of building a comprehensiveΔHf

exp dataset
with sufficient entries of materials with more than three
elements.
Data Mining Where ΔHfDFT Fails by Explaining the
Multifidelity Model

In addition to predicting more accurate ΔHf and examining the
stability of materials, the random forest model trained onΔHf

diff

(ΔHf
exp − ΔHf

DFT) with human-engineered features can also
serve as a data-mining approach to reveal where and how
ΔHf

DFT deviates from ΔHf
exp (as above, ΔHf

DFT refers to the
empirically corrected PBE ΔHf by Jain et al.

46 in the Materials
Project database), which provides clearer trends than machine
learning models trained on ΔHf

DFT only. Here, we analyze the
relationship between human-understandable features and
ΔHf

diff by explaining the model, or for each material, calculating
the impact of each feature on the model output (known as the
SHAP value97). Previously, the error of ΔHf

DFT is mostly
discussed in the context of certain anions,3,41,46 cations,3 and
transition metals.3,41,42 In Figure 4a, the impacts of the top 10
compositional features frommatminer59 with the highest sum of
absolute SHAP values are shown. One can see that, in addition
to anion properties (“max GSbandgap”; the detailed explan-
ations of the descriptors are available in the matminer paper59)
and cation properties (“max GSvolume”, “max NdValence”,
“min CovalentRadius”, “min Electronegativity”), the mean field
of elemental properties (“band center”, “mode CovalentRa-
dius”) and standard deviation of elemental properties (“std
NpUnifilled”, “std NdValence”) are also among the most
impactful properties with respect to ΔHf

diff. For example, with
smaller band center (geometric mean of electronegativity59),
ΔHf

diff tends to be larger and ΔHf
DFT tends to be smaller than

ΔHf
exp, which means that DFT tends to underestimate ΔHf of

systems with a smaller mean electronegativity. A possible
explanation for this trend is that, for a smaller geometric mean of
electronegativity, the ability of atoms to bind the electrons near
the atomic nuclei is weaker, and electrons tend to be more
delocalized. Since the GGA approximation tends to over-
estimate the electron delocalization,98 ΔHf

DFT tends to be more
negative for the systems with delocalized bonds (stronger
bonding). Another example is with a larger standard deviation of
the number of p valence electrons, ΔHf

diff tends to be smaller
and ΔHf

DFT tends to be larger than ΔHf
exp, suggesting that DFT

tends to overestimate ΔHf of systems with greater differences
among p electrons. This trend might be explained by the
hypothesis that, with more different p electron configurations, in
general, the compound is more ionic, and because of the fact that
the GGA approximation tends to underestimate the electron
localization,98 DFT (PBE)ΔHf tends to be more positive for the
systems with localized bonds (weaker bonding).
As for the impacts of certain cations and anions, or impacts of

certain elements, we build a decision tree model that takes
stoichiometry as input, and the SHAP values of the fraction of
each element are plotted in Figure 4b. One can see that, with a

higher atomic fraction of S, O, and N, DFT tends to
underestimate ΔHf, while for a higher atomic fraction of Sn,
Mn, P, I, Te, Ba, and Al, DFT tends to overestimate ΔHf. There
are more nonmetal elements (6) in the top 10 most impactful
elements than metals (2) and metalloids (2). Particularly, there
is an interesting pattern of how DFT treats different nonmetal
elements: as shown in Figures 4b and S2, for strong oxidizing
nonmetal elements in the upper-right corner of the periodic
table, including F, O, N, S, and Cl, DFT tends to underestimate
ΔHf, while for those nonmetal elements with weaker oxidizing
ability, DFT tends to overestimate ΔHf. However, the degree of
overestimation or underestimation does not simply correlate
with the oxidizing ability. For example, as shown in Figures 4b
and S1, F has a stronger oxidizing ability than O and S, but the
degree of underestimation of ΔHf

DFT for fluorides is less than
that of oxides and sulfides. There are two possible sources of
errors that would result in the observed trend: on the one hand,
the underestimation or overestimation of ΔHf of materials with
certain elements might come from the element type-based
empirical corrections,3,46 and, on the other hand, the intrinsic
limit of the GGA and GGA + U approximation might cause the
different deviation patterns. For example, Seo et al.99 have
proposed that the GGA + U method used for transition-metal
oxides in the MP database46 overestimates the degree of
hybridization between the d orbitals of transition metals and p
orbitals of oxygen and thus making the calculated ΔHf more
negative.
The trend in Figure 4a also agrees with that in Figure 4b. For

example, for max GSbandgap and max GSvolume, they are
calculated in the following procedure: first, the ground-state
band gaps and ground-state volumes of all of the elements in the
compound are listed, and then themaximum values of band gaps
and volumes are picked up. Therefore, max GSbandgap and max
GSvolume actually relate to the existence of certain elements in
the compound. Specifically, max GSbandgap describes the
presence of a specific anion in the compound, while max
GSvolume describes that of cation. Larger max GSvolume,
ΔHf

DFT, tends to be larger (more positive) than ΔHf
exp. An

explanation for this trend is that with a larger maxGSvolume, the
cation element tends to have a larger ground-state volume
(closer to the bottom-left of the periodic table with the
maximum value at Cs). If the cation is closer to the bottom-left
of the table, the compound in general will be more ionic.
Therefore, ΔHf

DFT tends to be more positive for the systems
with more ionic bonds, as mentioned above. On the other hand,
for larger max GSbandgap, ΔHf

DFT tends to be smaller (more
negative) than ΔHf

exp. This phenomenon might be explained by
the fact that, with a larger max GSbandgap, the anionic element
is closer to the upper-right corner of the periodic table, the
maximum value atN, and according to Figure 4b, the compound
tends to have more negative ΔHf

DFT.
In Wang et al.47 all anionic corrections are negative, which is

because their correction is applied to the original PBE results
and PBE tends to overestimate the energy of diatomic gas
molecules,100 while the trend shown here is based on the
empirically corrected PBE energies from MP that already take
the effect of the overestimated energy of diatomic gas molecules
into account.

■ DISCUSSION AND CONCLUSIONS
In this work, we conduct a comprehensive machine learning
study to learn and predict the experimental formation enthalpy
of materials. We use two different strategies to transfer
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information from a larger DFT dataset to a smaller experimental
dataset, transfer learning and multifidelity machine learning, and
we use four machine learning architectures to realize the two
strategies (RF, MLP, ROOST, CGCNN). We find that the
random forest (RF) model trained on the difference between
experimental and DFT formation enthalpies with the DFT
formation enthalpy as one of the input features can achieve the
lowest error, which is almost half of that of DFT (empirically
corrected PBE), and it also outperforms other more accurate but
more computationally expensive density functionals, such as
meta-GGA functionals. Beyond identifying the best model, we
suggest that the deep neural network-based representation
learning algorithms and transfer learning should not be the only
machine learning architecture and information transfer strategy
considered. Other feature engineering methods such as human-
engineered features, machine learning architectures beyond
neural networks such as random forest, and information transfer
strategy such as multifidelity machine learning should also be
tested in machine learning applications for materials science.
As an application, we employ the best-found random forest

model to calibrate the formation enthalpy of all materials in the
Materials Project database, which are then used to construct the
energy above hull and discover potentially important materials
that have an underestimated stability in the MP database.
Further, we use the machine learning model as a data-mining
approach to identify patterns in the performance of DFT, for
example, in its tendency to underestimate the formation
enthalpy of materials with elements in the upper-right corner
of the periodic table.
This work is based on the Materials Project database queried

on March 2021 (V2021.03.22). The methodology of this work
can also be applied to the updated Materials Project database
(such as V2021.05.13) and other large DFT databases. It is
expected that, with more accurate low-fidelity data (DFT
formation enthalpy), such as the very recent datasets by
Kingsbury et al.44 and by Schmidt et al.101 with thousands of
materials calculated by meta-GGA functionals, the method in
this work can be used to provide more accurate calibration (exp.
formation enthalpy).
One potential limitation of themultifidelity model used in this

work is that it requires the availability of low-fidelity data for the
whole material space of interest, as in this work, DFT formation
enthalpy is required for learning the difference of formation
enthalpy from the experiment and DFT. In cases where low-
fidelity data is not available to all of the materials, transfer
learning might be more appropriate to transfer information
between different data sets. Another scenario not considered in
the current multifidelity machine learning scheme is that, for
some properties, there might be datasets with multiple levels of
fidelity available. In such cases, in addition to incorporating
different fidelity data into the input, the learning of differences
might be conducted multiple times to enlarge the availability of
high-fidelity data gradually.
More broadly, for machine learning applications with small

datasets, choosing proper models and strategies is critical to the
usefulness of the machine learning models. On the one hand,
with small datasets, one should carefully compare the perform-
ance of deep representation learning and classic machine
learning models based on off-the-shelf featurization and make
the choice for production. Typically, with more than 10,000 data
points, deep representation learning might be more powerful;
with less than 500 data points, classic machine learning models
might be more suitable; and with more than 500 but less than

10,000 data points, a careful comparison is necessary for
employing a suitablemodel for production. On the other hand, if
larger low-fidelity data sets are available, then information
transfer might be useful to improve the learning and prediction
of the high-fidelity data. There are two strategies, transfer
learning and multifidelity learning, for the information transfer.
Although there still lacks a theoretical guarantee or quantitative
metric to estimate whether information transfer would help or
not, empirically, the two strategies are worth trying if the high-
and low-fidelity datasets are strongly correlated.

■ METHODS

Data Collection
In this work, we construct theΔHf

exp dataset by combining two sources
from IIT17 and SSUB,58 and we use the Materials Project2 database
(V2021.03.22) to construct the ΔHf

DFT dataset. For theΔHf
diff dataset,

since the ΔHf
DFT values are provided for some materials in the IIT

dataset, ΔHf
diff values for those materials are obtained by subtracting

the provided ΔHf
DFT from the provided ΔHf

exp, and for materials from
the SSUB dataset, since the chemical formula is the only identifier, we
take the lowest ΔHf

exp for each formula, and for the ΔHf
DFT of these

materials, we assign the lowest ΔHf
DFT to each formula. For overlaps

between the IIT dataset and SSUB dataset, we take the ΔHf
exp from the

IIT database as the IIT database is a more recent one.17 Note that the
mean absolute difference of ΔHf

exp between our dataset and the recent
dataset fromWang et al.47 is only 0.007 eV/atom. Codes and a step-by-
step instruction for constructing the dataset are provided in the
Supporting Information.

Machine Learning Model Training Procedure
In this work, the dataset of the 1143 ΔHf

exp is used for three purposes:
(1) hyperparameter tuning for eachmachine learningmodel, (2) model
evaluation, and (3) production or prediction of ΔHf of all materials in
the Materials Project database (MP). For purposes (1) and (2), we first
randomly reserve 20% data as the test set for model selection (these
20% data are also excluded in the larger MP dataset for transfer
learning). Then, to determine the best set of hyperparameters for each
model, with the remaining 80% data, we randomly reserve 20% of the
remaining data (20% × 80% = 16% of total data) as the validation set to
evaluate each specific set of hyperparameters and use 80% of the
remaining data (80% × 80% = 64% of total data) to train the machine
learning model with the given set of hyperparameters. We screen
hyperparameters by grid search, and tables of search space of
hyperparameters are provided in the Supporting Information. Finally,
with the best-found hyperparameters for each model, we use the 80% of
the data (training set + validation set in the hyperparameter search step)
to train machine learning models 10 times with different initializations
and evaluate model performance and uncertainty using the 20% data
held out at the very beginning (test set). For purpose (3), production,
for the best prediction performance, all available 1143 data points are
used to train the best-foundmodel with the best-found hyperparameter.
In this work, we use four different machine learning architectures to

realize transfer learning and/or multifidelity machine learning, random
forest (RF), multilayer perceptron (MLP), Representation Learning
from Stoichiometry (ROOST),26 and Crystal Graph Convolutional
Neural Network (CGCNN).32 For ROOST, we feed the compositions
of materials as input, and it learns the representations of materials, and
for CGCNN, we feed the 3D atomic structures of materials as input,
and it also learns the representations. RF andMLP are realized by scikit-
learn,102 and we use the descriptors from matminer59 to feed RF and
MLP as features of materials. Modules used to generate compositional
features are ElementProperty, ElectronAffinity, BandCenter, Cohesi-
veEnergy, Miedema, TMetalFraction, ValenceOrbital, and YangSolid-
Solution, and modules used to generate structural features are
GlobalSymmetryFeatures, StructuralComplexity, ChemicalOrdering,
MaximumPackingEfficiency, MinimumRelativeDistances, Structural-
Heterogeneity, AverageBondLength, AverageBondAngle, BondOrien-
tationalParameter, CoordinationNumber, and DensityFeatures.
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Since the dataset size is not large in this work, training of machine
learning models is not time-consuming. Using a PC, for RF and MLP,
the training time is within 10 min, and for ROOST and CGCNN, the
training time is within an hour. However, if transfer learning is
employed, then the training of models on the large DFT dataset is very
time-consuming, requiring days of training time for all of the three
neural network models. For the speed of prediction, although it is
critical in machine learning-based interatomic potentials,103 for the
prediction of properties, it is typically not a crucial factor in choosing
models. After initialization of features or graphs, which are time-
consuming (hours of time) but reusable for multiple runs and tasks, all
of the models in this work cost less than an hour to predict ΔHf of
∼100,000 materials in the Materials Project database.
Energy above Hull
In theMaterials Project (MP), the energy above hull (Ehull) is defined as
the energy of decomposition of a material into the set of most stable
materials at this chemical composition.2 The decomposition is tested
against all potential chemical combinations that result in the material’s
composition. A positive Ehull indicates that this material is unstable with
respect to decomposition, and a zero Ehull indicates that this compound
is stable with respect to decomposition. In this work, the energy above
hull is defined in the same way as MP. A graphical illustration of Ehull is
provided in Figure S2. PhaseDiagrammodule in Pymatgen104 is used to
calculate the Ehull. The inputs required by the PhaseDiagrammodule are
the compositions and formation enthalpies, and the corresponding
output is the energies vs composition diagram, from which the
decomposition energies and Ehull can be calculated.
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